

CLAM BAY MANGROVE ASSESSMENT PROJECT 1999-2025

CONSERVANCY OF SOUTHWEST FLORIDA

Prepared by:

Kathy Worley

January 2, 2025

Environmental Science Division, Conservancy of Southwest Florida

1495 Smith Preserve Way, Naples, FL 34102

E-mail: kathyw@conservancy.org 239-403-4223

TABLE OF CONTENTS

LIST OF TABLES	iii
LIST OF FIGURES	iii
INTRODUCTION	1
SITE DESCRIPTION	2
Clam Pass Over the Years	2
Mangrove Deterioration	5
2024 Tropical Storms and Hurricanes	10
OBJECTIVES	11
METHODS	11
DATA ANALYSIS	12
Calculating Productivity Using Photosynthetic Formulas	12
RESULTS	13
Floristic Characteristics	13
1999 Die-Off Areas	13
Stressed Areas	29
Relatively Healthy Areas	42
Current Status	58
Leaf Area Index (LAI)	74
Photosynthetically Active Radiation (PAR)	74
DISCUSSION	74
Storms	76
Natural Mortality	79
Biotic Factors	79
Inundation and Waterlogging	80
Other Concerns	80
Forest Longevity	81
CONCLUDING REMARKS	82
LITERATURE CITED	85
ADDENDUM	90
ACKNOWLEDGEMENTS	225

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1. Mangrove Floristic Characteristics.....		92
2. Trees By Condition.....		119
3. Propagules By Condition.....		158
4. Mangrove Tree And Propagule Recruitment And Mortality Over The Years.....		197
5. Year 6 Leaf Area Index (LAI) and Productivity (PAR) 2023		223
6. Tree Mortality 2023.....		224

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1. Clam Bay Site Location.....		2
2. Clam Bay Pre-Development of the Strand Road (1990) and Post-Development (1996).....		6
3. Clam Bay Die-off Topography Pre and Post-Restoration Hand-dug Channel Installation within the Northwestern Die-off Area.....		7
4. Chronology of a Hypothetical Black Mangrove Die-off.....		8
5a. Excerpts from Collier County's Clam Bay Restoration Plan		9
5b. Hand-dug Channels 2006.....		9
5c. Hand-dug Channels 2018.....		9
6. Hurricane Milton Crossing the State of Florida		10
7. Plot Locations.....		11
8. Plot 2 Trees Over Time by Species.....		15
9. Plot 2 DBH (cm) Over Time by Species		16

LIST OF FIGURES (continued)

<u>Figure</u>	<u>Page</u>
10. Plot 2 Propagules Over Time by Species.....	16
11. Plot 2 Over Time.....	17
12. Plot 3 Trees Over Time by Species.....	19
13. Plot 3 DBH (cm) Over Time by Species.....	19
14. Plot 3 Propagules Over Time by Species.....	20
15. Plot 3 Over Time.....	21
16. Plot 6 Overtime	22
16a. Plot 6 Early 2000's.....	22
16b. Plot 6 2007 Overwash and Erosion	22
16c. Plot 6 2017 Overwash and Erosion	22
16d. Plot 6 2018 Overwash and Erosion	22
16e. Plot 6 2019 Overwash and Erosion	22
16f. Plot 6 2020 Overwash and Erosion	22
16g. Plot 6 2021 Overwash and Erosion	22
16h. Plot 6 2022 Overwash and Erosion	22
16i. Plot 6 2023 Overwash and Erosion	22
16j. Plot 6 2024 Overwash and Erosion	23
16k. Plot 6 2025 Overwash and Erosion	23
17. Plot 6 Trees Over Time by Species.....	24
18. Plot 6 DBH (cm) Over Time by Species.....	24
19. Plot 6 Propagules Over Time by Species.....	25
20. Plot 11 Trees Over Time by Species.....	26

LIST OF FIGURES (continued)

<u>Figure</u>	<u>Page</u>
21. Plot 11 DBH (cm) Over Time by Species.....	26
22. Plot 11 Propagules Over Time by Species	27
23. Plot 11 Over Time	28
24. Plot 5 Trees Over Time by Species.....	29
25. Plot 5 DBH (cm) Over Time by Species.....	30
26. Plot 5 Propagules Over Time by Species	30
27. Plot 5 Over Time	31
28. Plot 8 Trees Over Time by Species.....	32
29. Plot 8 DBH (cm) Over Time by Species.....	32
30. Plot 8 Propagules Over Time by Species	33
31. Plot 8 2018 Hurricane Irma Debris.....	34
32. Plot 8 Over Time	35
33. Plot 9 Mature Black Mangrove	36
34. Plot 9 Trees Over Time by Species.....	37
35. Plot 9 DBH (cm) Over Time by Species.....	37
36. Plot 9 Evidence of Boring Beetle in a Prop Root 2019.....	36
37. Plot 9 Propagules Over Time by Species	37
38. Plot 9 Over Time	38
39. Plot 12 2007.....	39
40. Plot 12 Propagules Over Time by Species.....	39
41. Plot 12 Trees Over Time by Species	40

LIST OF FIGURES (continued)

<u>Figure</u>		<u>Page</u>
42.	Plot 12 DBH (cm) Over Time by Species.....	40
43.	Plot 12 Over Time	41
44.	Plot 1 2006 Mature Mangroves Killed by Hurricane Wilma.....	43
45.	Plot 1 Trees Over Time by Species.....	43
46.	Plot 1 DBH (cm) Over Time by Species.....	44
47.	Plot 1 Propagules Over Time by Species	44
48.	Plot 1 Over Time	45
49.	Plot 4 Example of an Infestation of <i>Cytospora rhizophorae</i>	46
50.	Plot 4 Trees Over Time by Species.....	47
51.	Plot 4 DBH (cm) Over Time by Species.....	47
52.	Plot 4 Propagules Over Time by Species	48
53.	Plot 4 Over Time	49
54.	Plot 7 Mature Black Mangroves.....	50
55.	Plot 7 Trees Over Time by Species.....	51
56.	Plot 7 DBH (cm) Over Time by Species.....	51
57.	Plot 7 Propagules Over Time by Species	52
58.	Plot 7 Over Time.....	53
59.	Channel Cut through Plot 10 in 2004.....	54
60.	Plot 10 Propagules Over Time by Species	55
61	Plot 10 2005 Post Hurricane Wilma	55
62.	Plot 10 Over Time	56
63.	Plot 10 Trees Over Time by Species.....	57

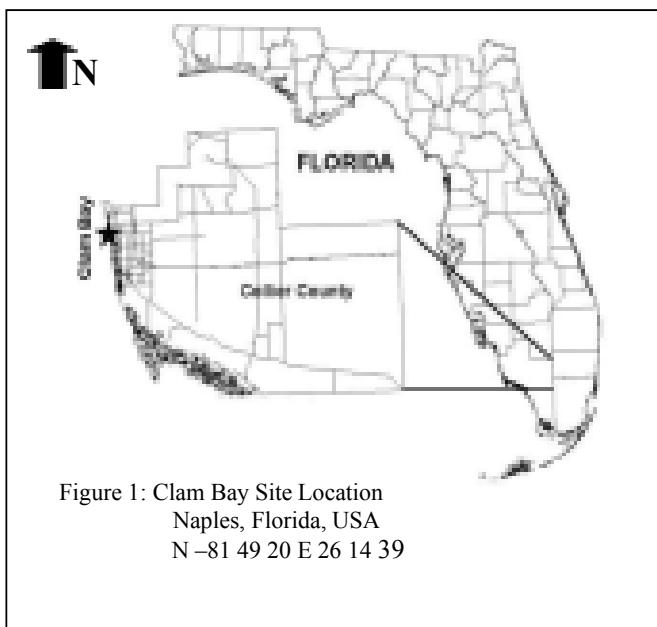
LIST OF FIGURES (continued)

<u>Figure</u>	<u>Page</u>
64. Plot 10 DBH (cm) Over Time by Species.....	57
65. Plot 2 Propagule and Tree Time Series	58
66. Plot 2 Standing Water	59
66a. Plot 2 2020 Standing Water	59
66b. Plot 2 2022 Standing Water.....	59
66c. Plot 2 2023 Standing Water	59
66d. Plot 2 2024 Sulfur Scum in New Channel	59
66e. Plot 2 2025 Standing Water	59
67. Plot 3 Propagule and Tree Time Series	60
68. Plot 3 2019 Standing Water	60
69. Plot 11 Propagule and Tree Time Series.....	61
70. Low Topographical Area in Plot 11 Exhibiting Water Impoundment.....	61
70a. 2016 Low Topographical Area in Plot 11 Exhibiting Water Impoundment.....	61
70b. 2022 Low Topographical Area in Plot 11 Exhibiting Water Impoundment.....	62
70c. 2023 Low Topographical Area in Plot 11 Exhibiting Water Impoundment.....	62
70d. 2024 Low Topographical Area in Plot 11 Exhibiting Water Impoundment.....	62
71. Episodic Accretion and Erosion in Plot 6	63
72. Plot 6 Propagule and Tree Time Series	64
73. Plot 5 Sand Overwash 2025	64
74. Plot 5	64

LIST OF FIGURES (continued)

<u>Figure</u>	<u>Page</u>
75. Plot 8 2016 Water Inundation.....	65
76. Freshwater Ferns within Plot 9 2021.....	65
77. 2019 <i>Cytospora rhizophorae</i> Infection within Plot 9	65
78. <i>Paratachardina lobota</i>	66
79. Plot 9 Propagule and Tree Time Series	66
80. Plot 12 Propagule Recruitment 2022.....	67
81. Plot 12 Propagule and Tree Time Series	67
82. Plot 1.....	68
a. Plot 1 Post-Hurricane Wilma.....	68
b. Plot 1 Post-Hurricane Irma.....	68
c. Plot 1 Post-Hurricane Ian.....	68
d. Plot 1 Post-Hurricane Milton.....	69
83. Plot 1 Hand-dug Channel.....	69
84. Plot 4 Propagule and Tree Time Series.....	70
85. Plot 4 Proximity to Tributary	70
86. Plot 7 2016 Waterlogged	71
87. Plot 7 Propagule and Tree Time Series	71
88. 2019 Mudflat near Plot 7.....	72
89. Plot 7 2025 Sand Overwash & Dead Mangrove Trees Post-Hurricane Milton.....	72
90. Plot 10 2016 Water Levels.....	72
91a. Plot 10 2025	72
91b. Extreme Stress Reflected in Pnuematophores of Plot 10 2019-2025.....	73
92. All Plots Overtime by Species	73

INTRODUCTION


Mangroves are foundational to estuaries, supporting a variety of life, from bacteria that break down their detritus to higher trophic levels via intricate food webs (Teas, 1979). An estimated 628 species in Florida (USFWS, 1999) rely on mangrove systems. Their canopy is rich in epiphytes, providing roosting and nesting areas for birds. Their extensive root systems, both above and below the water, provide safe havens for terrestrial and aquatic invertebrates such as juvenile fish, mangrove crabs, shrimp, barnacles, sea squirts, insect larvae, oysters, and mussels. It is estimated that >75% of commercial and recreational fish utilize the mangroves at some stage in their life. They help to maintain water quality by filtering water and trapping sediments, heavy metals and other pollutants. These forests receive inorganic matter from terrestrial systems and export organic matter containing needed nutrients to intertidal, estuarine, and nearshore marine ecosystems (Boer, 2000, Odum and Heald, 1975; Beck, et. al., 2001). Mangroves are important to ecology and socioeconomics, in terms of flora and faunal productivity (IPCC, 2001). They are the main source of primary production (~80%) in South Florida's coastal ecosystems, producing ~1 kg/m² of litter per year. This accumulation rate produces a density of bacteria in mangrove soil that is amongst the highest in the world (Robertson and Blaber, 1992). Mangroves are sinks for carbon, nutrients and pollutants, and their soils are among the most carbon-dense worldwide. Sadly, worldwide, there has been a considerable decrease in carbon sequestered by mangroves, primarily due to deforestation (Sanderman, et al., 2018).

Worldwide, there are an estimated 70 known mangrove species, of which 54 are considered “true” mangroves. Sadly, one in six mangrove species are headed toward extinction. Over fifty percent of the world's mangrove forests have been destroyed, primarily due to two factors, one anthropogenic and one natural. Anthropogenic impacts such as coastal development, agriculture and aquaculture, tree harvesting, pollution and accelerated climate change due to human activities make up the bulk of the mortality (IUNC, 2016 (Lewis, 1999; Parks and Bonifaz, 1994) and ELAW, 2021). While many countries banned the conversion of mangroves to agriculture, ~3.1% of mangroves are destroyed annually in some countries. Unfortunately, the United States ranks in the top 20 countries with total mangrove losses estimated at over 69% (Sanderman, et al., 2018; Valiela, et al., 2001, Donato, et al., 2011). In Florida, development along coastal areas and concomitant alterations to hydrology, including the practice of dredging, filling, diking and impounding wetlands are primarily responsible for mangrove losses (Turner and Lewis, 1997). While the rate of anthropogenically caused mangrove loss has lessened worldwide during this century, it still accounts for the majority of mangrove mortality (~62%) (Goldberg, et al. 2020). The second major factor is a natural occurrence, erosion, accounting for ~27% of mangrove mortality worldwide (Goldberg, et al. 2020). Other natural factors include low genetic variability amongst mangroves, which decreases their ability to adapt to change (Feller, 2018). Considerable loss of mangrove forests is likely in the near future, as natural, climatic, and anthropogenic stressors combine with barriers that restrict the landward mangrove migration in response to sea level rise.

Mangroves are at the frontlines in the field of battle against the impacts from climate change. They protect us from storms, hurricanes, cyclones, and storm surges. Southwest Florida's mangroves continue to prove their worth abating the devastating effects from Hurricanes such as Wilma, Irma, Ian and Milton. The damage to Collier County's population and associated real estate would have been so much worse without the mangrove systems that absorbed a lot

of the storm surge and wind velocity from these storms. If these forests are kept healthy, their ability to protect shorelines from storms and to sequester carbon could mitigate future climatic impacts.

SITE DESCRIPTION

Historically, Clam Bay was tidally connected to the Gulf of Mexico via Wiggins Pass to the north, Doctor's Pass to the south, and Clam Pass, centrally located between the other two passes.

The Clam Bay estuary is one of the few remaining dynamic systems in the Cocohatchee-Gordon River Drainage System (Burch, 1990) (Figure 1), consisting of ~ 600 acres of shallow bays and mangrove swamps. Clam Bay is the only coastal designated National Resource Protection Area (NRPA) in Collier County.

Clam Bay became isolated in the 1950's when roads were constructed north and south of Upper and Lower Clam Bays, respectively. In 1952, Vanderbilt Beach Road cut off the connection between Upper Clam Bay and Wiggins Pass to the north. In 1958, Seagate Drive cut off the connection between Doctor's Pass and Lower Clam Bay to the south. Today, this estuarine system consists of a series of three of inter-connected, extremely shallow bay lagoons, Outer, Inner and Upper Clam Bays. These bays are still viable, although evidence of slow deterioration in the mangroves around Inner Clam Bay has been documented for over four decades (Benedict, 1984; Worley, 2017). Clam Pass remains the only viable tidal connection to the Gulf of Mexico. This pass is the only channel that provides tidal exchange to the small lagoons and creeks that are aligned parallel to the shoreline. This pass naturally changes its orientation and its position has migrated north and south in concert with prevailing currents.

Clam Pass Over the Years

Clam Pass is “semi-natural” pass, it does not have any hardened structures, however is dredged it to keep it in the same place. Historically, Clam Pass would close up overtime and blow open in another area, part of the natural processes of accretion and erosion of a barrier island. Sand and shorelines were historically and still are dynamic, changing in response to currents, storms and wind strength and direction. Today the configuration of the pass is natural in that sand accretes and erodes in concert with the currents, winds and storms. However, Clam Pass is unnatural due to human interference, as we dredge the pass trying to keep it straight and in the same place, while nature wants to continually move and change.


Historical photographs of the Pass illustrate how the Pass naturally functions.

(Arrows point to the “channel” and the “sand build up” illustrating how dynamic the system is over time).

1953 – Pre-development. The channel, and remnants of an old pass are visible, and sand can be observed building up.

1995 – Pelican Bay Development is adjacent to the estuary and “sand buildup” has formed an island interior to the Pass, which still swings to the north and then to the south.

1962 – Seagate Drive was constructed cutting off the tidal connection to the south. The Seagate canal system and residential areas are being developed. The Clam Pass channel swung north then south and sand was accreting.

2003 – Two years after extensive dredging took place in 1999 and 1 year after the interior tributary dredging in 2002. Note: shoaling around island and the pass swings to the north.

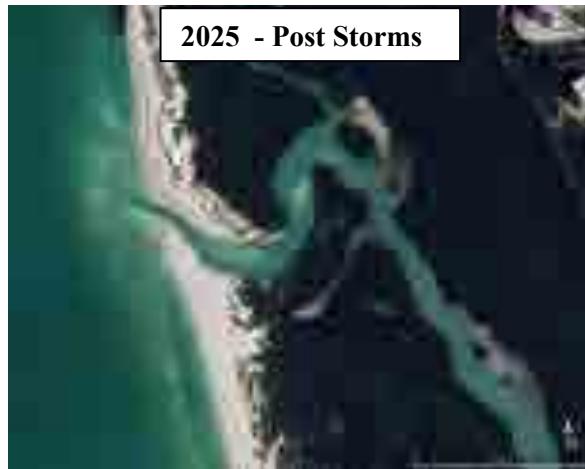
2008 – The pass was dredged in 2007 straightening the channel.

2013 – Pre-Emergency Dredge

2012 storms resulted in closure of Clam Pass, prior to the **Pre-Emergency Dredging** in 2013. (If the Pass had been left un-dredged, nature would have developed a new pass in another part of the system that had less sand build up). 2013 – **Post-Emergency Dredge** (Note the straight channel).

2014 - Clam Pass moved to the north again

2016 –Pre-hydraulic dredge.
Pass still viable


2022 – Post 2016 & 2018 dredging. The pass is oriented in a northerly orientation. Sand accreted on the interior again. This was prior to dredging that occurred in March of 2022.

2022 – Post 2022 dredging. Post-Hurricane Ian, pass has silted in.

2024 – Pass was dredged in the summer, opening up the Pass and orienting it northward. This occurred prior to storms of the mid-late summer of 2024

2025 - Post Tropical Storms and Hurricane Milton. Notice sand accretion on the shoreline.

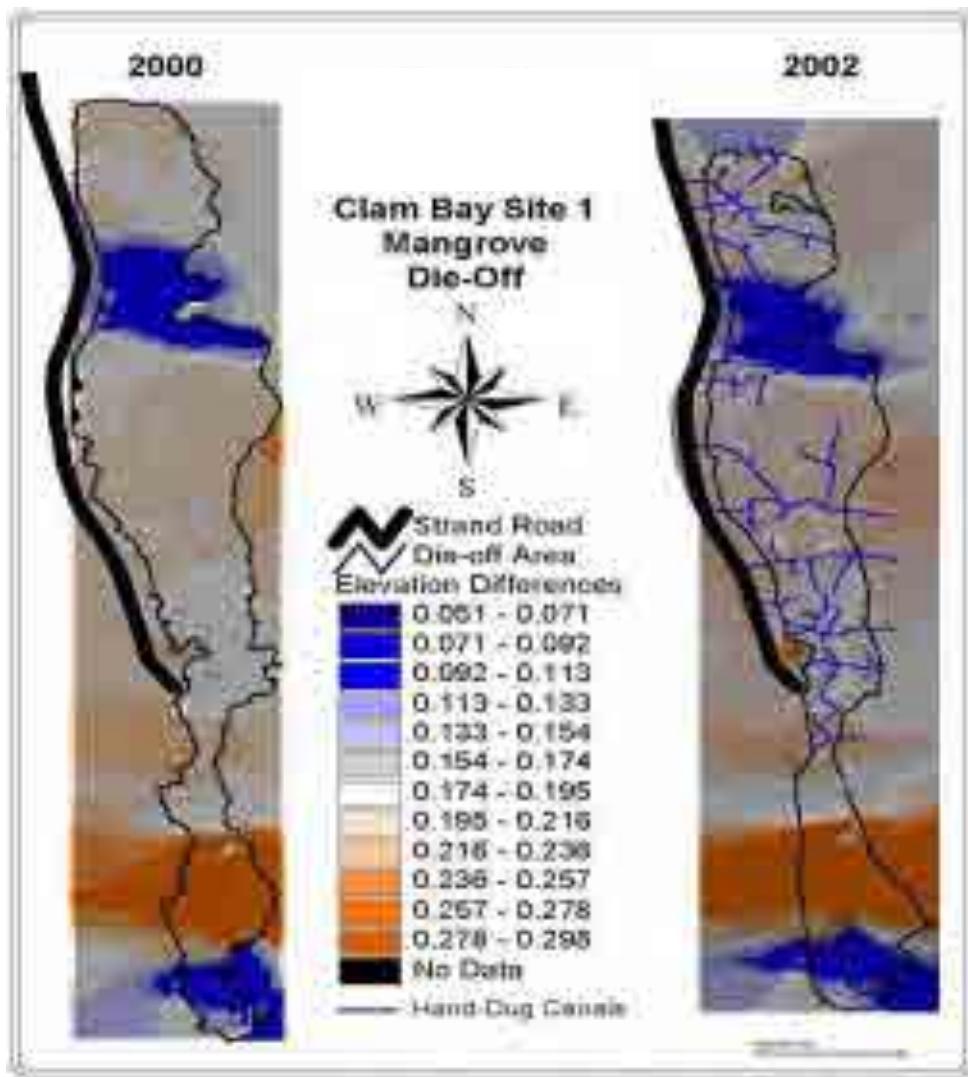
Mangrove Deterioration

The mangrove forest in Clam Bay began to occur when the hydrology was altered in the 1950's and the associated ramifications of development continue to date. The first obvious signs of forest deterioration in Clam Bay occurred in 1991. Approximately, 5.67 hectares of black mangroves died in the northwest corner of the mangrove forest, within six months of completion of a new hard-surfaced road. In 1995, a massive die-off of black mangroves, (approximately 202,350 m² (20 ha), occurred adjacent to the original 1991 dieback.

Unusually, heavy rainfall occurred during the wet seasons of 1992 and 1995, prior to the massive collapse of basin black mangroves, primarily at the upper northern and middle sections of the forest. Black mangroves were inundated for periods of two to six weeks and soils remained saturated for more than four months. Altered soil chemistry, lack of tidal exchange, and high surface water retention contributed to the decline in productivity, growth, and eventually death of these mangroves. The black mangroves were slowly dying for many years. Rainfall events and subsequent water impoundment simply accelerated the mortality. The die-off extended southward along the Strand Road and the western shore of Upper Clam Bay. Another die-off also occurred inland of the tributary between the upper and inner bays. In the late 1990's, the die-off showed no signs of recovery and appeared to be extending to the south and east (Figure 2).

Today, Clam Bay is almost completely enclosed by roads, retention walls and the Pelican Bay residential community and associated amenities. The large-scale die-offs of black mangroves suggest that impacts of intense development over the past five decades are influencing the health in portions, if not all, of the formerly healthy mangrove forests (Worley and Gore, 1995). The impaction of soil during building likely prevented above ground sheetflow and below ground water flow to and from the Gulf. This contributed to higher-than-normal floodwaters and longer water retention times within the mangroves system in the mid to late 1990's.

Figure 2: Clam Bay Pre-Development of the Strand Road (1990) and Post-Development (1996)



Source: Pelican Bay MSTBU
Aerials 1990 and 1996

Residential development and associated infrastructure permanently altered the landscape surrounding this mangrove forest and thereby altered the natural hydrology. These alterations changed the volume and timing of freshwater flows into the estuary and affected the existing tidal regime. Freshwater runoff from developed areas surrounding the Clam Bay mangrove system is typically diverted through stormwater protection measures into the mangroves. (Worley and Gore, 1995). As a result, particularly during storm events, urban pollution and excessive nutrients are often shunted as a point source into Clam Bay. Stormwater enters the mangroves in large pulses, rather than slowly moving as sheetflow over the land or naturally percolating through groundwater tables.

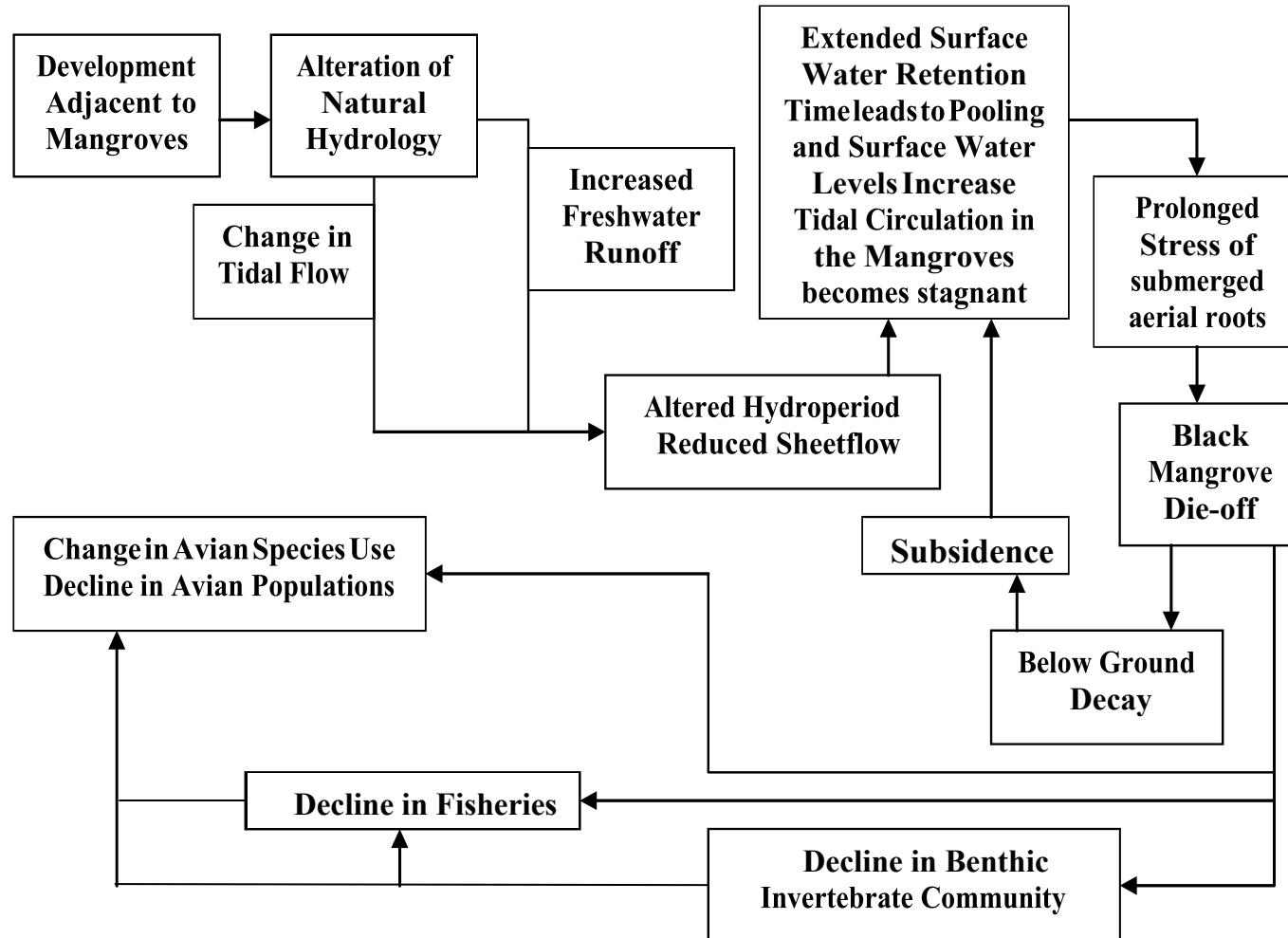
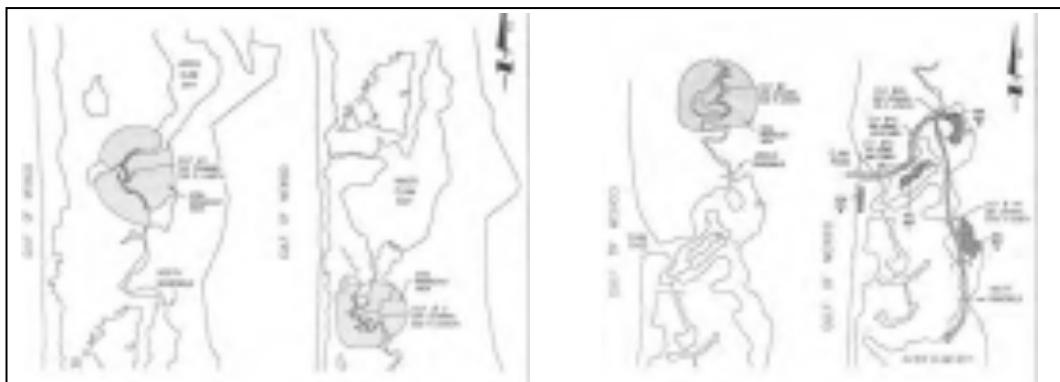

In the mid to late 1990's, excessive water runoff from Pelican Bay and surrounding areas became impounded within the mangrove forest, during the wet season, resulting in stagnant pools. Conversely, during the dry season, tidal flow above and belowground became blocked creating a seasonal draught. Construction and subsequent development in close proximity to mangrove forests often alters the area's natural hydrologic regime, causing the trees to become stressed and die (Worley, 2005). The effect of placing development adjacent to mangrove forests does not often become visually apparent for many years or even decades. Pelican Bay began construction primarily in the 1970's and 1980's. The adjacent mangrove forest of Clam Bay was stressed for many years, which when coupled with additional stormwater impoundment accelerated tree mortality. Additionally, topographic and hydrologic data suggest that mangrove die-offs adjacent to development are lower in elevation and have higher water retention than mangroves located in areas that do not abut development (Figure 3). Therefore, water pools in the lower elevations, becomes impounded, and results in mangrove die-offs. This type of die-off can expand as a result of continual flooding and erosion (Worley, 2005).

Figure 3: Clam Bay Die-off Topography Pre and Post-Restoration Hand-dug Channel Installation within the Northwestern Die-off Area



Mangrove forest degradation and die-offs have been linked to new developments that were built adjacent to a mangrove forest. In a typical scenario, commercial and/or residential development moves in next to a black mangrove forest. This results in soil compaction during construction and reduced interstitial water flow. These alterations are often accompanied by a change in tidal flow and/or increased freshwater runoff into the mangroves, resulting in an altered hydroperiod. If surface water levels rise rapidly, and do not drain or evaporate quickly, mangrove pneumatophores become submerged, blocking gaseous exchange to the roots. Under normal tidal conditions, oxygen concentrations decline in the pneumatophores during high tide, but recover quickly during low tide (Allaway, et. al., 2001). If extended periods of inundation occur, oxygen storage and exchange is compromised and oxygen exchange declines sharply and black mangroves figuratively 'drown', and the result is mass mortality (Figure 4). Large rainfall events can exacerbate and accelerate mangrove mortality, as demonstrated within Clam Bay mangrove forest in 1995 and again in 2016.

Figure 4: Chronology of a Hypothetical Black Mangrove Die-off

Figure 5a: Excerpts from Collier County's Clam Bay Restoration Plan

Source: Pelican Bay Service Division

Figure 5b: Hand-dug Channels 2006

Source: Turrell, Hall and Associates (THA), 2006

Figure 5c: Hand-dug Channels 2018

Source: Earth Tech Environmental (ETE), 2018

The mangrove die-off areas within the Clam Bay system were not recovering and were in fact expanding from 1995-1999, when the local government initiated a ten-year restoration project. Tidal flow was improved by dredging the pass and main channel arteries within the estuary. Small tributaries located near the main die-off were cleared with dynamite to drain out the excess surface water and encourage tidal flushing (Figures 3 & 5a & 5b & 5c). Five months into this study, Collier County began installing an extensive array of narrow hand dug channels throughout Clam Bay in an attempt to prevent extended surface water retention periods during the wet season and lower stagnant standing surface water levels. Dredging existing channels and extending the channel network had a visible effect on the local hydrology within the die-off by draining off floodwaters. However, this extensive array of channels has also led to erosion within the system. Each time that an area within the forest shows deterioration that is not caused by storms or other natural stressors the County tends to respond by digging another channel. Unfortunately, the original cause of the excess freshwater was not addressed at its source and continues to cause system issues during periods of heavy inundation.

2024 Tropical Storms and Hurricanes

2024 was an active year for storms. The Clam Bay area was affected primarily by storm surge. Tropical Storm Debbie traversed the Florida Straits on August 3, 2024, passing by southwest Florida, dropping heavy rain and causing some beach erosion in some areas and accretion in other areas including Clam Bay. Tropical Storm Helene entered the Gulf of Mexico on September 25, 2024, where the storm rapidly intensified attaining Hurricane status. Hurricane Helene moved through the Florida Straits on September 26, 2024 passing by southwest Florida. Similar to Tropical Storm Debbie, this storm also created storm surge that affected southwest Florida; however, its strength was much greater. The last storm that affected our area in 2024 was Hurricane Milton, an extremely powerful storm. On October 9th, 2024, Hurricane Milton made landfall south of Tampa at Siesta Key (Figure 6). The storm surge moved tons of sand inland into the mangrove systems of Clam Bay. This caused widespread mangrove loss and stress particularly areas that were closest to the beach.

Figure 6: Hurricane Milton Crossing the State of Florida.

Source: NASA

OBJECTIVES

In the absence of anthropogenic and natural storm events, mangrove forests change slowly; hence, annual monitoring is necessary to accurately assess the relative “stability” of the forest overtime.

The objectives of this research project are to:

- 1) Evaluate the general health of the Clam Bay mangrove system overtime.
- 2) Gauge mangrove recovery in areas that have died out.
- 3) Compare pre and post restoration project recovery throughout the Clam Bay system.
- 4) Monitor the effects of hurricanes and other weather events on the system.

Figure 7: Plot Locations

METHODS

In 1999, twelve plots were established throughout the Clam Bay system (Figure 7), in areas that provided diversity in terms of substrate, hydrology, species, topography and tree condition (dead, stressed or relatively healthy). A “gradsect” sampling regime, a variant of a stratified random sampling system (Gillison and Brewer, 1985), was used to stratify plots within the Clam Bay system according to condition, species, topography, substrate and hydrology. Plots were classified in 1999 (pre-restoration) as either Relatively Healthy, Stressed or in a Die-off area and their status is evaluated annually. Plot condition is determined using standardized mangrove data collection protocols developed for previous tree assessments over time and substantiated by work described by Duke, et al., 2010; Saintilan, 2010; and FRC Environmental, 2008/2010.

Each plot is circular in shape with a radius of 6 meters (Smith, 2000). The center of each plot was mapped using GPS coordinates. To determine the location of each tree and propagule (seedling) within a plot, the distance and bearing of each mangrove is measured in relation to a known reference point located in the center of each plot. This information is used to assist in locating trees and seedlings on subsequent sampling visits and provides details of vegetative spatial arrangements within the plot.

All trees within each plot greater than 150 centimeters in height are identified to species (Red Mangrove, *Rhizophora mangle* L. (R), Black Mangrove, *Avicennia germinans* L. (B) or White Mangrove, *Laguncularia racemosa* L. (W)), tagged, measured (Diameter at Breast Height (DBH)) and visually classified for condition (relatively healthy, stressed, very stressed or dead) annually. Tree height was not included in tree morphometric measurements, since DBH is a better indicator of dry weight than stem height (Smith and Whelan, 2006). For purposes of this study, a mangrove propagule is considered a seedling when it attains a height at least 32 cm. Seedlings were identified to species, tagged, and measured (height). Cover estimates were generated based on an evaluation of cover data collected at 49 sample points within each 6-meter plot using a GRS densiometer. Sample points were placed at 1 m intervals, along 8 equidistant radii emanating from the center sample point of each plot. This method of cover sampling has been shown to be accurate, objective and repeatable. An estimate based on 49 samples yields a 95 percent confidence interval width between +/- 8.6% and +/-14.3% cover (Stumpf, 1993).

In 2018, Leaf Area Index (LAI) measurements were added to the suite of standard morphometric measurements currently being assessed. LAI as defined by Watson (1947), is the total one-sided area of leaf tissue per unit ground surface area. Measurement of LAI using gap fraction analysis was employed to estimate forest productivity through calculations. This method relies on a coefficient not specific to the area (instead of measuring canopy photosynthesis directly) and results in a calculated estimate of net primary productivity.

A CID Bio-Science Plant Canopy Imager, model CI-110, was used to measure size, shape, and the intensity of Photosynthetically Active Radiation (PAR). Two measurements were made in the center of each plot during the regular annual assessment and presented as an average. Images and PAR readings were captured at each plot facing north. The plant canopy analysis system analyzes and calculates PAR, LAI and leaf angle, which will be used for comparisons in 5-year intervals.

DATA ANALYSIS

Estimates of floristic composition are being used to assess temporal changes to vegetation in comparison to the established pre-restoration plot conditions. Documented measurements and observations established during annual monitoring surveys were used to calculate the following parameters: number of individual trees and seedlings, tree relative and absolute density of species, mean DBH, total basal area, mean basal area, absolute and relative dominance, coverage and beginning in 2018, LAI and PAR.

Calculating Productivity Using Photosynthetic Formulas

Productivity was estimated from the amount of carbon fixed by net photosynthesis production in the canopy during daylight hours using the formula: $P_n = 0.0432 * d * L * A_c$. Where P_n = average net daytime rate of photosynthesis (daytime net carbon fixation); 0.0432 is a numerical coefficient that converts $\mu\text{m C m}^{-2} \text{ leaf s}^{-1}$ (A_c units) to $\text{g C m}^{-2} \text{ leaf h}^{-1}$; d = day length (in (min/60)); $LAI = ((\text{Avg } \ln(I_c/I_o)/-k) * \text{Cos}(\theta))$; and $A_c = 9 \mu\text{m C m}^{-2} \text{ leaf s}^{-1}$, the average rate of net photosynthesis for the canopy (Clough, et. al., 1997).

RESULTS

Floristic Characteristics

In 2025, 1285 trees were evaluated in the twelve study plots, consisting of 194 black mangroves (B), 756 red mangroves (R) and 335 white (W) mangroves (Tables 1. & 2). Of these trees:

- 268 trees were categorized as very stressed, (71 (B), 67 (R), and 130 (W) mangroves)
- 505 trees were categorized as stressed, (85 (B), 274 (R), and 146 (W) mangroves)
- 40 trees died during the period between the spring of 2024 and the spring of 2025, (6 (B), 26 (R), and 8 (W) trees)
- The remaining 472 trees, (32 (B), 389 (R), and 51 (W) mangroves), were categorized as being in relatively healthy condition this year.
- 43 trees were recruited since 2024 consisting of 4 (B), 35 (R), and 4 (W) mangroves, of which none of the mangroves achieved tree height without being recorded as a propagule.

In 2025, 5882 propagules were evaluated in the twelve study plots, (77 black (B), 5693 red (R) and 112 white (W) mangroves (Tables 3 and 4)). Of these propagules:

- Only 4 (B), 35 (R), and 4 (W) mangrove propagules were tall enough to be reclassified as trees.
- Of the remaining 5839 propagules:
 - 130 were categorized as very stressed, (8 (B), 110 (R), and 12 (W) propagules)
 - 747 propagules were categorized as stressed, (22 (B), 699 (R), and 26 (W) propagules)
 - 2190 propagules died during the period between the spring of 2024 and the spring of 2025, (27 (B), 2157 (R), and 6 (W) propagules)
 - The remaining 2772 propagules, (16 (B), 2692 (R), and 64 (W) mangroves) were categorized as in relatively good condition this year.

1999 Die-Off Areas

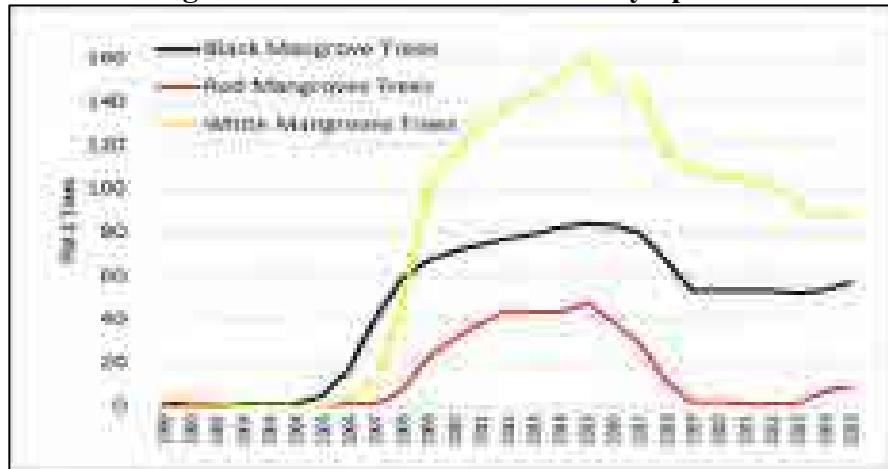
Prior to the County's restoration project in the summer of 1999, four plots were established in the die-off areas and labeled as Plots 2, 3, 6 and 11.

Plot 2 is located in the northwestern die-off area (Figure 7). In the 1980's, prior to development, plot 2 was a healthy mature old growth black mangrove forest (Addison and Ritchie, 1990). In the late 1980's and early 1990's development and roadways surrounded this forest cutting off tidal flow from the west and north, causing freshwater impoundment during periods of heavy rains. By 1995 this area had completely died out. The only remaining source or any tidal flow to this area originated from a narrow tributary to the east, which became partially blocked by debris prior to 1999. Dynamite was used to remove the blockage during the early days of restoration in 2000. In 2001, a hand-dug channel was created approximately five meters to the west of the plot in attempt to reduce floodwater impoundment and shorten hydroperiods. In 2022, the original channel was extended to the south of this plot and our SET station and an additional ditch was dug ~270° from the center

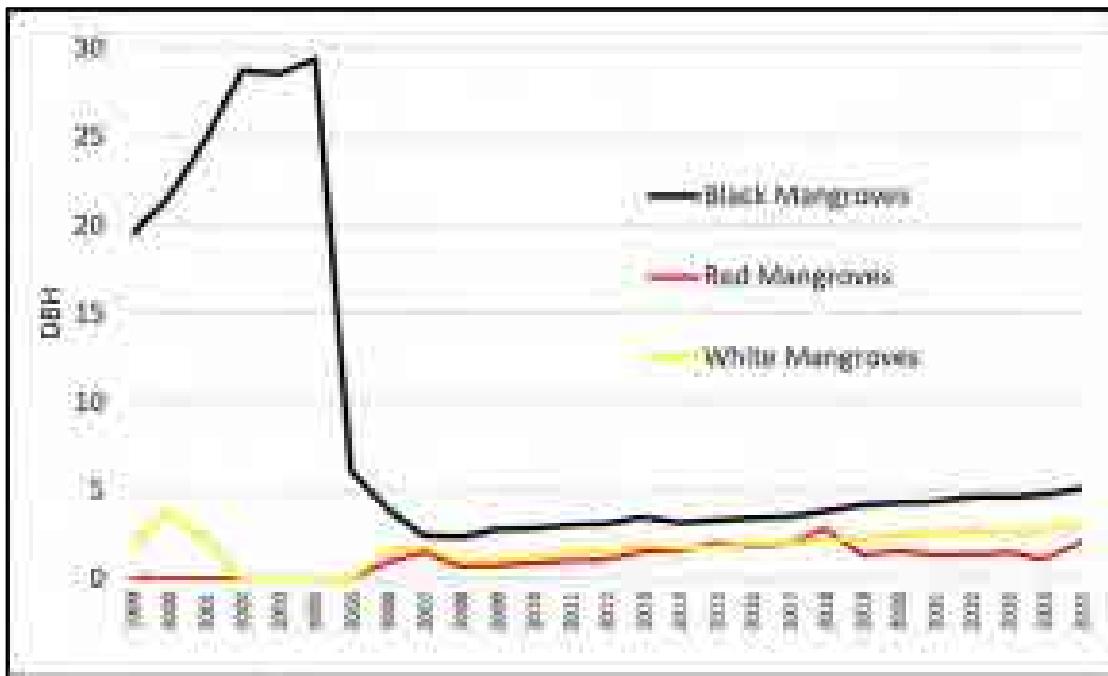
of plot 2. While the intent of the contractors is to reduce flooding, these additional cuts result in plot fragmentation and erosion along the edges of the ditches and channel.

Prior to any restoration activities, in 1999, plot 2 exhibited a few signs of recovery, following the 1995 die-off and vegetative collapse. Plot 2 began actively recruiting red and white propagules. Only seven mangrove trees were still living, consisting of 1 (B) and 6 (W) mangroves, with a mean DBH of 4.36 cm and a total basal area of 0.032 m². Following the restoration initiative, between the fall of 1999 and the spring of 2000, the mangroves Plot 2 started to die. A heavy rainfall event occurred during a November winter storm, resulting in Plot 2 and the surrounding areas being submerged for approximately a month. This water impoundment drowned an estimated 99% of the propagules. Post-restoration only one red mangrove propagule remained along with 3 trees in the winter of 1999 (Tables 1 & 2 & 3). Plot 2 hit rock bottom in 2002 when only 1 black mangrove tree remained. This was old growth mature tree (DBH of 28.7 cm and a total basal area of 0.065 m²). During this period tree mortality rates exceeded recruitment rates (Tables 1 & 4 and Figures 8 & 9). The County responded to this further deterioration by installing additional hand-dug channels in the area to drain off standing water. Following further channel installation, freshwater impoundment temporarily abated.

In Plot 2 propagule recruitment and seedling establishment began anew in 2002, peaking in 2007 (Tables 3 & 4). In 2005, a few black mangrove propagules were tall enough to be classified as trees. The total number of mangrove trees recruited into Plot 2 almost doubled each subsequent year through 2008. In 2008, there were 109 mangrove trees, with a mean DBH of 1.72 cm and a total basal area of 0.157 m², indicative of young tall thin trees. A reciprocal relationship occurred between the number of recruited trees and average DBH. As the number of new trees with very small DBH's increased, the plot average DBH decreased. Additionally, only one mature large girthed black mangrove that was present prior to the restoration remained at this time. The increase in small stemmed trees, combined with the reduction in large old growth trees caused the average DBH to decline (Tables 1 & 4 and Figures 8 & 9).


2009 had the highest number of new tree recruits. Tree numbers steadily rose peaking in 2015 at 291 trees (Table 1 and Figure 8). With the influx of so many seedlings attaining tree status, real estate within the plot was at a premium. As a result, beginning in 2011, competition for resources began taking a toll on some of the younger trees, as many began to show stress and slowly die (Table 4). Aside from inter and intraspecific competition for resources, other factors also contributed to tree mortality. In the early winter months of 2016, 26 mangrove trees died following an extreme precipitation event that occurred during the dry season. Water impoundment from heavy rains remained in evidence throughout the summer of 2016 causing high stagnant water levels within Plot 2. In 2017 water levels still remained near the surface during the dry season and water impoundment re-occurred periodically. Unfortunately, tree mortality rates surpassed recruitment rates through 2023, Propagule mortality was high as well, surpassing recruitment rates during this timeframe (Table 4). In 2018, tree assessments not only reflected the damage wrought from Hurricane Irma in September of 2017, but was compounded from the continual waterlogging and increased stress that occurred over the years. In 2017, prior to Hurricane Irma, there were 256 mangrove trees. Post Hurricane Irma 197 trees remained in Plot 2.

New tree recruitment ceased between the 2017 and 2019 monitoring periods. Fifty-nine trees died between the spring of 2017 and the spring of 2018 (Table 1 & 4 and Figures 8 & 9). The number of stressed and very stressed trees more than doubled between 2016 to 2017 and continued to rise through 2018, when ~92% were either stressed or very stressed (Table 2). In 2019, 33 more trees died. Tree mortality lessened between 2020 and 2022, when only 10 mangrove trees died (Table 4). In 2023, post Hurricane Ian mortality rates rose sharply outpacing tree recruitment. The majority of tree mortality post Hurricane Ian was not due to the hurricane, but rather due to anthropogenic causes. During the period between the 2023 and 2025 assessment, Plot 2 mortality rates decreased slightly and tree recruitment slightly outpaced tree mortality. One hundred and fifty-three mangrove trees remained in 2025, consisting of 57 (B), 9 (R) and 88 (W) mangrove trees, with a mean DBH of 3.81 cm and a total basal area of 0.446 m². In 2025, an estimated 85% of the trees are either stressed or very stressed. This plot was not too affected by the 2024 storms, but is continually under stress from various factors including anthropogenic, inundation, and hurricanes (Tables 1 and 2 and Figures 8 and 9).


During the early years, post-restoration propagule recruitment vacillated primarily between red and black mangroves. Species recruitment began to shift to primarily red mangrove seedlings throughout the remaining monitoring period (Table 4). Total propagule numbers began to recede from 2008 through 2012 as many saplings became trees, the tree canopy increased, and competition for resources weeded out those seedlings that were not as fit (Tables 3 & 4). In 2016, following a dry season of above average rainfall, propagule mortality briefly superseded propagule recruitment and again in 2018, following Hurricane Irma (Table 4). In 2024, propagule recruitment was on the rise, but decreased sharply in 2025 post 2024 storms. Propagules totaled 143, consisting of 7 (B), 133 (R) and 3 (W) seedlings in 2025, and 66 died (Table 3 and Figure 10).

Canopy cover ranged from 0% in 2001 to 57% in 2016. Pre-Irma in 2017 canopy cover was 47%. Post Irma canopy vegetation in 2018 was 18% reflecting the impact of Hurricane Irma as leaves were stripped from the trees from high winds. Canopy coverage increased slowly through 2022, due to subsequent greening of the remaining trees, only to decrease following Hurricane Ian to 29 % in 2023. In 2024, recovery from Hurricane Ian was reflected in the increase in canopy coverage to 43%. This area was not as affected by 2024 storms as canopy coverage was 45%, albeit inundation is still of primary concern in Plot 2 (Table 1 and Figure 11).

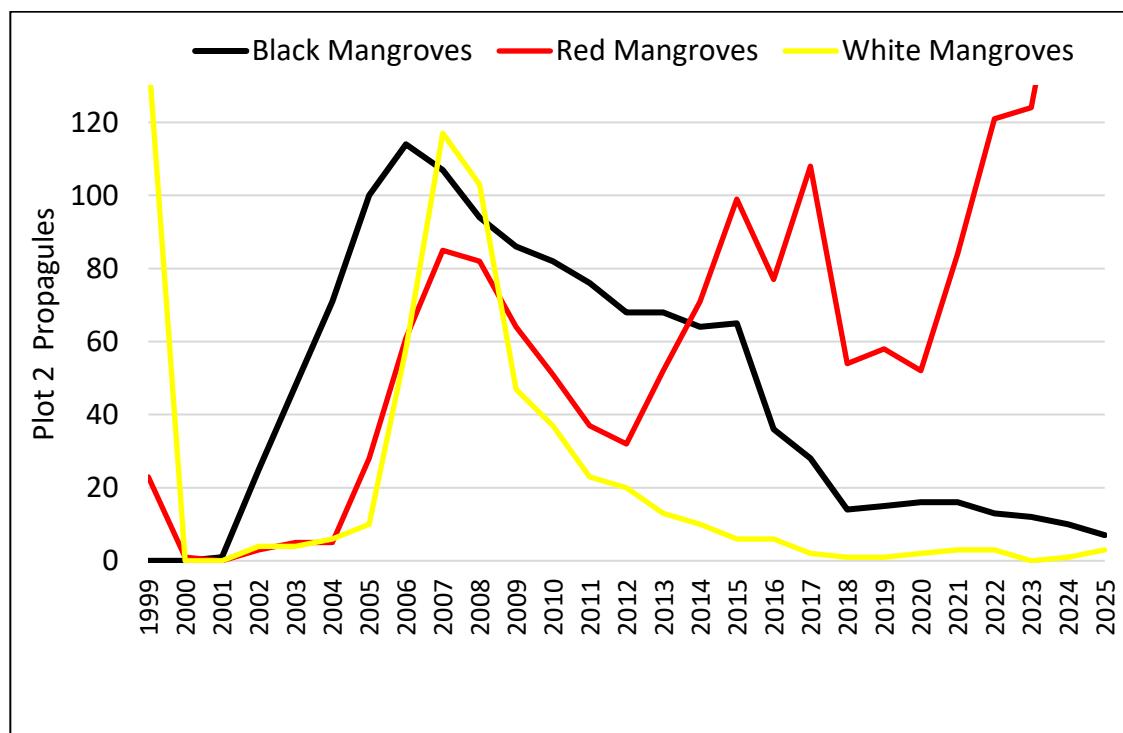
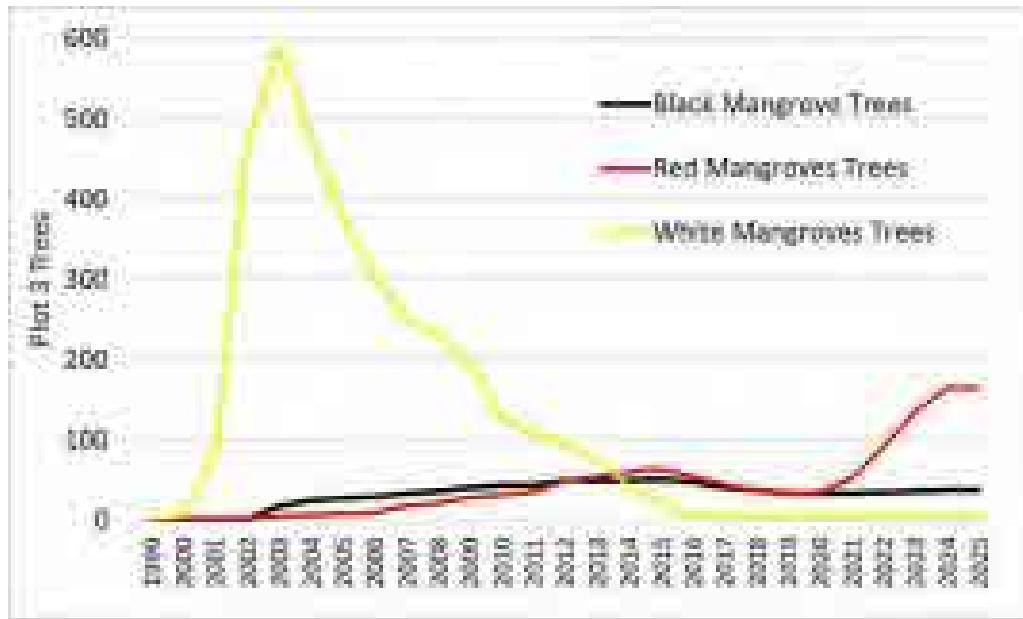

Figure 8. Plot 2 Trees Over Time by Species

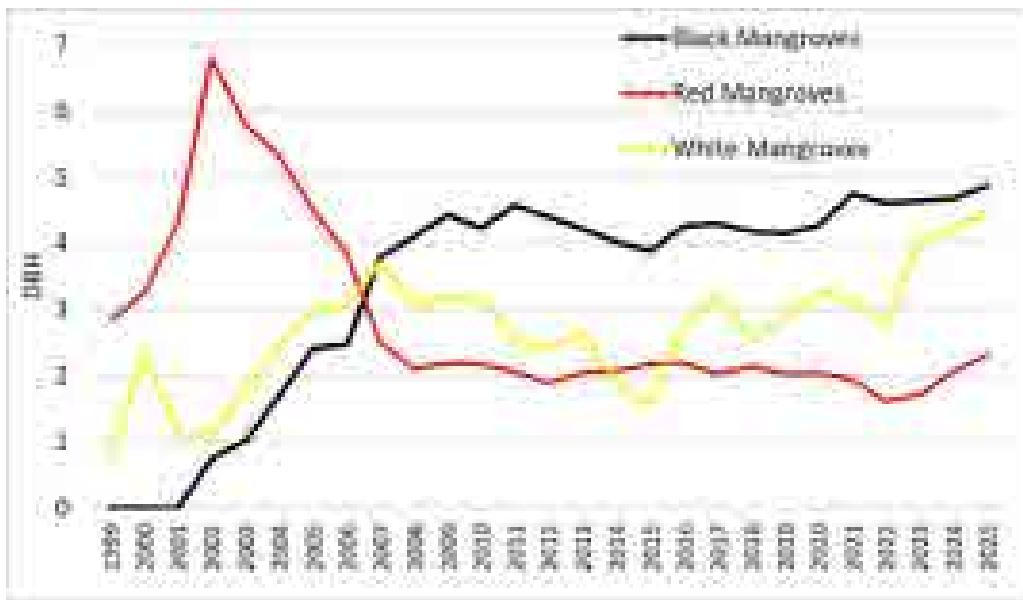
Figure 9. Plot 2 DBH (cm) Over Time by Species

Figure 10. Plot 2 Propagules Over Time by Species

Figure 11: Plot 2 Over Time



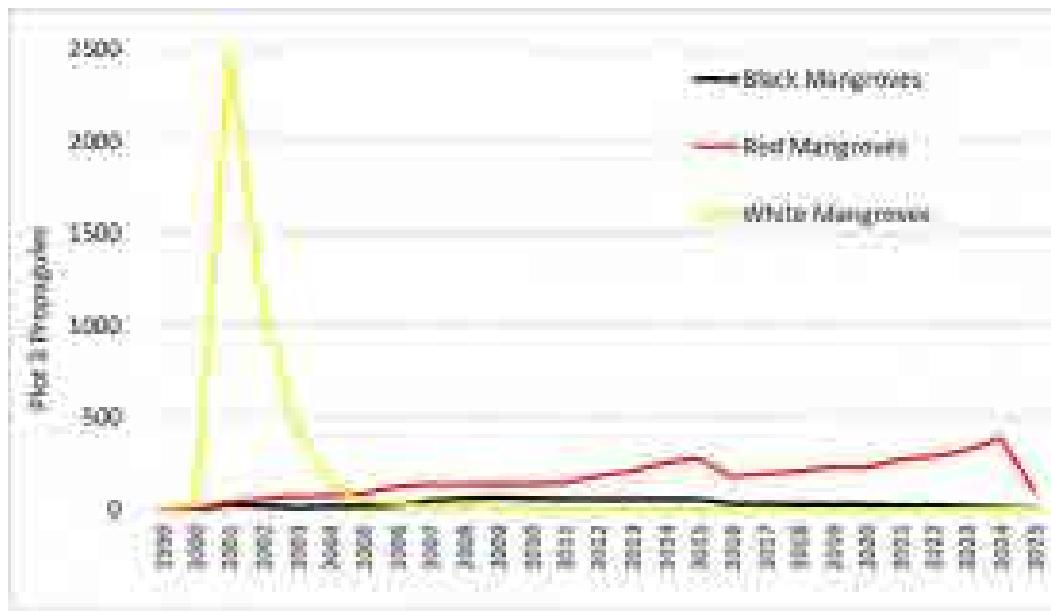
Plot 3 is situated on the eastern side of the northernmost tributary between Inner and Upper Clam Bay. The main tributary was dredged in the summer of 1999 to allow for higher tidal flow (Figure 7). A hand-dug channel was cut directly through this plot to drain off water that had impounded in the area and allow for tidal flushing during the initial restoration in 1999-2000. This channel continues to be periodically cleaned out.


Pre-restoration, plot 3 consisted of only three white mangrove and two red mangrove trees, with a mean DBH of 1.62 cm and a total basal area of 0.001 m² along with 13 propagules, 4 (B), 2 (R), and 7 (W) (Tables 1 & 2 and Figures 12 & 13). Post-restoration, there was an explosion of seedling recruitment from 2001-2003. Propagule numbers peaked in 2001, when plot 3 had 2534 living propagules of which 97.2% were white mangroves (Table 3 and Figure 14). Many propagules attained tree status and tree recruitment rose dramatically between 2001 to 2003 (Table 4) As tree numbers increased, white seedling mortality in particular increased over 20-fold in 2002, due to natural interspecies competition for resources. Tree recruitment and total numbers, declined thereafter through 2015, at variable rates, as competition weeded out the younger trees (Tables 1, 2 & 4). In 2016, only ~15% of the trees were still in relatively good condition. In 2016, this area was subjected to heavy spring precipitation and subsequent plot inundation that resulted in increased mangrove tree mortality. Tree mortality rates outpaced tree recruitment during the period between 2017 and 2019, following Hurricane Irma. Prior to Hurricane Irma, plot 3 was already exhibiting signs of stress and the storm only exacerbated its decline. Tree mortality rates slowly decreased through 2024. (Tables 2 & 4 and Figure 12). Hurricane Milton resulted in the death of 6 trees. Two hundred and seven trees were present in 2025 consisting of 38 (B), 164 (R), and 5 (W) mangroves. In 2025, 47% of the trees remain stressed or very stressed. Mean DBH was 2.78 cm, along with total basal area of 0.238 m² in Plot 3 in 2025 (Tables 1 & 2 and Figures 12 & 13).

White mangrove trees were the dominant species from 2000 -2013, peaking in 2003, and then their numbers slowly declined through 2019. In 2014, the number red mangrove trees surpassed the number of white mangrove trees in plot 3. This was in concert with a shift in propagule recruitment from primarily white mangroves to red mangroves, as these propagules gradually grew into trees. Tree recruitment of black mangroves began in 2002 and increased steadily surpassing red mangrove tree recruitment through 2012. Black mangrove trees became equally dominant with red mangrove species from 2016 - 2021, when red mangrove trees became more dominant and remained dominant through 2025 (Tables 1, 2, & 4 and Figure 12).

Figure 12. Plot 3 Trees Over Time by Species

Figure 13. Plot 3 DBH (cm) Over Time by Species

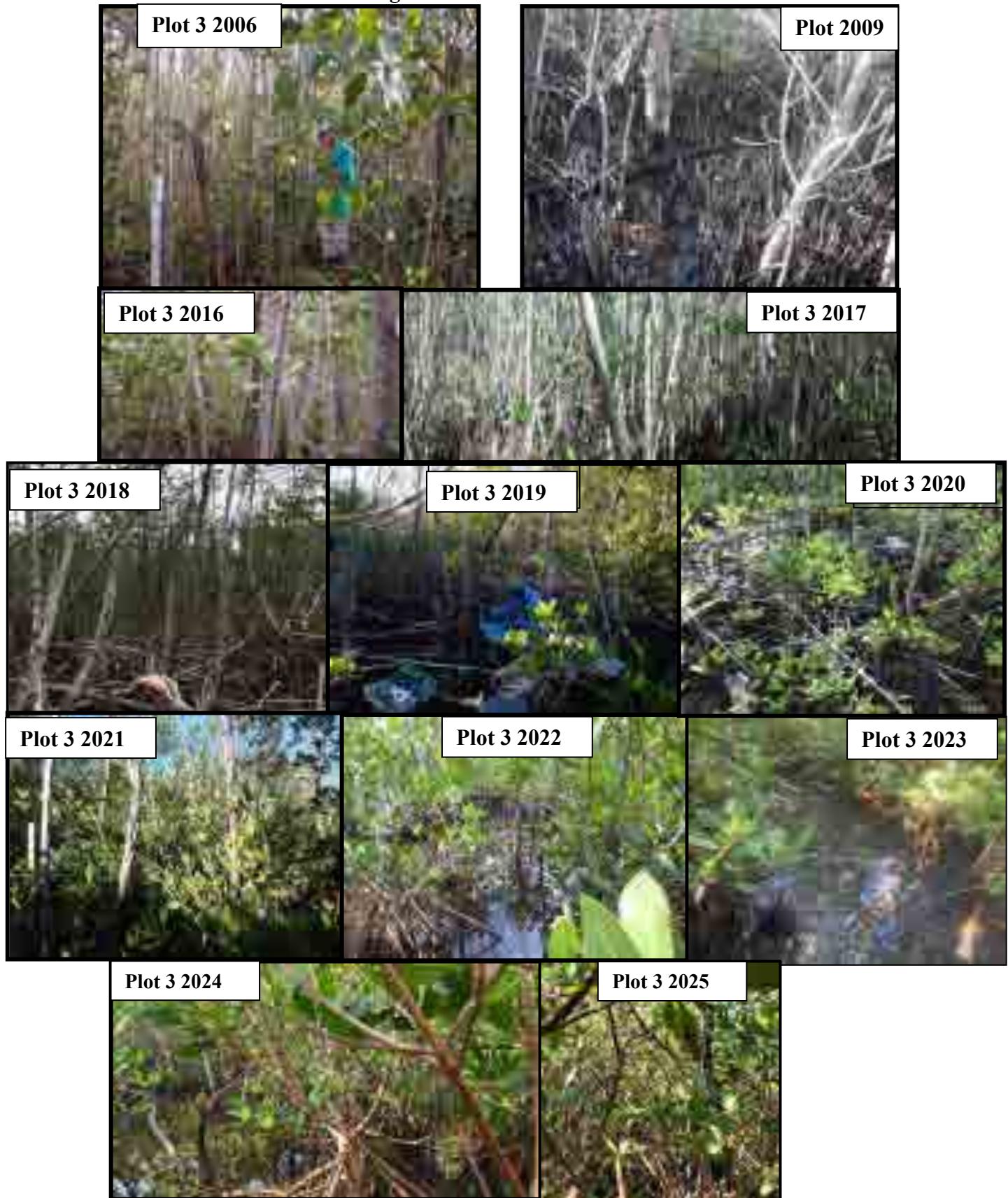


White mangrove propagules dominated the early years of post-restoration monitoring in plot 3, peaking in 2001. Overall, the dramatic rise in propagule numbers that occurred in 2001 was a result of propagule re-establishment following water impoundment abatement. The subsequent dramatic propagule crash in 2002, resulted from the return of inundation and the return of extended water retention periods. Mortality rates rose to 48% of the total propagules in 2002, when the white seedling population crashed.

Propagule numbers primarily decreased from 2002 through 2005, rose slightly through 2007, were relatively stable through 2011, and then increased in numbers through 2015. Overall, red mangrove propagule recruitment dominated from 2003 through 2007, black mangrove seedling recruitment briefly surpassed red seedling recruitment in 2008- 2009, before

retaining their dominance through 2025 (Tables 3 & 4 and Figure 14). In 2016, propagule mortality dramatically increased to 41% of the assemblage. Unfortunately, this was not due to a concurrent increase in trees, or inter or intraspecific competition for resources, but rather, due to increased inundation. Mortality rates were high from 2020-2025. In 2025, mortality rates surpassed recruitment rates by 96% In 2025 there were 112 living propagules, consisting of 4 (B) and 104 (R) and 4 (B) propagules were in Plot 3 (Table 3 and Figures 14 & 15).

Figure 14. Plot 3 Propagules Over Time by Species



Canopy cover ranged from 0% in 1999-2001, and 2018, peaking in 2024 at ~61%, and averaging ~32% overtime (Table 1). Interestingly, coverage increased following Hurricane Ian, and remained constant following the 2025 storms, coincident with a storm surge event more than a wind event.

Scale Infestation on the stems of some mangrove trees in plot 3

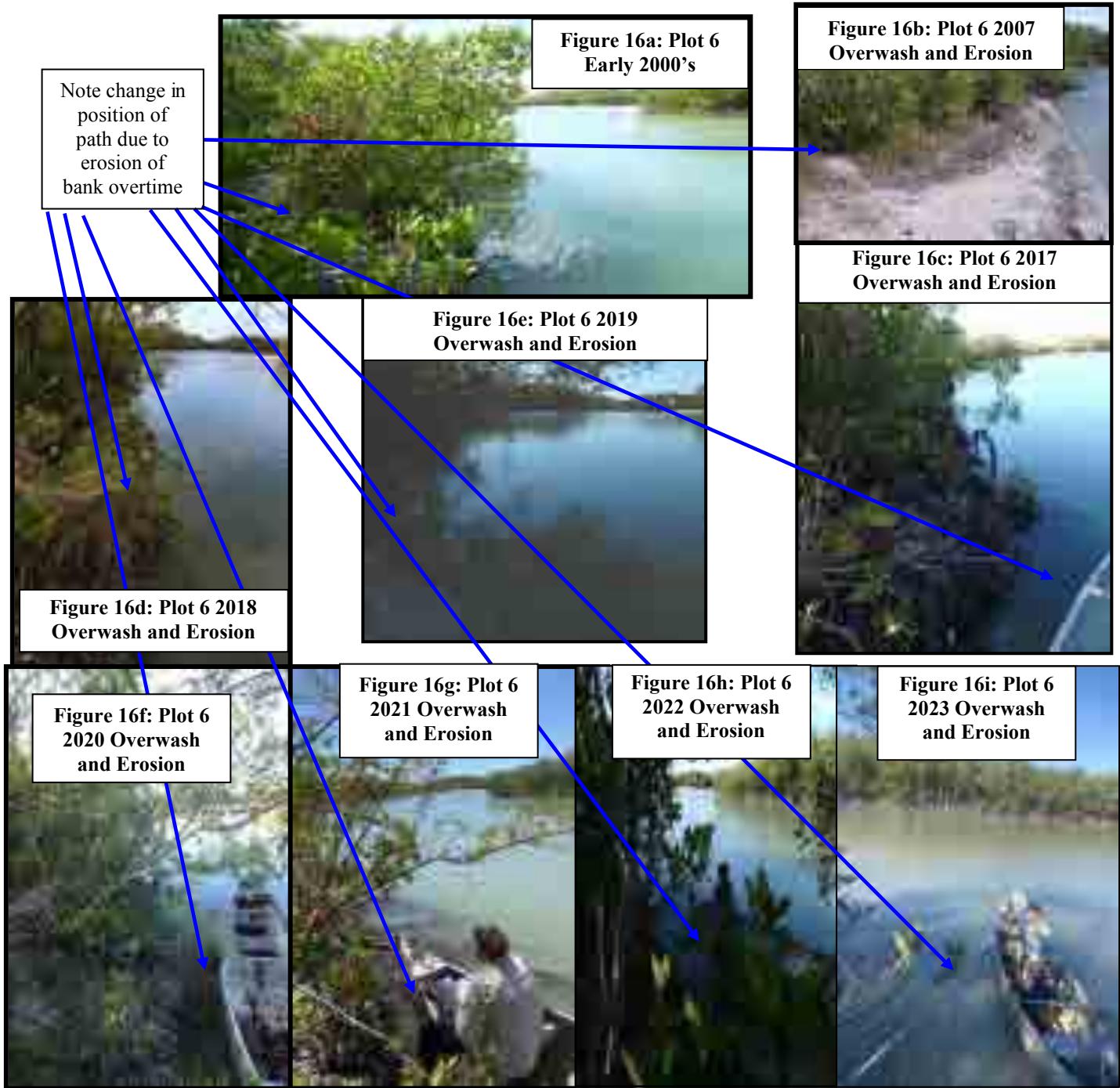
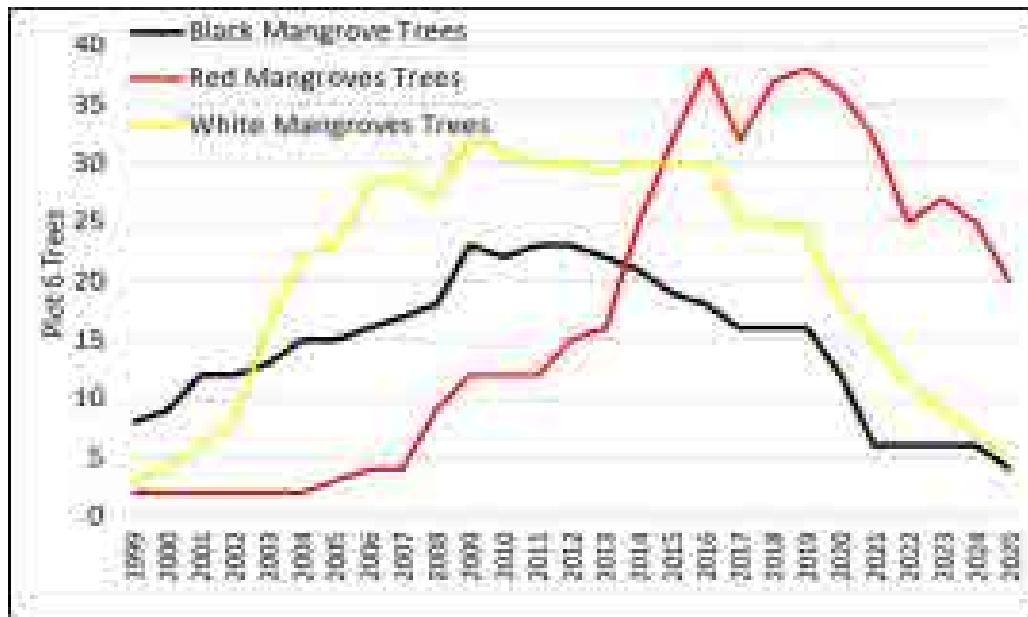


Figure 15: Plot 3 Over Time

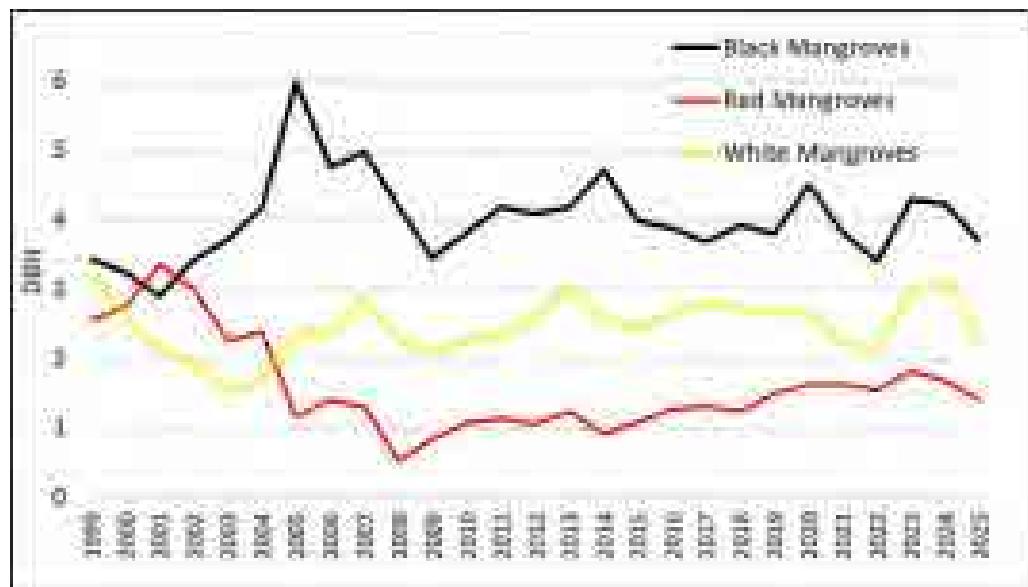
Plot 6 is located in the southern part of the Clam Bay system, near the entrance of Clam Pass (Figure 7). The plot is frequently overwashed by storm and tidal surges from the Gulf of Mexico, which naturally kept tree and seedling recruitment to a minimum. A die-back of over 50% of the original trees occurred prior to 1995. The strength of tidal incursions has increased due to the County's dredging operations directly to the west of this area, which results in increased tidal flow and volume, leading to increased bank erosion (Figure 16: 16a-16j).

Figure 16: Plot 6 Overtime

Figure 16: Plot 6 Overtime Continued



Prior to restoration, plot 6 had 13 mangrove trees consisting of 8 (B), 2 (R), and 3 (W) mangroves, with a mean DBH of 3.25 cm and a total basal area of 0.016 m² (Table 1 and Figures 17 & 18). In 1999, during the pre-restoration baseline assessment there were 258 propagules consisting of 19 (B), 201 (R), and 38 (W) (Table 3 and Figure 19). Trees numbers rose slowly through 2009; remained relatively stable from 2010-2013; rose steadily through 2016; prior to decreasing in 2017; followed by a brief period of stabilization from 2018 to 2019; and decreasing from 2020 through 2025 (Table 1 and Figure 17). In 2025, there were only 29 mangrove trees remaining consisting of 4 (B), 20 (R) and 5 (W) mangroves, with a mean DBH of 1.86 cm and a total basal area of 0.017 m² (Tables 1 & 2; Figures 17 & 18). Mean DBH has decreased periodically over the years, reflecting the death of older larger diameter trees and an increase in younger thinner trees (Table 1).


Propagule recruitment peaked in 2001, whereas the total number of propagules peaked in 2002. Propagule numbers vacillated overtime in response to various stressors, albeit primarily decreasing over the years. In 2025, there were 59 propagules present consisting of 4 (B) and 55 (R) mangrove seedlings. Propagule mortality rates increased after dredging events, primarily due to erosion along bank edges, resulting in propagules and trees to falling

into the tributary. Bank washout was coincident with the initial dredging and the 2013 emergency dredge events. Additional dredging events took place in 2016, late spring of 2018, and 2023 coincident with further erosion to the western edge of the plot (Figure 16d). Mortality rates also increased during storm events in 2020, 2021 and Hurricanes Ian in 2022 and Milton in 2024. Red mangrove trees began dominating this plot beginning in 2015 and red mangrove propagules dominated over the entire study period (Tables 2, 3 & 4 and Figures 17 & 19).

Figure 17. Plot 6 Trees Over Time by Species

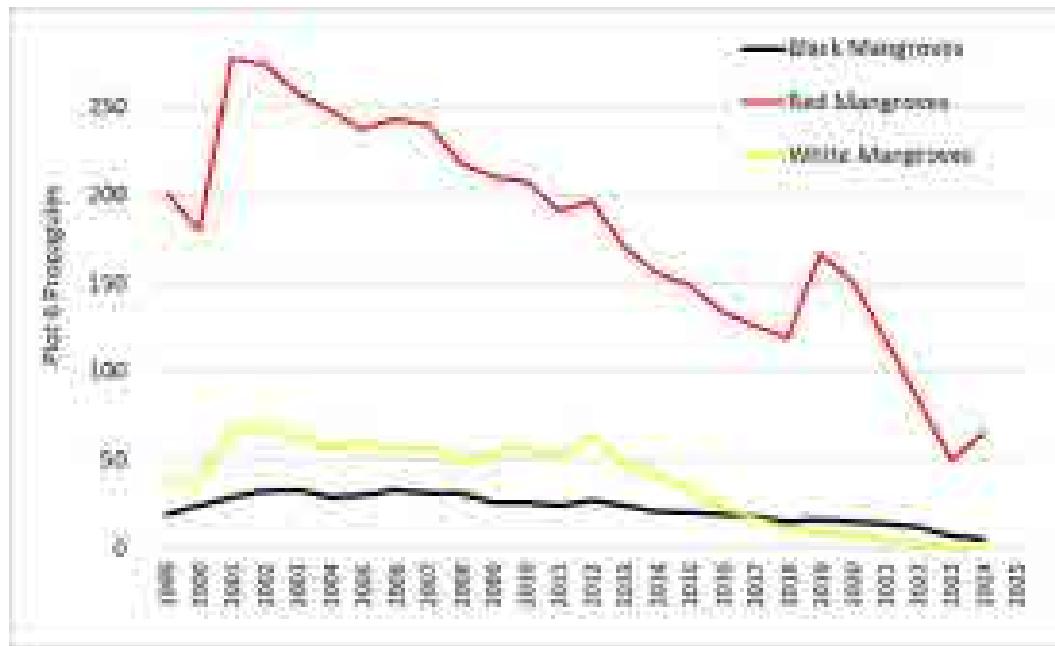
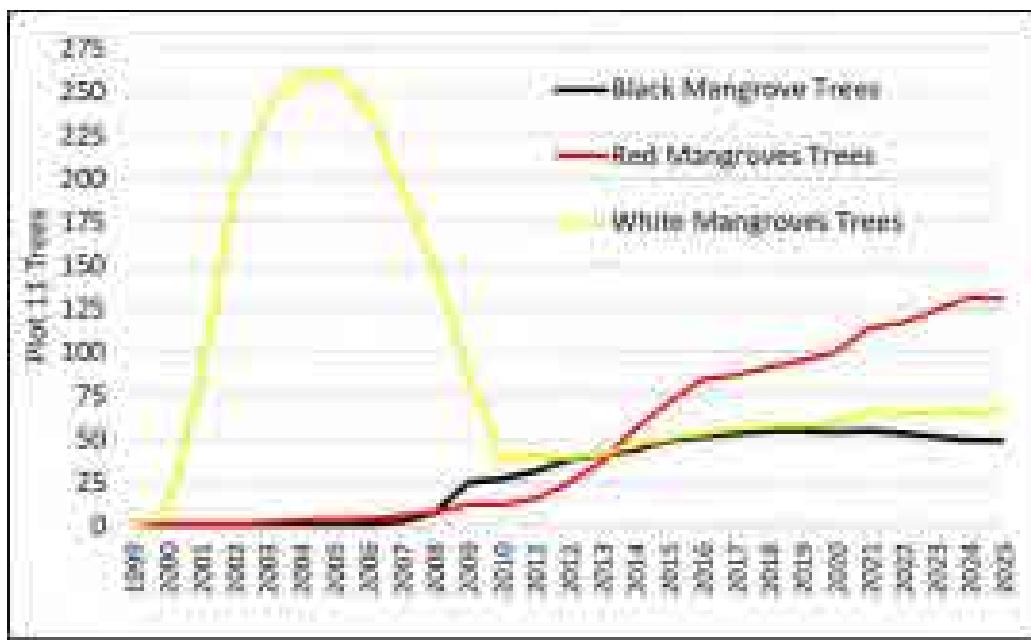


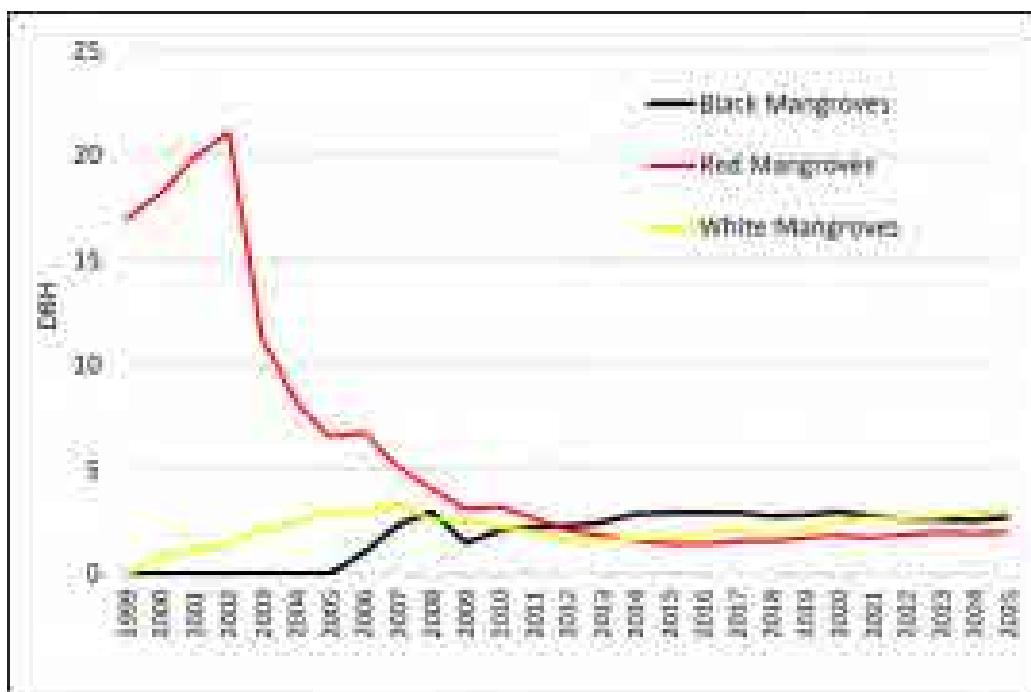
Figure 18. Plot 6 DBH (cm) Over Time by Species

Canopy cover was nonexistent in 2006 and 2023 following Hurricanes Wilma and Ian, and at 4.08% following the 2024 storms. Averaging only an estimated 7% overtime (Table 1). Hurricanes Irma and Ian and Milton exacerbated stress within this plot, which was already exhibiting signs of stress prior to these storms. Sixty-three percent of the trees remained stressed in 2025 (Table 2). Seedling recruitment and mortality appears cyclic coincident with dredging events, storm surges, extreme tides, and other weather events. (Table 3). Over the years plot 6 has not matured, but continues to remain in a state of arrested development and slow decline due to periodic washouts and continued bank erosion.

Figure 19. Plot 6 Propagules Over Time by Species

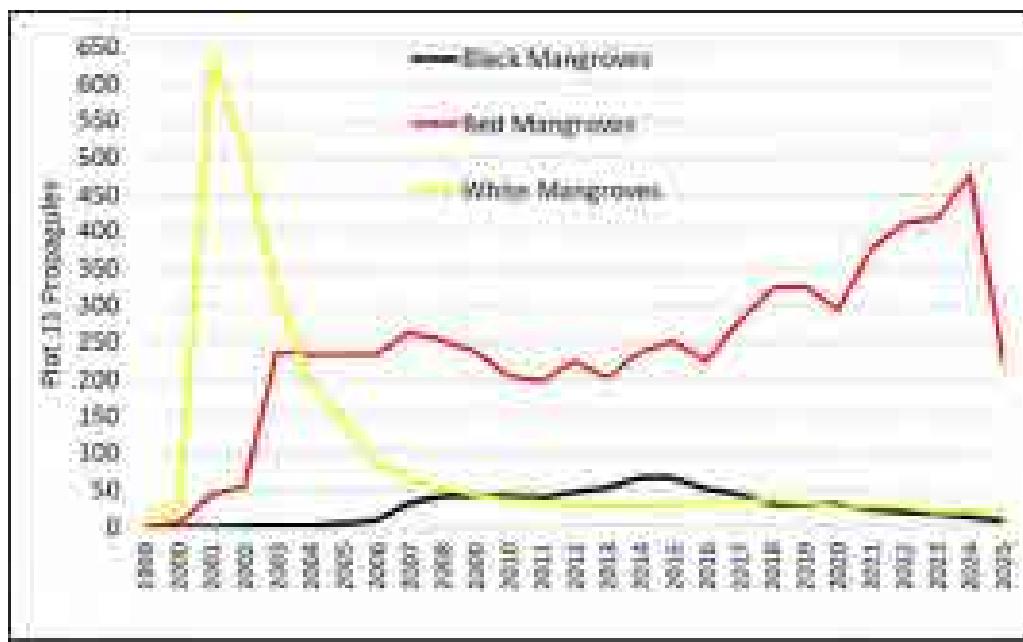


Plot 11 is located in the northern part of the estuary, inland and north in relation to plot 3, and has less tidal influence than plot 3. It is situated on the upper eastern side of the main tributary between Inner and Upper Clam Bay (Figure 7). A few hand-dug channels are located to the south of plot 11, which allows some of the stormwater influx from the surrounding eastern and northern developments to drain into tributaries, instead of pooling in the mangroves at Plot 11. However, the topography in the area of the plot has subsided over the years, likely from peat collapse from decaying dead mangroves, since this area was the location of a die-off the early 1990's. This lessening of elevation allows water to pool in the plot during rain events and high high tides.


In 1999, pre-restoration, this plot had suffered a mangrove die-off due to water impoundment and subsequent lack of gaseous exchange. At this time plot 11 had one mature red mangrove tree (DBH = 17 cm; total basal area 0.023 m²), along with one red mangrove and nine white mangrove seedlings (Tables 1 & 3 and Figures 20, 21, & 22). In 2001 post-restoration, seedling recruitment exploded to 675 living propagules, of which 93.5% were white mangrove seedlings. (Tables 3 & 4). Additionally, growth was exponential during the years of 2000- 2001, as many propagules attained sufficient height to reclassify them as trees.

Similar to events that occurred in plot 3, as white mangrove propagule recruitment receded after 2001 and white mangrove tree recruitment increased, peaking in 2002. Recruitment rates of white mangrove trees primarily receded thereafter (Tables 1, 2 & 4 and Figures 20, 21 & 22).

Figure 20. Plot 11 Trees Over Time by Species


Figure 21. Plot 11 DBH (cm) Over Time by Species

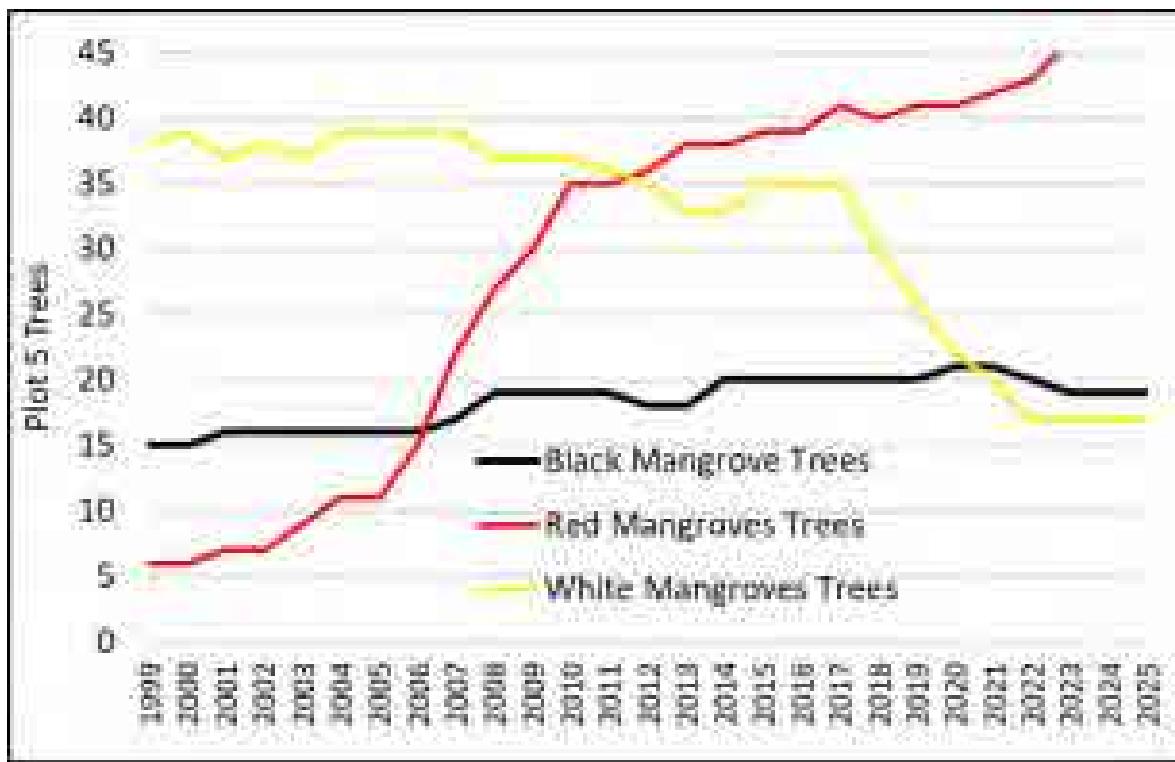
In 2005, the number of mangrove trees in plot 11 peaked and thereafter slowly decreased at a variable rate from 2006 through 2010 and increased during the remaining years (Table 1 and Figures 20 & 21). This slow steady increase in tree numbers was coincident with a slow shift in mangrove tree species dominance from white mangrove to red mangrove. In 2000, red mangrove propagules started to be recruited into plot 11. This species of mangroves attains tree status more slowly than white mangrove seedlings, illustrated by the single digit recruitment rate of red mangrove trees through 2012 (Tables 2 & 4). White mangrove trees dominated plot 11 until 2014, when red mangroves became the dominant tree species. Black mangrove propagule recruitment rose sporadically over the years and began to achieve tree status in 2006. Black mangrove trees were not as successful, since tree recruitment rates waned in the later part of the assessment period (Tables 2 & 4 and Figure 20). Trees in plot 11 withstood Hurricanes Irma, Ian and the 2024 storms better than other plots, as loss was primarily limited to branch and vegetative loss, along with a few trees. In 2025, plot 11 reflected a mixed species mangrove forest, containing 245 trees consisting of 49 (B), 131 (R), and 65 (W) mangroves, with a mean DBH of 2.43 cm and a total basal area of 0.171 m² (Table 1 and Figures 20, 21 & 23).

Elevated propagule recruitment occurred in 2001, 2003, and 2004 as the die-off began to re-seed. While increased propagule recruitment in 2021 and 2024 was likely in response to a more open canopy due to recent storms. In 2025, post tropical storms and Hurricane Milton propagule mortality substantially increased as a result of storm surge which uprooted the propagules. In 2025, there were 257 living propagules (9 (B), 228 (R) and 20 (W)) and red mangroves propagules encompassed ~89% of the total assemblage (Tables 3 & 4 and Figures 22 & 23).

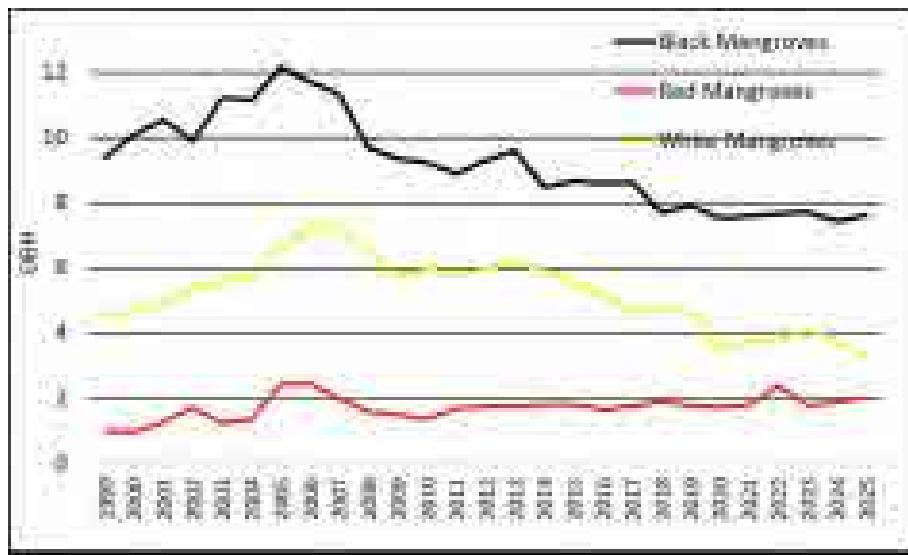
Figure 22. Plot 11 Propagules Over Time by Species

Canopy cover ranged from 0% at the onset of the study to 59%, in 2005. A significant decline in canopy coverage was observed in 2020, but showed significant improvement the following year. Hurricane Ian and the storms that occurred in 2024 did not appear to have any effect on canopy cover. In 2025, canopy coverage was ~51% and over the years, canopy coverage averaged 27% in plot 11 (Table 1).

Figure 23: Plot 11 Over Time


Stressed Areas

In 1999, Plots 5, 8, 9 and 12 were located in areas classified as stressed at the start of this project.


Plot 5 is located close to Clam Pass in the southern part of the Clam Bay system (Figure 7). Plot 5 is similar to plot 6, however it is semi-protected from storm surge by a dune, and tidal access is restricted via a natural narrow channel. These characteristics negate overwash impact to all but the most extreme storm surges from the Gulf of Mexico. Throughout monitoring period, this plot remained relatively stable as recruitment and mortality rates were lower in comparison to other plots. Canopy cover vacillated over the study period as the canopy opened up and then began to close over. Cover ranged from 16% in 2011 to 55% in 2022, averaging ~32% overall. In 2025 the canopy cover was ~39% (Table 1).

In the spring of 1999, pre-restoration white mangrove trees and red mangrove propagules dominated this plot. Pre-restoration plot 5 had 59 trees consisting of 15 (B) 6 (R) and 38 (W); mean DBH of 5.42 cm; and a basal area 0.261 m² (Tables 1 & 3 and Figures 24 & 25). Tree numbers steadily increased thereafter through 2010; relatively stable from 2011 through 2019; and decreased slightly thereafter through 2024. In 2025, one red mangrove tree was recruited. At this time there were 85 trees were present in plot 5 consisting of 19 (B) 49 (R) and 17 (W); mean DBH of 3.54 cm; and a basal area 0.187 m² (Table 1 and Figures 24 & 25). Species dominance switched from white mangrove trees to red mangrove trees in 2013 perhaps indicative of increased water levels.

Figure 24. Plot 5 Trees Over Time by Species

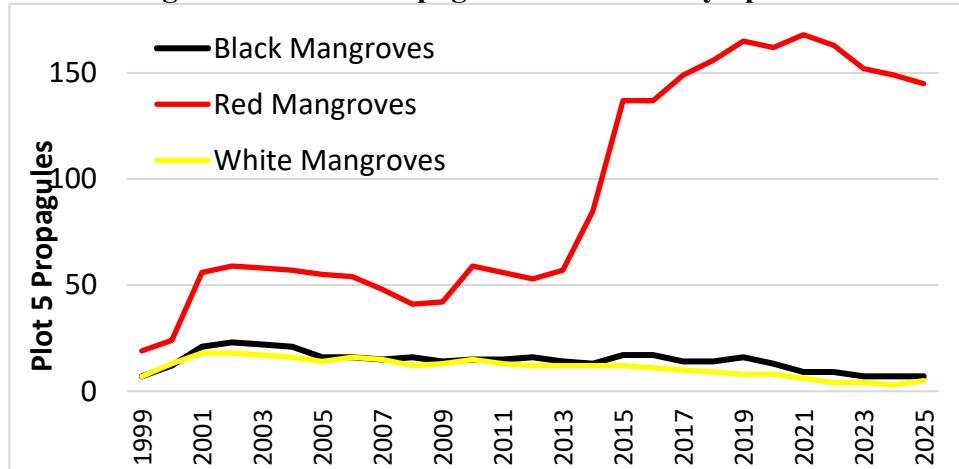
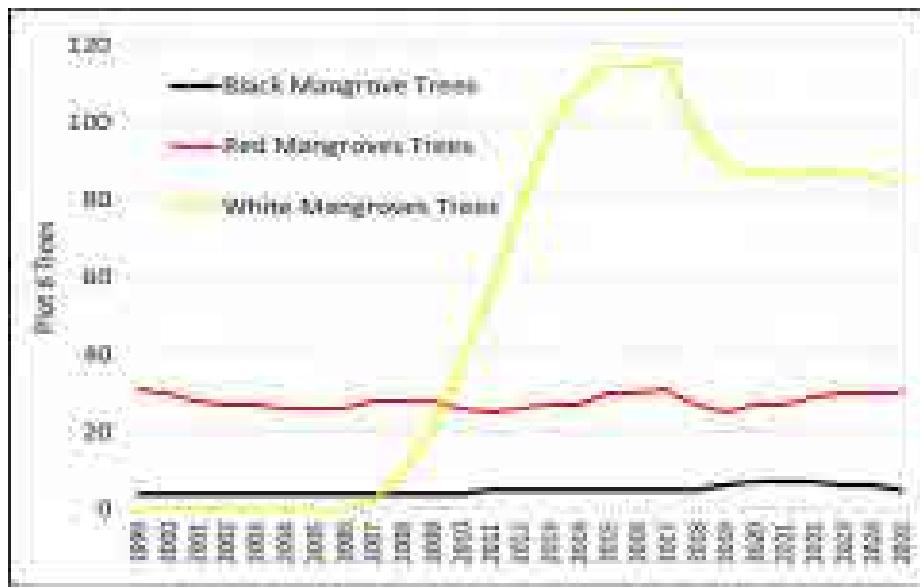
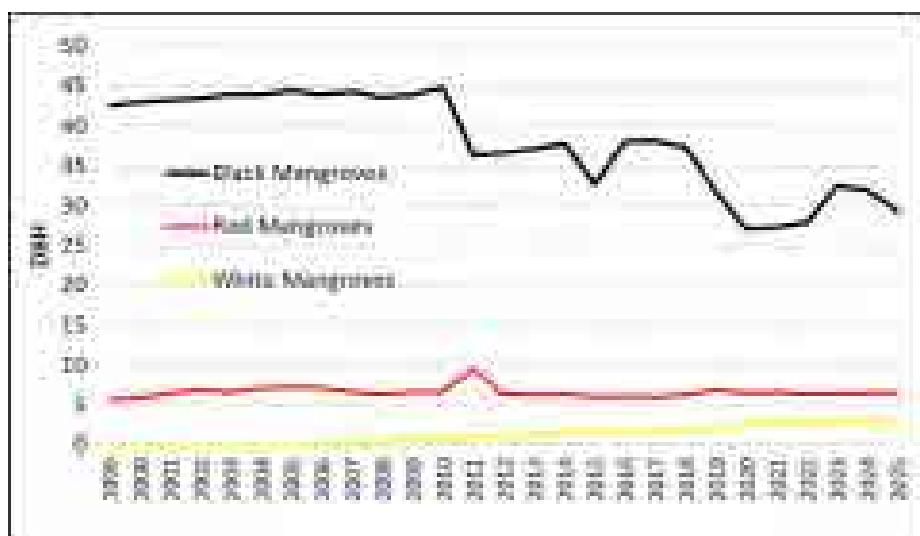


Figure 25. Plot 5 DBH (cm) Over Time by Species

In 1999, 33 propagules consisting of 7 (B), 19 (R) and 7 (W) mangroves were present (Table 3). Seedling recruitment doubled or tripled between the years 2000 - 2001, 2009 - 2010, 2013 - 2015; 2016 - 2017; and 2020 – 2021 remained relatively stable or decreased throughout the remaining years. Seedling recruitment increased when the plot was not subjected to tidal overwash and higher mortality appeared coincident with storms and extreme tides and/or storm surge (Tables 1 & 4 and Figure 26). Seedling mortality was relatively low, ranging from 1 propagule dying in 2010 to 14 and 15 propagules dying in 2018 and 2023 following Hurricanes Irma and Ian respectively. While some seedlings did die following the storm surges in 2024, they did not exceed the average mortality normally present (Table 4). In 2025 there were 157 propagules consisting of 7 (B), 145 (R) and 5 (W) mangroves (Table 3 and Figure 26). Red mangrove seedlings dominated this plot. Higher rates of red propagule establishment accounted for the rise in red mangrove tree species during the latter half of the study period as some red mangrove propagules attained tree height (Tables 3 & 4 and Figures 26 & 27).

Figure 26. Plot 5 Propagules Over Time by Species


Figure 27: Plot 5 Over Time


Plot 8 is situated in the northern section of Clam Bay, on the western side of the main tributary between Inner and Upper Clam Bay. This plot is mostly surrounded by one of the main original die-off areas to the north, west, and south (Figure 7).

In 1999, ten red mangrove propagules were established during the pre-restoration baseline assessment within plot 8. There were 35 mangrove trees consisting of 4 (B) and 31 (R) mangroves, with a mean DBH of 9.9 cm, and a total basal area of 0.921 m² (Tables 1 & 2 & 3 and Figures 28 & 29 & 30). Canopy cover peaked at, ~98% at the start of the study and dropped to ~39% in 2018 post Hurricane Irma, averaging ~73% overtime (Table 1). The high percentage of canopy cover in 1999 was primarily due to two very mature black mangroves with full crowns (DBH \approx 60 cm and 93 cm). Hurricane Ian and the 2024 storms had minimal effect on canopy coverage in this plot as canopy coverage was at ~67%, ~76% and ~67% in 2023, 2024 and 2025 respectively.

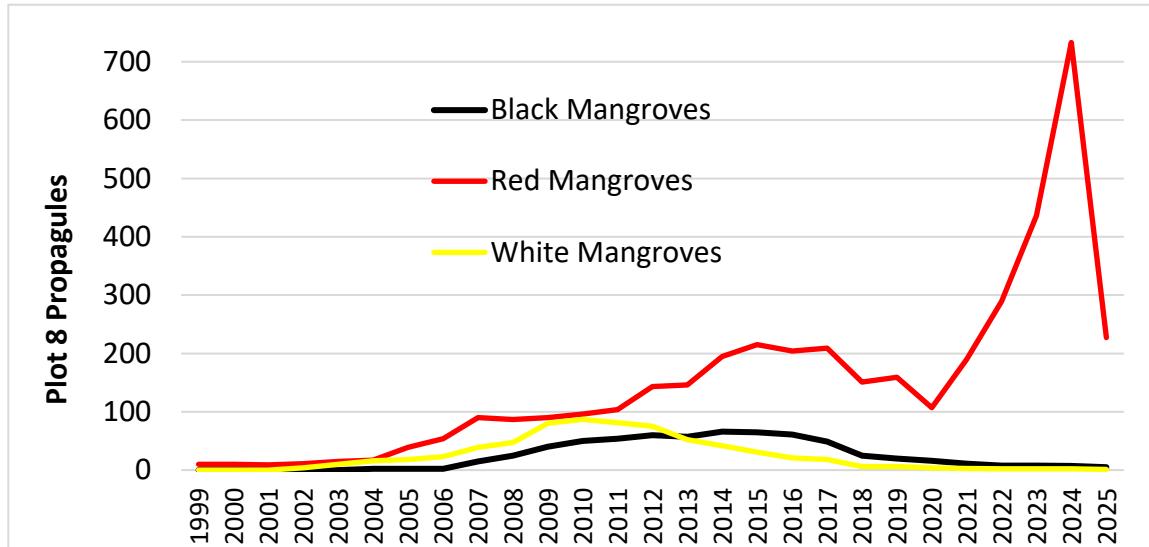

Figure 28. Plot 8 Trees Over Time by Species

Figure 29. Plot 8 DBH (cm) Over Time by Species

Figure 30. Plot 8 Propagules Over Time by Species

This plot was typical of a mature mixed red mangrove and black mangrove species forest, which showed little variation through 2006. Trees dominated the assemblage as a minimal number of propagules were present indicative of a mature forest. Following Hurricane Wilma in 2005, the canopy opened up and as a result propagule recruitment tripled between 2006 and 2007, followed by tree recruitment as propagules attained tree height. As the plot repopulated recruitment slowed. Tree mortality in 2018 increased after Hurricane Irma but remained minimal from 2020 through 2025 (Table 4). As of 2025, plot 8 contained 119 trees consisting of 5 (B), 30 (R) and 84 (W), with a mean DBH of 5.17 cm and a total basal area of 1.17^2 (Tables 1 & 2 and Figures 28 & 29). In the early years of the study, red mangrove trees dominated plot 8 in numbers, but black mangrove trees comprised a larger area within the plot due to their much larger DBH. Beginning in 2010, the total number of white mangrove trees superseded the total number of red mangrove trees and white mangroves remained dominant through 2025. However, due to tree maturity, black mangrove and red mangrove trees still dominate the spatial extent (Tables 1 & 2 and Figures 28 & 29). Over the years, until 2017, the percentage of stressed trees within plot 8 was less than 50%. Prior to Hurricane Irma, the trees that died were mostly stressed older red mangroves. Post Hurricane Irma primarily white mangroves trees died and 95% of the remaining trees were stressed or very stressed. Post Hurricane Irma stress levels remained high, as delayed mortality due to the storm was still occurring (Tables 2 & 4 and Figures 31 & 32). Hurricane Ian and the 2024 storms had minimal effect on the trees, and most tree that died were a result of delayed mortality from hurricanes (Tables 2 & 4).

Figure 31: Plot 8 2018 Hurricane Irma Debris

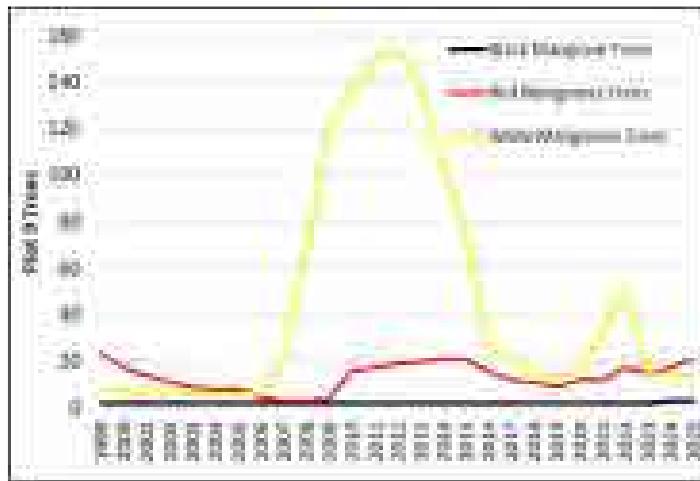
Total numbers of propagules that were present within the plot rose steadily over the years, peaking 2015. Thereafter, seedling mortality increased substantially following Hurricane Irma in 2018. Propagule numbers rose substantially in plot 8 in 2021 through 2024. However, the storm surge that accompanied the 2024 storms resulted in mortality of 71% of the seedlings that were present pre-2024 storms. In 2025 there were 233 remaining propagules within plot 8, consisting of 5 (B), 227 (R) and 1 (W) (Tables 3 & 4 and Figure 30).

Figure 32: Plot 8 Over Time

Plot 9 is located at the extreme northern end of the Clam Bay system, to the east of an extremely narrow tributary that extends north from Upper Clam Bay and directly to the west (within 50 m) of residential development (Figure 7). Tidal flow to this area from the south is very limited as the tributary has been slowly closing over time and tidal flow from the north was cut off in the 1950's by Vanderbilt Beach Road.

Figure 33: Plot 9 Mature Black Mangrove

Canopy cover was approximately ~90% pre-restoration. The full canopy coverage was primarily due to one very mature black mangrove tree (DBH>90) (Table 1 and Figure 33). Coverage decreased in periods when this large tree had less foliage. Coverage ranged from 41% in 2018, following Hurricane Irma to 92% in 2013. Hurricane Ian and the subsequent 2024 storms had minimal effect on the canopy in 2025 coverage was at 59% averaging 76% overtime.


In 1999, similar to plot 8, red mangrove trees dominated over the other mangrove species, but the black mangrove trees had greater girths and occupied a larger area. During the pre-restoration baseline assessment in 1999, plot 9 had 34 mangrove trees consisting of 2 (B), 24 (R) and 8 (W) mangroves, with a mean DBH of 8.27 cm and a total basal area of 0.802 m² (Tables 1 & 2 and Figures 34 & 35). Mature primarily red mangrove trees, died between 1999 and 2000 when the total mortality rate reached 24%. In 2006-2023, white mangrove trees were dominant and red mangroves trees were dominant thereafter. Tree recruitment and mortality rates vacillated inversely throughout the years. Inter and intraspecific competition likely played a role in tree mortality, particularly during the years of 2013 – 2015. Fifty-five trees died

following heavy rainfall in 2016 and subsequent water impoundment, causing more tree mortality than Hurricane Irma in 2017. In 2019, further signs of stress were apparent, as many of the trees and prop roots had evidence of boring beetle infestation (Figure 36). Hurricane Ian also caused tree recruitment rates to increase. Trees remained relatively stable during the period between the 2023-2025 assessment at 38 trees consisting of 3 (B), 21 (R), and 14 (W) with a mean DBH of 10.16 cm and a total basal area of 1.839 m² primarily due to 1 large mature black mangrove (Tables 1 & 2 & 4 and Figures 34 & 35).

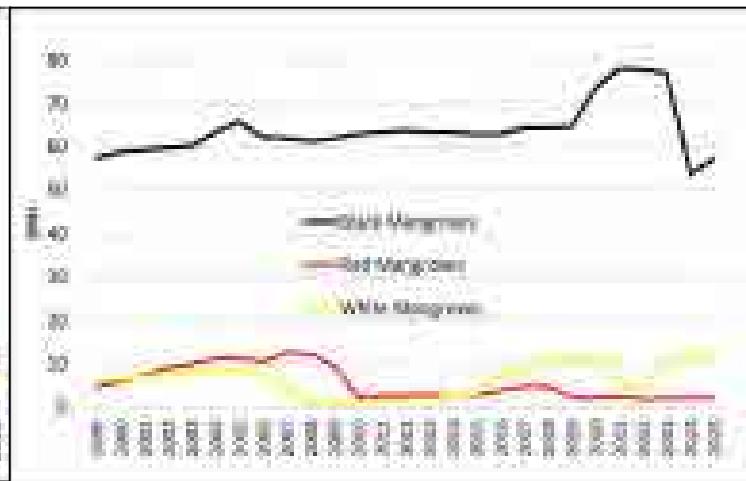


Figure 36: Plot 9 Evidence of Boring Beetles in a Prop Root 2019

Figure 34. Plot 9 Trees Over Time by Species

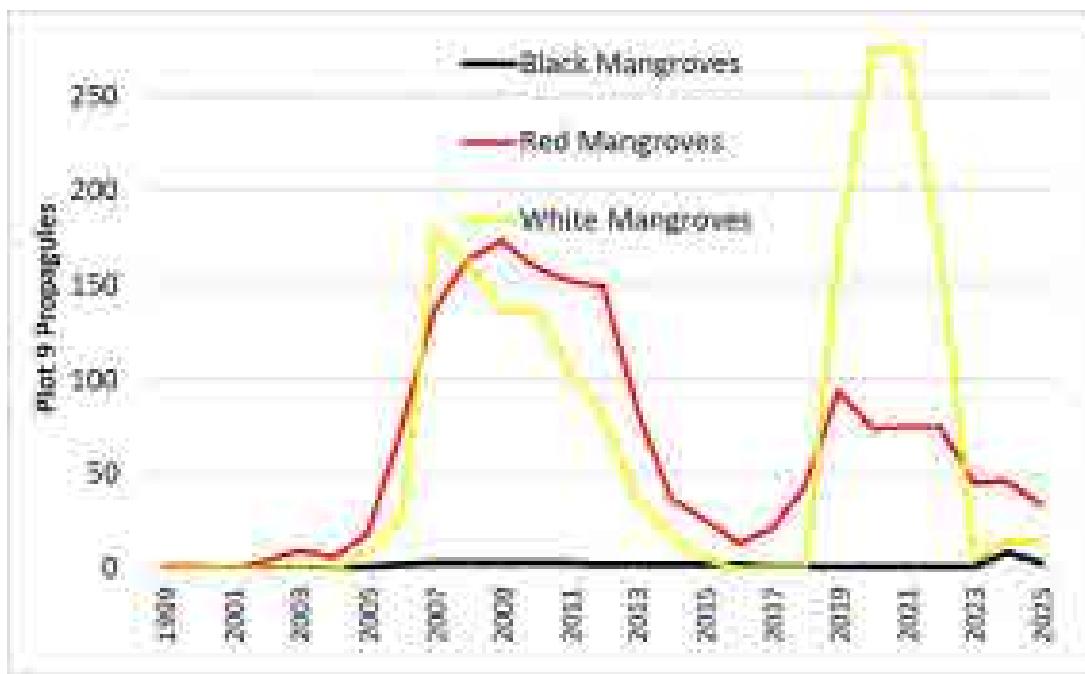


Figure 35. Plot 9 DBH (cm) Over Time by Species

Only 1 red mangrove propagule inhabited plot 9 during the pre-restoration baseline assessment that subsequently died in 2001 (Table 3 and Figure 37). Propagule recruitment began slowly in 2002, increasing exponentially from 2005 – 2007, during the initial recovery period from Hurricane Wilma in 2005. Propagule recruitment slowed down but outpaced mortality through 2010 and this trend reversed as propagule mortality surpassed recruitment to only 15 in 2016. Recruitment and mortality rates of propagules vacillated inversely thereafter in response to inundation, storms and competition. In 2025 the plot began to slowly recruit again, as 52 propagules were present, consisting of 3(B), 34 (R) and 15 (W) (Table 3 & 4 and Figures 37 & 38).

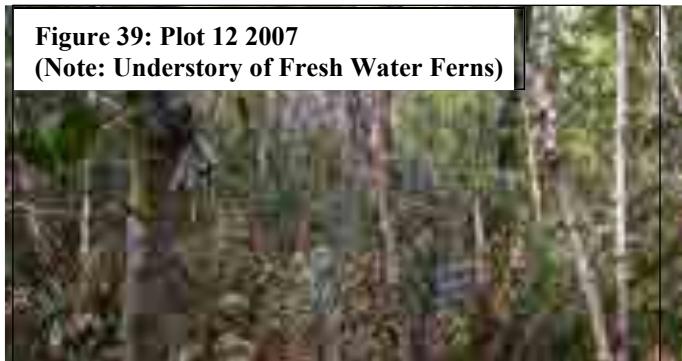
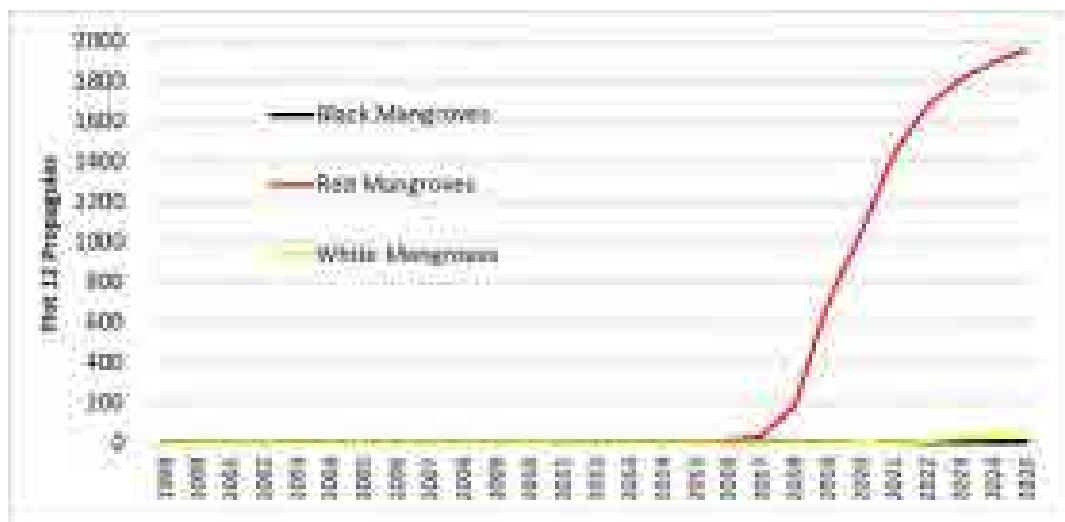

Figure 37. Plot 9 Propagules Over Time by Species

Figure 38: Plot 9 Over Time

Figure 39: Plot 12 2007
(Note: Understory of Fresh Water Ferns)


Plot 12 is located towards the center of the Clam Bay system, just north of Inner Clam Bay, and to the east inland between the Inner Clam Bay and the berm in Pelican Bay within sight of the northern boardwalk (Figure 7).

Historically, there is evidence that mangroves were the dominant

vegetative species in this plot, but only 1 black mangrove remained in plot 12 in the spring of 1999, and it subsequently died in 2000. During the 1970's through the 1990's, freshwater outflows increased from the surrounding development. Allowing freshwater plant species such as saw palmetto and various fern species became the dominant groundcover outcompeting the mangroves (Figure 39). This condition persisted until 2018 when saltwater flows were re-established.

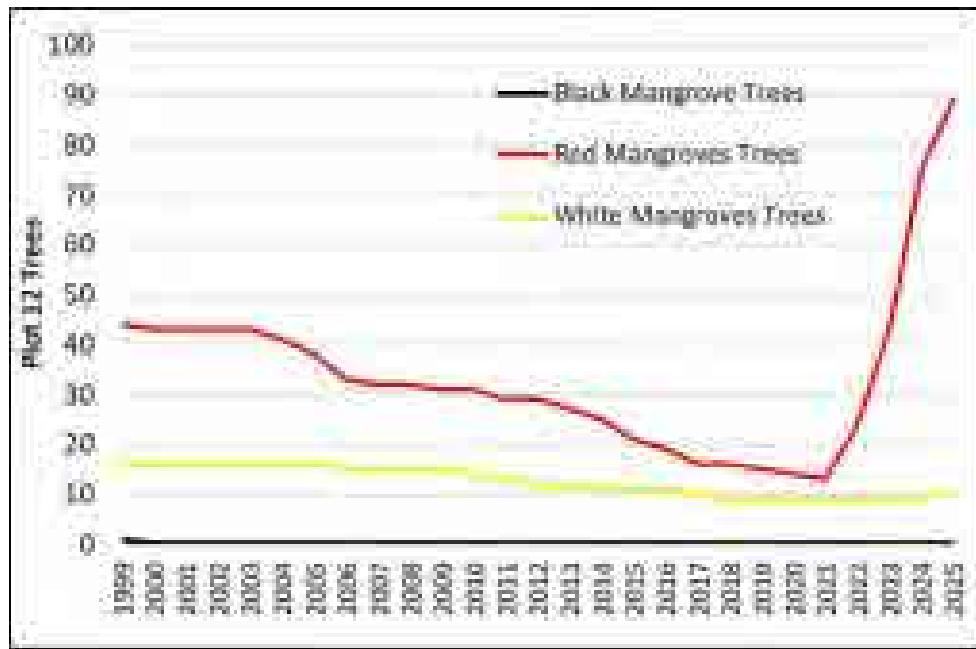

In addition to the freshwater plant species that formed the ground cover, the remaining mangrove consisted primarily of stressed mature mangrove trees. In 1999, plot 12 had 61 mangrove trees consisting of 1 (B), 44 (R) and 16 (W) mangroves, with a mean DBH of 8.26 cm and a total basal area of 0.455 m² (Table 1) and no propagules were present (Tables 1 & 3). Throughout the study period, red mangrove trees were more dominant, but white mangroves were larger and had greater girths. In the early years of this study, a few mangrove seedlings periodically attempted to become established, but none were successful until recently, due to the thick underbrush of palmetto and ferns (Tables 3 & 4 and Figure 39). Following installation of ditches to the south, freshwater runoff into this area was somewhat abated as tidal flow increased into the area. Salinity curtailed fresh water plant establishment, allowing mangrove propagules to be more successful. In 2018, propagule recruitment began in earnest and remained very high throughout the years. In 2025, there were 2009 propagules were present consisting of 5 (B), 1952 (R), and 52 (W), the most that have been established over the entire study period to date (Table 3 and Figure 40).

Figure 40. Plot 12 Propagules Over Time by Species

Tree numbers held steady at 59 in 2000 through 2003 and slowly died through 2021, when only 22 trees remained. Tree recruitment was practically nonexistent until 2022 through 2025 when tree numbers rose as propagules attained tree status. In 2025 there were 100 mangrove trees consisting of 89 (R) and 11 (W). These mangroves had a mean DBH of 3.66 cm and a total basal area of 0.340 m², representative of new juvenile trees with small DBH (Tables 1, 2 & 4 and Figures 41 & 42 & 43). Canopy cover was variable and ranged from 91% in 1999 to >77% in 2022 (prior to Hurricane Ian), and 44% in 2025, averaging 70% over the years (Table 1).

Figure 41. Plot 12 Trees Over Time by Species

Figure 42. Plot 12 DBH (cm) Over Time by Species

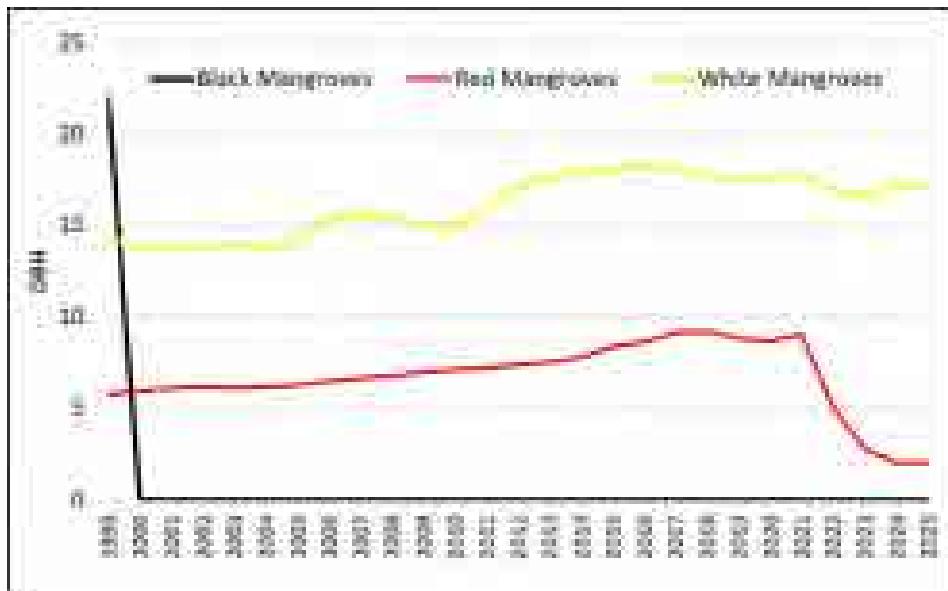


Figure 43: Plot 12 Over Time

Figure 43: Plot 12 Over Time Continued

Relatively Healthy Areas

Plots 1, 4, 7 and 10 were located in areas classified as relatively healthy at the start of this project. In the spring of 1999, larger and more mature trees dominated these plots in comparison to the stressed or die-off areas.

Plot 1 is located in the northwest sector of the Clam Bay estuary. This plot is situated between a high-rise condominium and an elite residential area, on the west side of the Strand Road in Bay Colony across from the major 1995 die-off. Plot 1 is influenced by tidal flows from the Gulf of Mexico through a dune system to the west and freshwater inflows from stormwater drainage to the east via a box culvert (Figure 7). In 1999, this plot was part of one of the last remaining stands of healthy mature black mangroves that still existed in the northern part of Clam Bay system.

In the early years, tree and propagule recruitment and mortality rates were very low, indicative of the plots maturity and stability at that time (Table 4). In a healthy mature black mangrove stand, the understory is limited and annual recruitment is often low or non-existent. In 1999, plot 1 had a total of 21 mature mangrove trees consisting of 13 (B) and 8 (W) mangroves, with a mean DBH of 10.58 cm and a total basal area of 0.316 m² during the pre-restoration baseline assessment (Tables 1 & 2). Red mangrove seedlings dominated the understory in the early years through 2007.

This area consisted of a mature healthy grove in 1999, with an extensive canopy cover and minimal ground cover. Canopy cover was the highest in 1999 (87%) Table 1). The full canopy shaded the ground preventing propagule establishment consistent with a healthy mature forest. At this time there were 11 propagules present, consisting of 8 (R) and 3 (W) mangroves. This low number of seedlings was due to the mature nature of this plot and was representative of old forest growth (Table 3).

Following Hurricane Wilma in 2005, the composition of this plot changed dramatically. Almost half of the mature mangrove trees were killed, likely by a tornado given the orientation of the debris field. The plot deteriorated and the canopy coverage decreased to ~14% in 2006 following Hurricane Wilma (Figure 44) and was non-existent in 2018 following Hurricane Irma, following Hurricane Ian in 2023, and in 2024 respectively, rebounding to a meager ~6% in 2025 (Table 1).

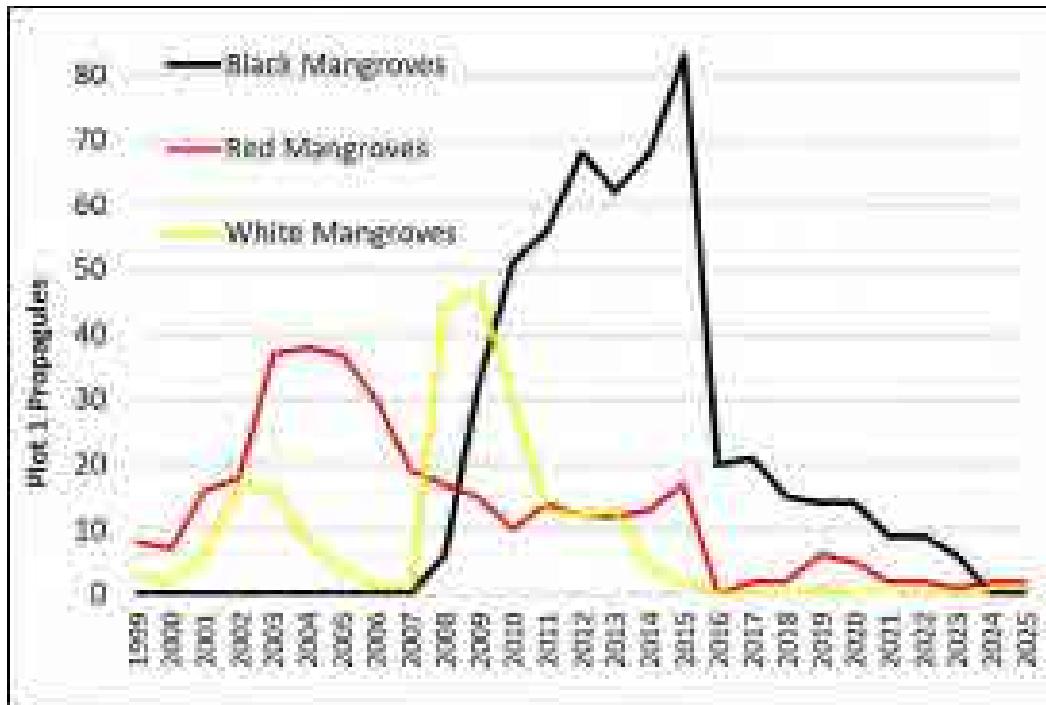
Figure 44: Plot 1 2006 Mature Mangroves Killed by Hurricane Wilma



Tree mortality continued over the years and in 2007, only 15 trees remained. A similar scenario occurred during the same timeframe regarding propagules, as the total number of seedlings rose slightly in 2003, but reduced to 20 in 2007. As the canopy opened up and more resources became available, propagule recruitment began to increase in 2008, followed by increased tree recruitment in 2009. White mangrove propagules briefly dominated the assemblage in 2008 and 2009. Dominance shifted to black mangrove propagules in 2010 and the total number of

propagules were relatively stable through 2014 and rose briefly in 2015. Propagules crashed in 2016 to only 20 living propagules, likely due to elevated inundation and increased hydroperiod in a plot, which was very stressed prior to the deluge. Plot 1 shows no signs of recovering to date and in 2025 had 10 propagules, consisting of 1 (B), 2 (R) and 7 (W) mangroves (Tables 2 & 3 & 4 and Figures 45 & 46 & 47 & 48).

Black mangrove trees dominated the early years, but species dominance began fluctuating between black and white mangrove trees during the period of 2003 through 2008. White mangrove trees dominated beginning in 2009 and remained dominant throughout the remainder of the study period. Trees were devastated by Hurricane Wilma which left only 19 trees remaining, most of the mature black mangrove trees were killed. Tree began to recover in 2008 and remained relatively stable until the spring of 2016, when mortality rates rose sharply, primarily due to inundations from heavy spring rains. Tree numbers continued to decline throughout the remainder of the study period. Only 10 trees remained in 2025 consisting of 1 (B), 2 (R), and 7 (W) mangroves. Floristic measurements were significantly reduced in comparison to baseline conditions in 1999 as the mean DBH was only 8.92 cm with a total basal area of only 0.089 m² in 2025 (Tables 1 & 1 & 4 and Figures 45 & 46 & 48).


Figure 45. Plot 1 Trees Over Time by Species

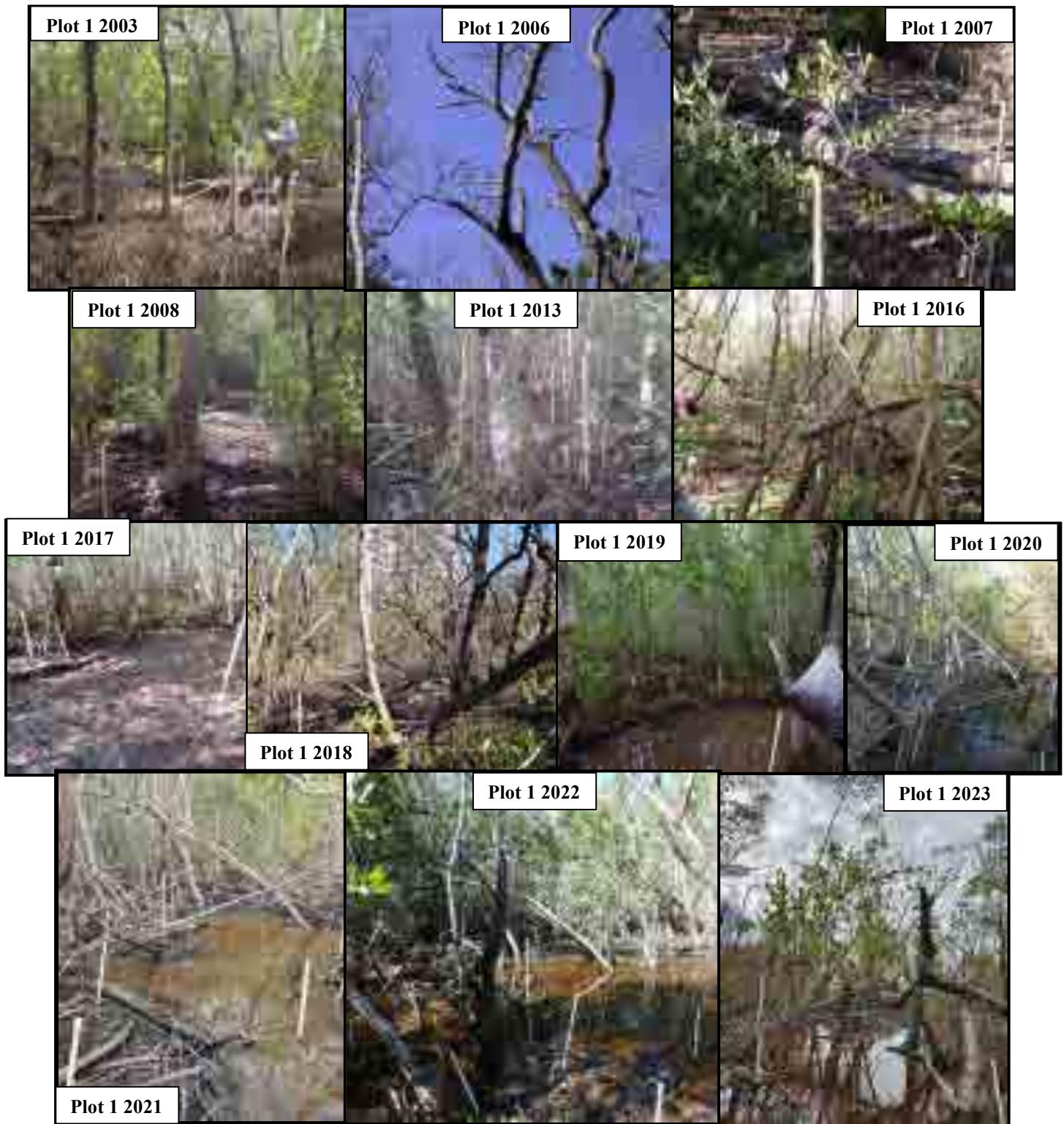

Figure 46. Plot 1 DBH (cm) Over Time by Species

Figure 47. Plot 1 Propagules Over Time by Species

Figure 48: Plot 1 Over Time

Figure 48: Plot 1 Over Time Continued

Plot 4 is located in the southern part of the estuary, to the west of the major tributary between Lower and Inner Clam Bays, where the County did significant dredging in 2000 (Figure 7). This area is tidally flushed by water from Clam Pass and has no point source freshwater inputs other than rainfall. Over the years this area has suffered significant bank erosion along the tributary. Erosion tends to increase following dredging events, which increases the tidal velocity along the banks. In 1999, the east side of plot 4 was situated within ~3 m of the tributary bank. As a result, this plot is frequently inundated, often daily, during high tides. Additionally, the proximity of plot 4 to the tidal channel creates a fringe mangrove effect dominated by red trees and seedlings. In 1999, 113 mature mangrove trees present, consisting of 1 (B) and 112 (R) mangroves, mean DBH was 5.33 cm and total basal area was 0.279 m². Canopy cover ranged from ~88% in 1999 to ~43% in 2005, ~67% in 2025, and averaged ~66% over the monitoring period. Hurricane Ian did not affect the canopy coverage in plot 4, likely due to its sheltered location (Tables 1 & 2 and Figures 49 & 50).

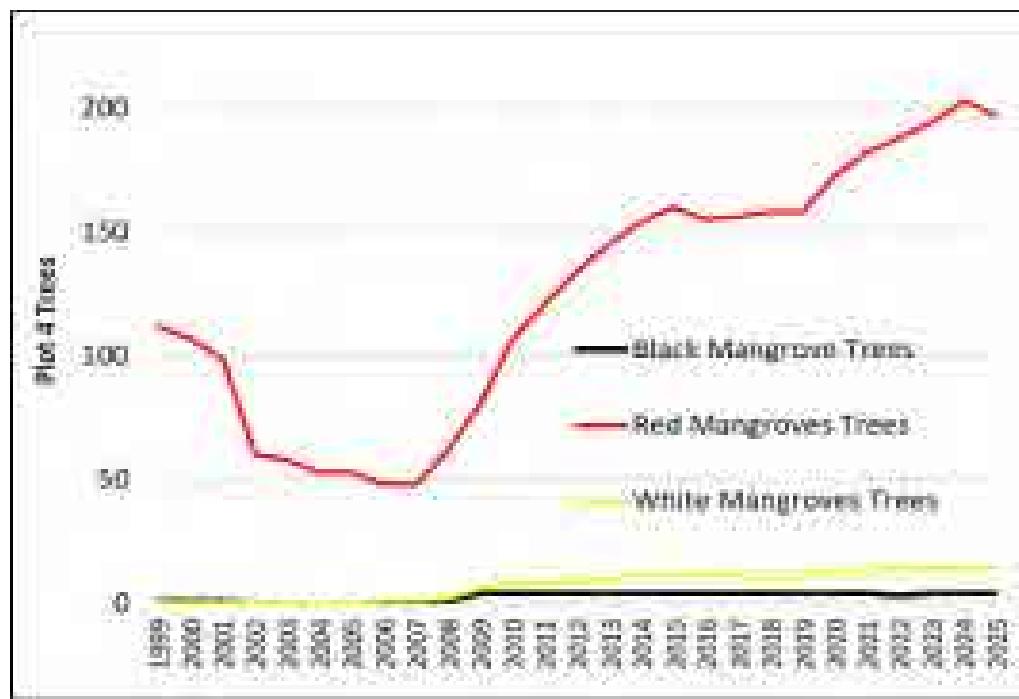
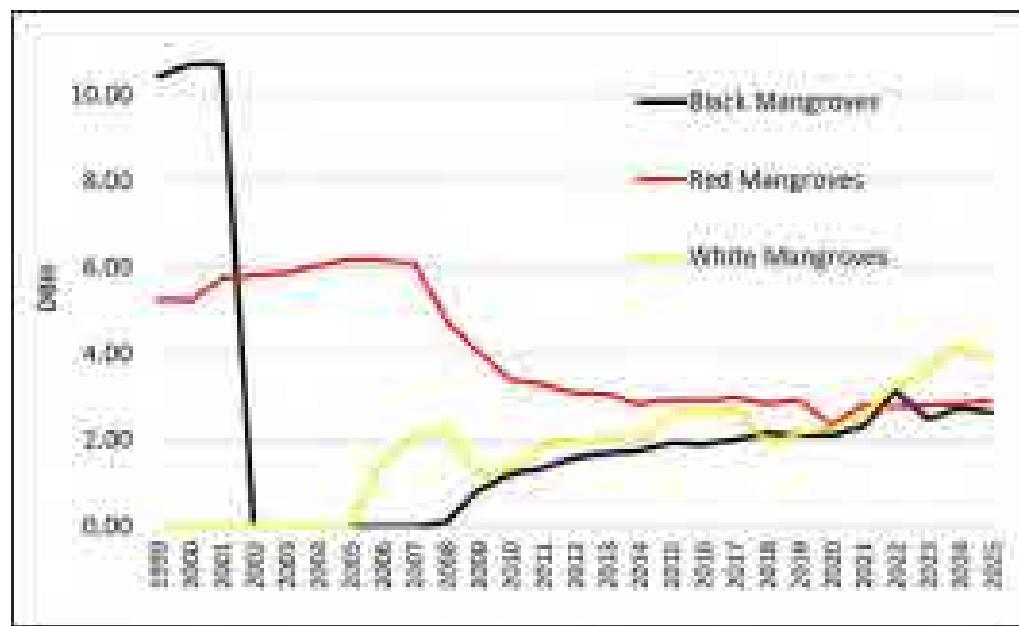


Figure 49: Plot 4 Example of an Infestation of *Cytospora rhizophorae*


Between the spring 2000 and the fall of 2001, red mangrove trees were stressed to the degree that the trees developed a severe infestation of *Cytospora rhizophorae*. In the fall of 2001 (post-2001 assessment), this infestation resulted in heavy tree mortality and ~40% of the trees died by the 2002 assessment. The infestation continued to negatively affect the trees through 2006 (Figure 49). Even today, a few of remaining mature red mangrove trees that were present in plot 4 during this infestation are stressed (Table 2). Propagules, primarily red mangroves, were slowly recruited in 2006, coincident when some of the larger mature trees died. Overall

tree numbers began to vacillate rising in an upward trajectory through 2024. The smaller younger trees weathered the rainfall event in 2016 and hurricane winds from Irma, Ian and the storms of 2024. In 2025, there were 216 trees consisting of 4 (B), 197 (R) and 15 (W), a mean DBH of 2.97 cm, and a total basal area of 0.225 m² (Tables 1, 2 & 4; Figures 50 & 51).

Figure 50. Plot 4 Trees Over Time by Species

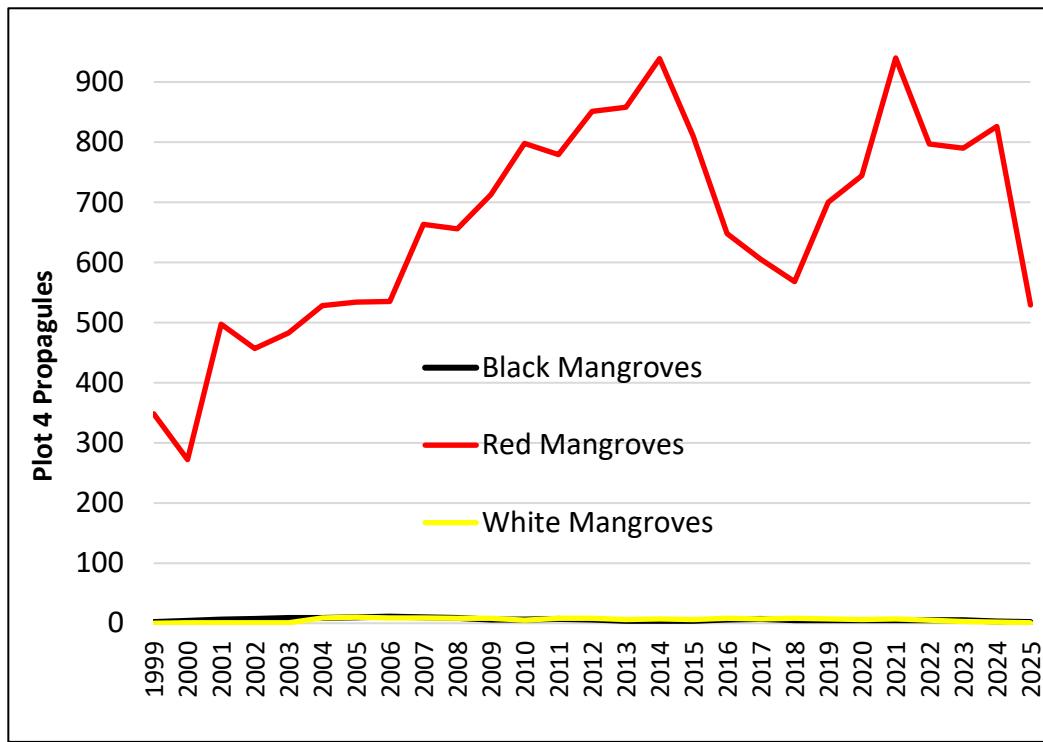


Figure 51. Plot 4 DBH (cm) Over Time by Species

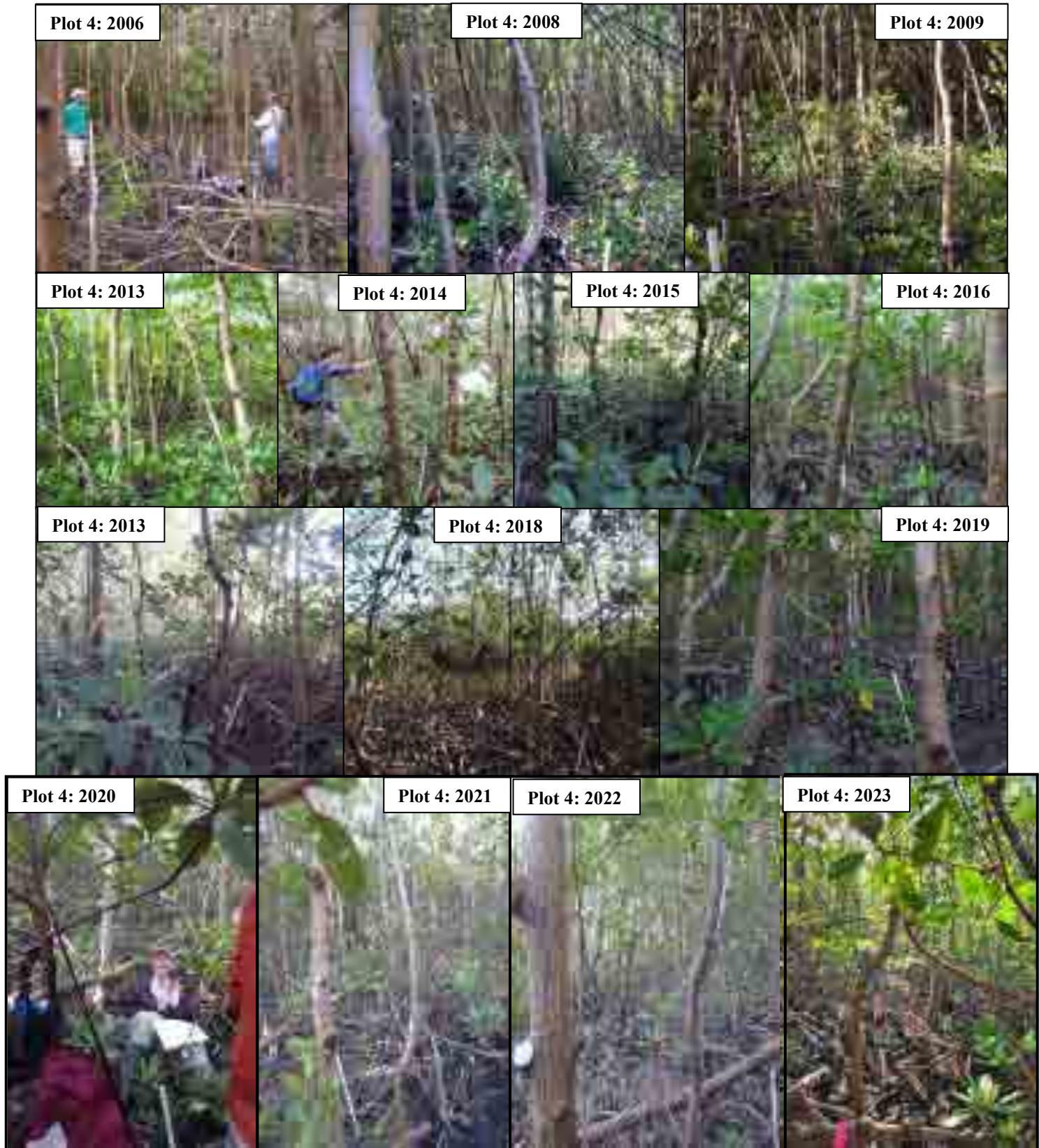

Propagule recruitment and mortality is typically high in plot 4 and consists of primarily red mangrove seedlings. Propagules are washed in by the tides, attempt establishment, and then die due to waterlogging and competition. In 1999, there were 350 established propagules consisting of 2 (B) and 348 (R) (Tables 3 & 4 and Figure 52). Following the 1999 dredging of the tributary adjacent to the plot, propagule mortality increased in 2000 when 35% of the seedlings died, outpacing propagule recruitment. During this time, tidal currents within this plot went from being very mild to very strong, resulting in accelerating propagule mortality. Throughout the years recruitment and mortality rates vacillated (Table 4). In 2025 there were 532 (2 (B), 529 (R) and 1 (W)) seedlings (Table 3 and Figures 52 & 53). In comparison to the other plots, both the number of propagules recruited and the number of propagules that died is high (annually usually in the double or triple digits for either statistic) (Table 4). The close proximity of plot 4 to the tributary assists in red mangrove distribution and propagation, however without an open canopy and limited resources propagule mortality is also high.

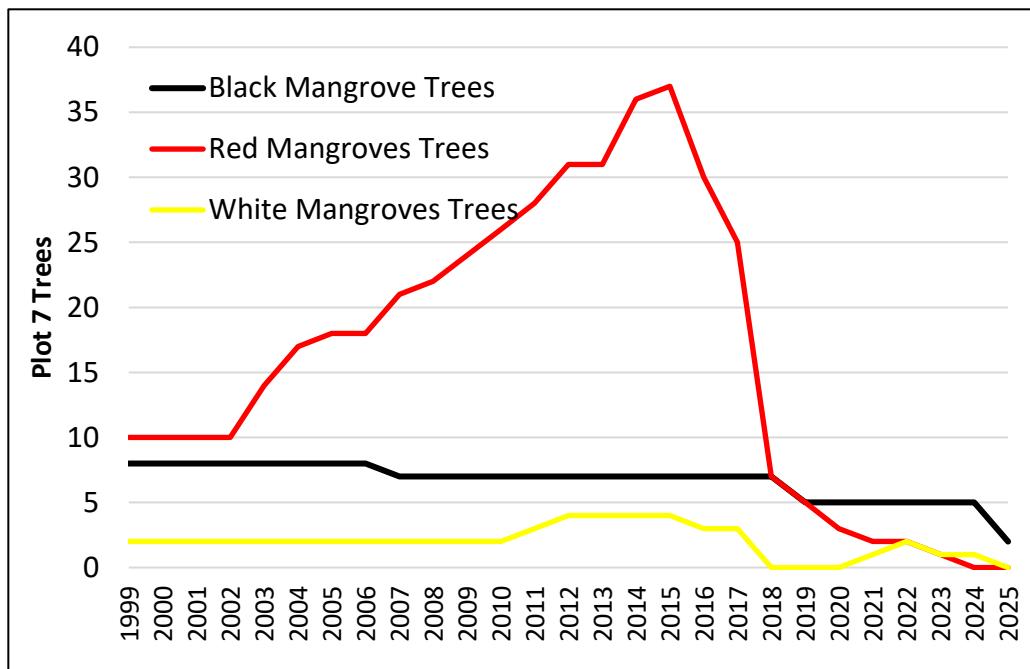
Figure 52. Plot 4 Propagules Over Time by Species

Over the years, the bank near plot 4 continues to erode. As a result, the gap between the eastern edge of the plot and the bank of the tributary has steadily narrowed. Beginning in 2024, trees and propagules tree fell into the tributary. Erosion will likely continue. Given that dredging has become a more frequent occurrence, the volume and velocity of the tidal flow that can cause more bank erosion has increased. It is expected that the east side of plot 4 will continually erode. Hurricane Milton caused silt and sand to be deposited in a fine dusting over plot 4. This accretion in the sediment could help to resist sea level rise by increasing the elevation in the area.

Figure 53: Plot 4 Over Time

Figure 53: Plot 4 Over Time Continued

Plot 7 is centrally located within the Clam Bay, estuary, directly to the west of Inner Clam Bay. This plot is subject to tidal influence from eastern tributaries and subterranean flow from the Gulf of Mexico (Figure 7).


Throughout most of the monitoring period, canopy cover was primarily due to one mature black mangrove (DBH \approx 45) (Figure 54). Canopy cover ranged from 86% in 2002 to 10% in 2018, (post Hurricane Irma). In 2023, post Hurricane Ian, canopy cover was only \sim 12% as the vegetation was destroyed.

The canopy attempted to reform in 2024, however the 2024 storms reduced the canopy to \sim 12% in 2025, averaged 66% over the years. (Table 1).

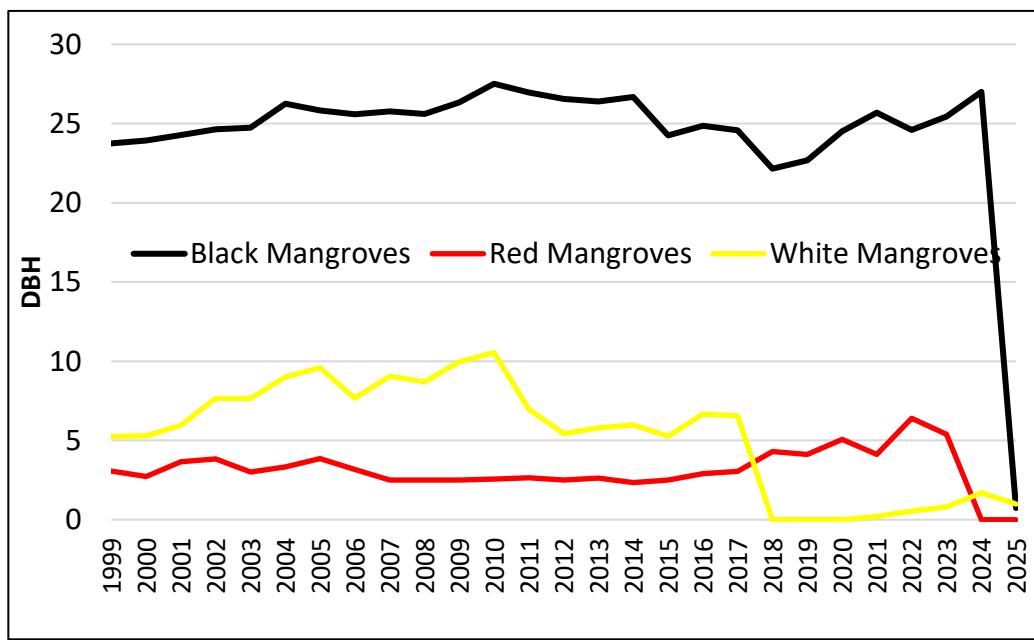

Plot 7 was similar to plots 8 and 9 until recently. Throughout most of the monitoring period, red mangrove trees dominated as far as total number of trees, while the mature black mangrove trees were taller and had bigger girths. In 1999, there were 20 mangrove trees present, consisting of 8 (B), 10 (R) and 2 (W) mangroves, with a mean DBH of 11.57 cm and a total basal area of 0.442 m² (Tables 1 & 2). Tree mortality was very low, as only 4 trees died during the first 16 years of monitoring. Between the 2015 and 2016 assessment, the mortality rate more than doubled in comparison to the past 15 years. Twenty percent of the trees died and 83% of the remaining living trees were stressed or very stressed following unusually heavy rainfall and subsequent plot inundation and increased water retention periods. Mortality subsided briefly between the 2016 and 2017 assessment, prior to Hurricane Irma, which resulted in a 60% loss in mangrove trees. From 2019 through 2023, tree mortality continued. Hurricane Ian strongly affected this plot. Storm surge pushed sand from the dunes into plot 7. Any mangroves remaining were stripped of leaves and propagules were buried under dune sand. Plot 7 was devastated by the storm surges from the tropical storms and Hurricane Milton, which dropped feet of sand in the plot, burying seedlings and killing almost all of the trees. In 2025, only 2 dying mangrove trees remained with a mean DBH of 0.62 cm and a total basal area of 0.001 m² (Tables 1 & 4 and Figures 55 & 56).

Figure 55. Plot 7 Trees Over Time by Species

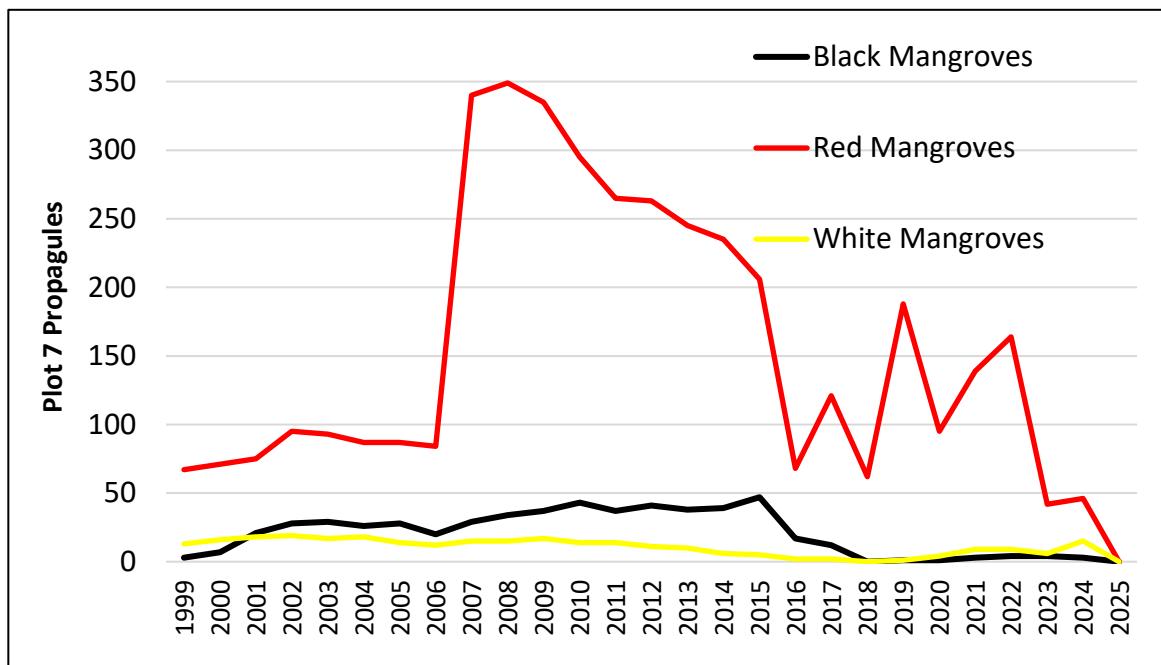


Figure 56. Plot 7 DBH (cm) Over Time by Species

In 1999, there were 83 propagules consisting of 3 (B), 67 (R) and 13 (W) (Table 3). Seedling recruitment and mortality showed minimal fluctuations during the early years; and increased in the years following Hurricane Wilma. The number of new recruits peaked in 2007 and the total number of established seedlings peaked in 2008 (Tables 3 & 4). Propagule numbers decreased in 2015, as inter and intraspecific competition for resources commenced. Propagule mortality increased significantly in 2016 following heavy rains and prolonged inundation, rebounding briefly in 2017, prior to Hurricane Ian, which hit this plot particularly hard. In 2019, propagule recruitment rebounded and increased over 5-fold. Hurricane Ian reduced the seedling assemblage, albeit it was the tropical storms and Hurricane Milton in 2024 that completely wiped out the remaining seedlings. (Tables 3 & 4 and Figures 57 & 58).

Figure 57. Plot 7 Propagules Over Time by Species

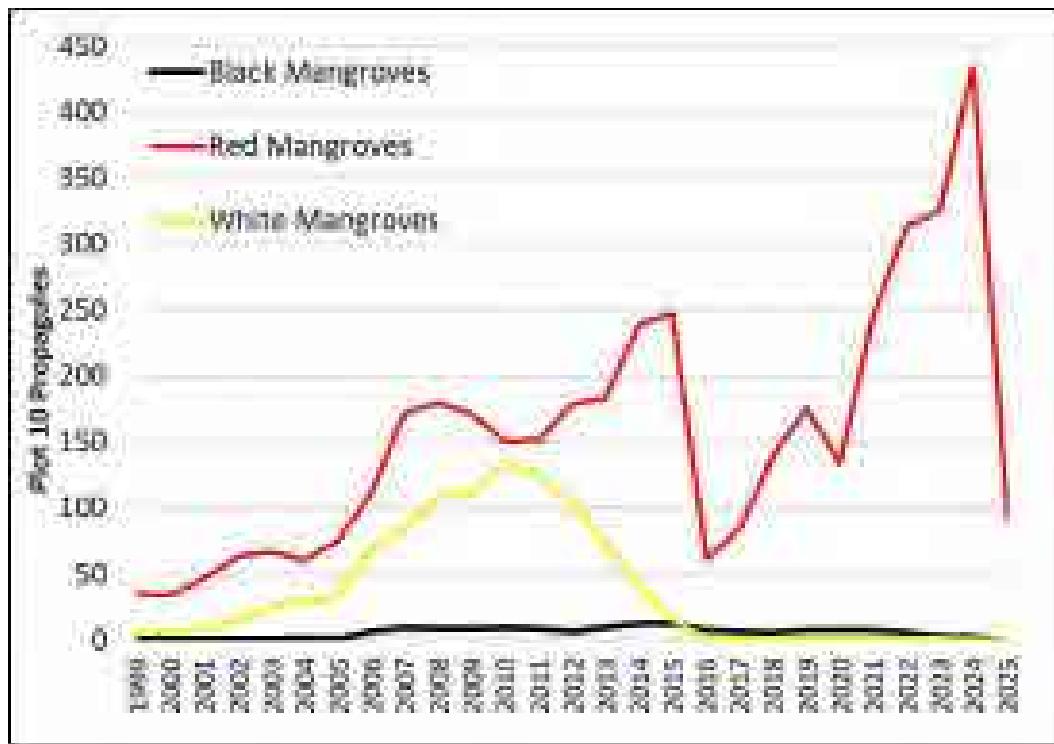
Figure 58: Plot 7 Over Time

Figure 58: Plot 7 Over Time Continued

Plot 7: 2025 Sand Accretion from Hurricane Milton

Plot 10 is situated in the northwest side of Upper Clam Bay in close proximity to the original die-off to the east. This plot is subject to tidal influence from the east from Upper Clam Bay (Figure 7).

Figure 59: Channel cut through Plot 10 in 2004. (Note cut prop roots)



In 1999, plot 10 had 30 mangrove trees, consisting of 9 (B), 19 (R) and 2 (W) mangroves, with a mean DBH of 8.76 cm and a total basal area of 0.230 m² (Table 1). Forty-two propagules were present, consisting of 1 (B), 35 (R), and 6 (W) mangroves, during the pre-restoration baseline assessment (Tables 1 & 3). In 1999, red mangroves were the dominant species. At this time, plot 10 was more mature and its understory was limited. In 2004, the County

cut a channel directly through this plot. This action caused mangrove disturbance, damage, and some tree mortality from severing prop roots and direct tree removal (Figure 59). Propagule recruitment was steady during the early period of this study and increased when the canopy opened up in 2006 and 2007 due to Hurricane Wilma. Propagule numbers rose steadily throughout the early years of the study, peaking in 2008. Thereafter propagule numbers fluctuated on a slightly downward trend as some of the seedlings achieved tree status. In 2016, following heavy rainfall, the propagule mortality rate accelerated due to high water levels and water impoundment. New propagule recruitment and establishment increased on an upward trajectory until storm surge from various 2025 storms reduced their numbers. In 2025, there were 92 red mangroves propagules present in plot 10 (Tables

3 & 4 and Figure 60). Canopy cover was estimated at 57% in 2025 and ranged from 45% in 2006 (post-Hurricane Wilma), to 90% in 2003 (Table 1). Overall, the canopy has opened up over the years, averaging 69%.

Figure 60. Plot 10 Propagules Over Time by Species

Figure 61: Plot 10 2005 Post Hurricane Wilma.
(Many tree roots were cut in 2004 when a channel was dug through the plot, destabilizing the trees adjacent to the channel).

Tree recruitment was minimal, and trees were relatively stable until Hurricane Wilma in 2005. A mature large black mangrove next to the County's new hand-dug channel was uprooted and fell over bisecting the plot during Hurricane Wilma (Figure 61). Miraculously this tree is still living today, albeit slowly dying and is very very stressed and only a small offshoot remains viable. Tree recruitment increased as seedlings (primarily white) attained tree height. Tree recruitment outpaced tree mortality from 1999-2013 when only 8 trees died. These losses were

primarily due to storms, channel installation or inter and intraspecies competition between the trees for resources. Thereafter, total number of trees primarily decreased due to various anthropogenic and natural events. In 2016, the tree mortality rate more than doubled, likely in part due waterlogging along with continued competition for resources. In 2025, ~85% of the trees that remain standing are stressed or very stressed (Tables 1, 2, 4 and Figure 62).

Figure 62: Plot 10 Over Time

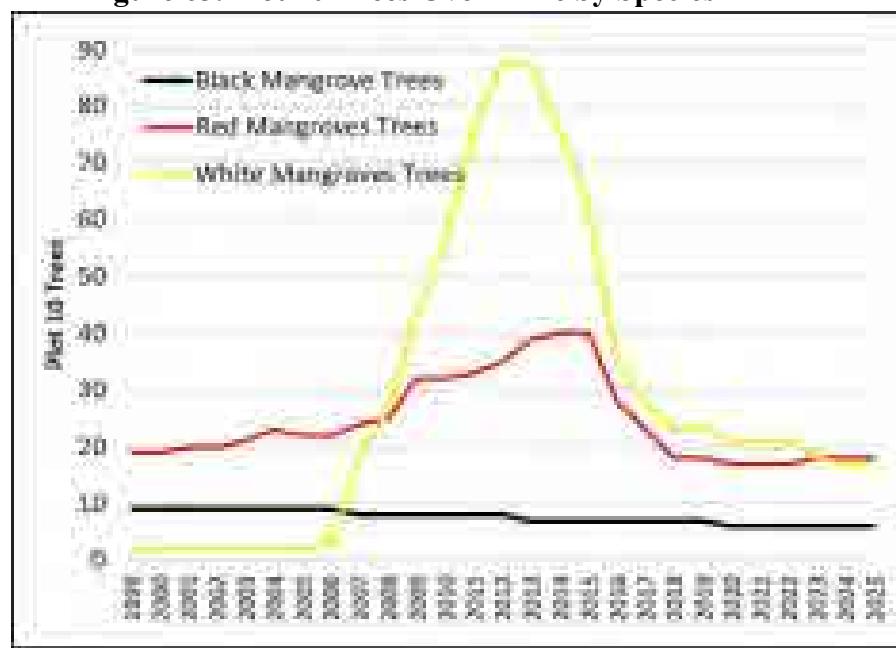
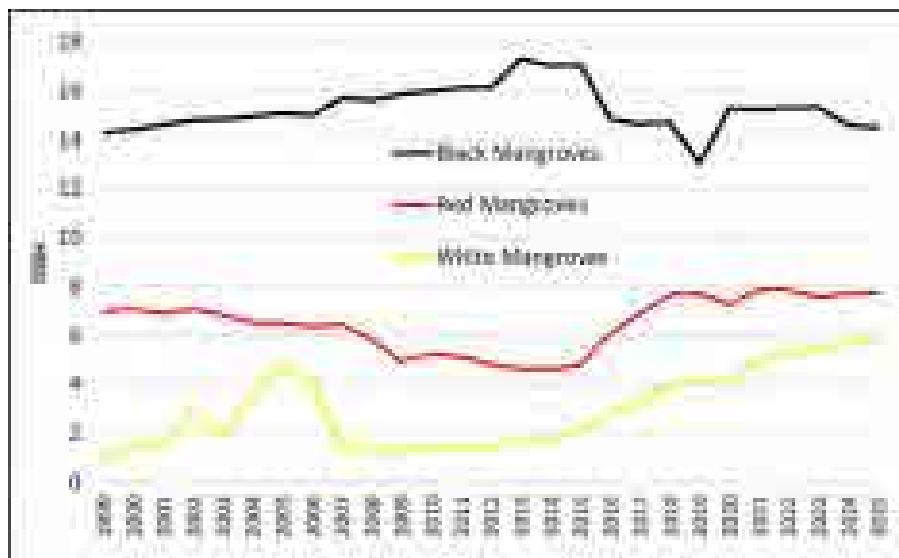


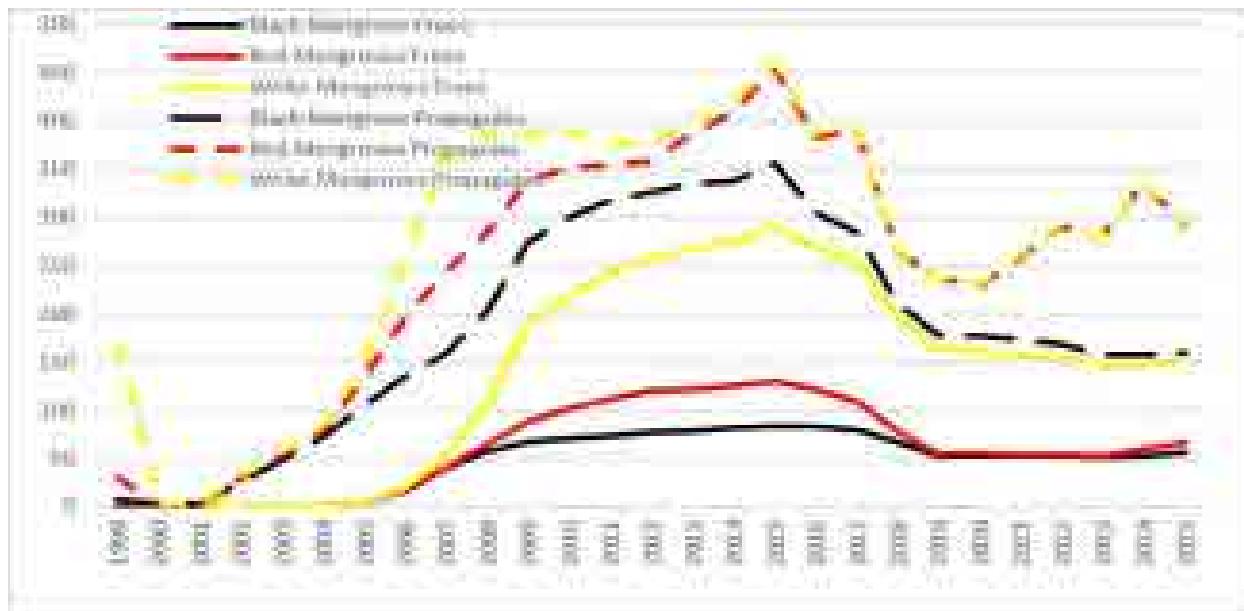
Figure 62: Plot 10 Over Time Continued



In 2025, there were 41 trees present, consisting of 6 (B), 18 (R) and 17 (W), with a mean DBH of 7.98 cm, and a total basal area of 0.272 m². In 2008, the dominant tree species switched from red mangroves to white mangroves until 2023 when red mangroves and white mangroves were codominant. In 2025, red mangrove trees edged out the white mangrove trees for dominance (Tables 1, 2 & 4 and Figures 63 & 64).

Figure 63. Plot 10 Trees Over Time by Species

Figure 64. Plot 10 DBH (cm) Over Time by Species

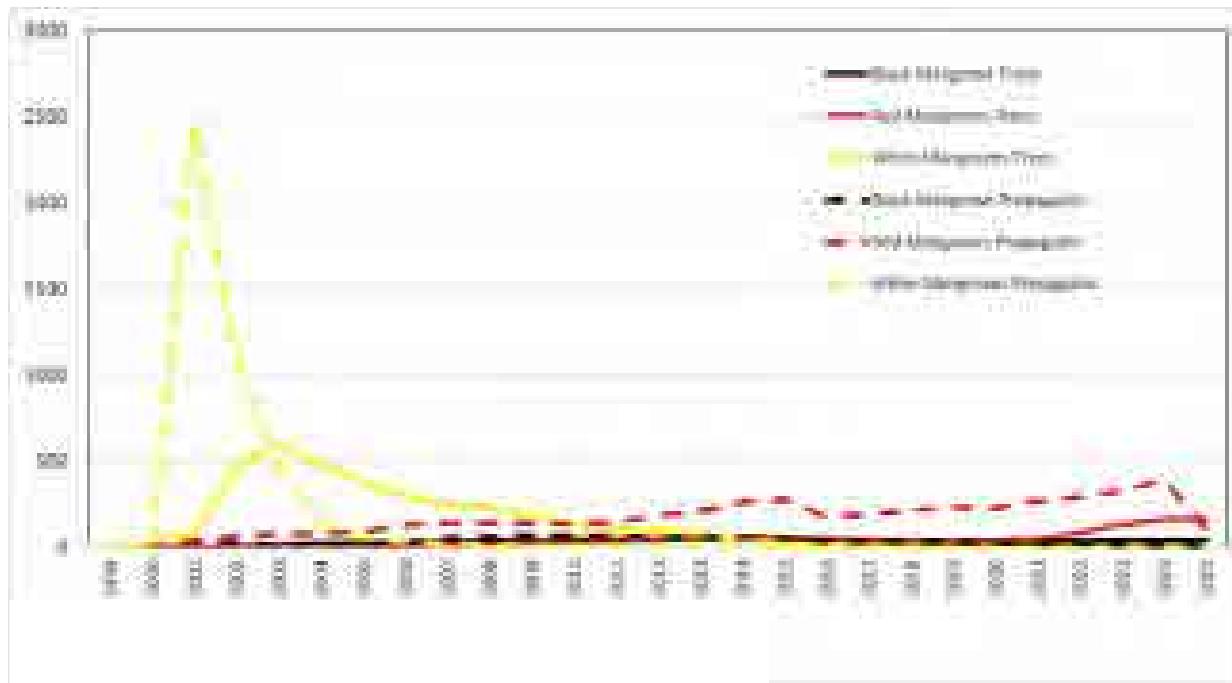

Current Status

Plots 2, 3, 6 and 11, the original four die-off plots established in 1999, remain classified as very stressed or stressed.

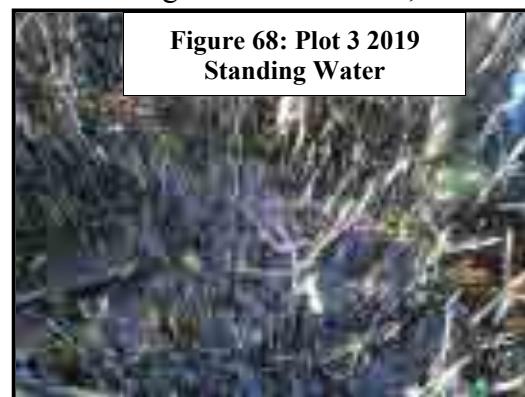

Plots 2, 3, and 11 were originally classified as die-off areas. These plots showed signs of recovery within 5 years of the restoration project, and continued to recover through 2015, with periodic disruptions in progress due to natural disturbances such as Hurricane Wilma and frosts. Unfortunately, in 2016, recovery halted and was in some cases significantly setback due impoundment of heavy dry season rains and subsequent mangrove waterlogging. Natural stressors from weather abated during 2017 and two of the three plots (plots 3 and 11) revealed signs of once again beginning to recover. Plot 2, however, continues to exhibit signs of deterioration as the trees and propagules that remained in this plot had increased stress levels. The effects of Hurricane Irma on plots 2 and 3 setback progress significantly. Whereas, Hurricanes Ian and Milton itself had less negative impact, especially on plot 11. As of 2025, plot 2 is classified as very stressed, whereas plots 3 is stressed to very stressed and plot 11 is classified as just stressed and showing signs of recovery. Plot 6 continues to erode and remains in a very very stressed state 26 years later, suffering bouts of recovery followed by erosion and dieback.

Plot 2 is classified as very stressed. This plot has experienced periods of recovery followed by catastrophic losses in mangroves from anthropogenic and natural causes. Although plot 2 initially responded favorably to restoration activities, the long-term viability and ability to recover from both extreme natural and anthropogenic stressors is still uncertain (Figure 65).

Figure 65: Plot 2 Propagule and Tree Time Series



In 2016, tree mortality rose above rates not indicative of natural plot maturation. Prior to the 2016 mangrove survey, the area was subjected to above average rainfall during a very wet dry season, which resulted in mangrove mortality. The County responded by installing hand-dug channels directly west and abutting plot 2. However, since the topography slopes downward to the east into this plot, there is still a tendency for standing water to accumulate during heavy rains. While recently propagule recruitment has increased slightly, only time will tell if these seedlings will mature into trees given the saturated and often waterlogged soil conditions. Plot recovery or further deterioration will ultimately be determined by how saturated the soil becomes, how heavy the rainfall and runoff, and how long it takes to recede. Recovery will also depend, in part, on weather patterns and whether or not sustained rainfall or if any additional severe weather events hit this area in the near future. Standing water was present in this plot during the 2020 dry season (~1 ½ ft.), and soils were very saturated in the 2021 and 2022 dry seasons, which is not a good sign. Storm surge from hurricanes Irma, Ian and Milton exacerbated plot conditions. Approximately ~8 ft of storm surge occurred during Hurricane Ian, which increased inundation and water retention times and 6" of water remained in the plot for at least three months (Figures 66a & 66b & 66c). During the 2024 mangrove assessment another new ditch was dug into plot 2 at ~270°. The ditch also had sulfur scum on the surface of the standing water, indicative of very reduced soils. Evidence of recent inundation was found since grass ceriths were present (Figure 66d). In 2025 the center of the plot was under ~11" of water and all the trees showed signs of waterlogging (Figure 66e).



Initially, **Plot 3** showed significant improvement post-restoration and had the most promise of making a full recovery. Within two years of the restoration, this plot was flooded with white mangrove seedlings, some of which attained tree height as early as 2002. Natural inter and intraspecies competition ensued and overtime, species dominance shifted as white mangroves were slowly replaced with red and black mangroves. As the red mangrove seedlings grew and became trees, they slowly outcompeted white mangrove trees. Much like plot 2, through 2015, plot 3 exemplified the process of mangrove forest regeneration and the beginnings of forest maturation (Figure 67).

Figure 67: Plot 3 Propagule and Tree Time Series

The inundation events of 2016, negatively impacted plot 3, water retention periods were significant, and conditions declined through 2020. Thereafter, conditions reversed as tree and propagule recruitment surpassed mortality rates. Whether this plot will recover or decline, is likely dependent on the ability to recruit the next generation of trees, and the intensity of outside anthropogenic and natural stressors that occur in the near future. This plot fared well through Hurricane Ian and retained minimal standing water, much less than in 2013 (Figure 68). Hurricane Milton caused a significant decline in seedlings, but had less impact on the trees. As the trees mature and if they regain a healthy status, inter and intra-specific competition will likely ensue, as the more robust mangroves outcompete their siblings. Today, plot 3 is classified as a stressed to very stressed area due to intermittent flooding and sulfur aroma, indicative of low soil redox levels. The stressed condition of the trees has also allowed for increased insect infestation.

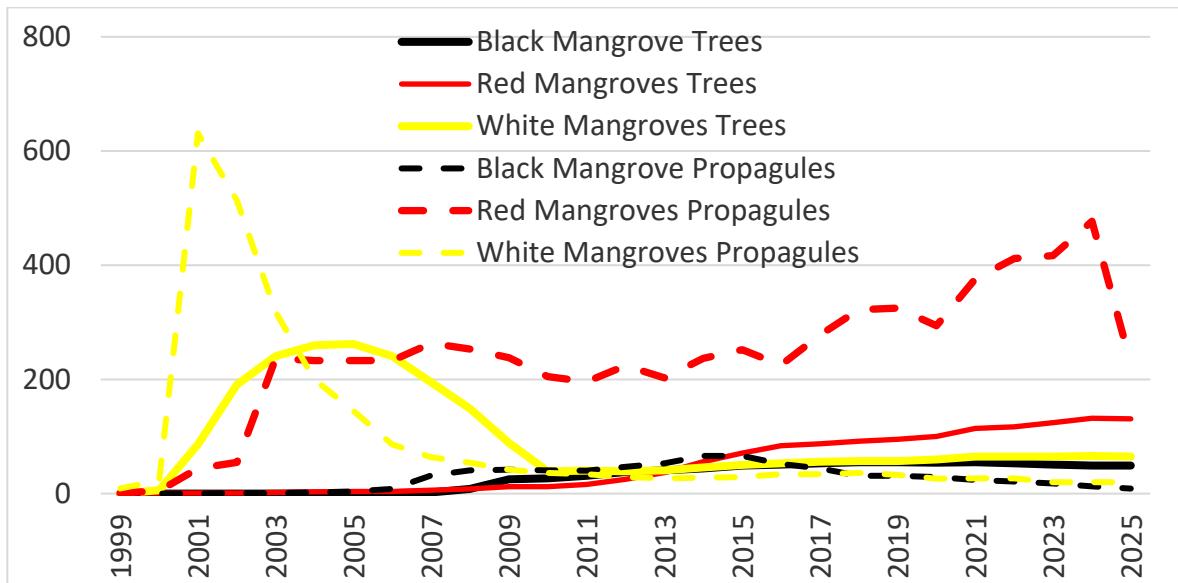


Figure 68: Plot 3 2019 Standing Water

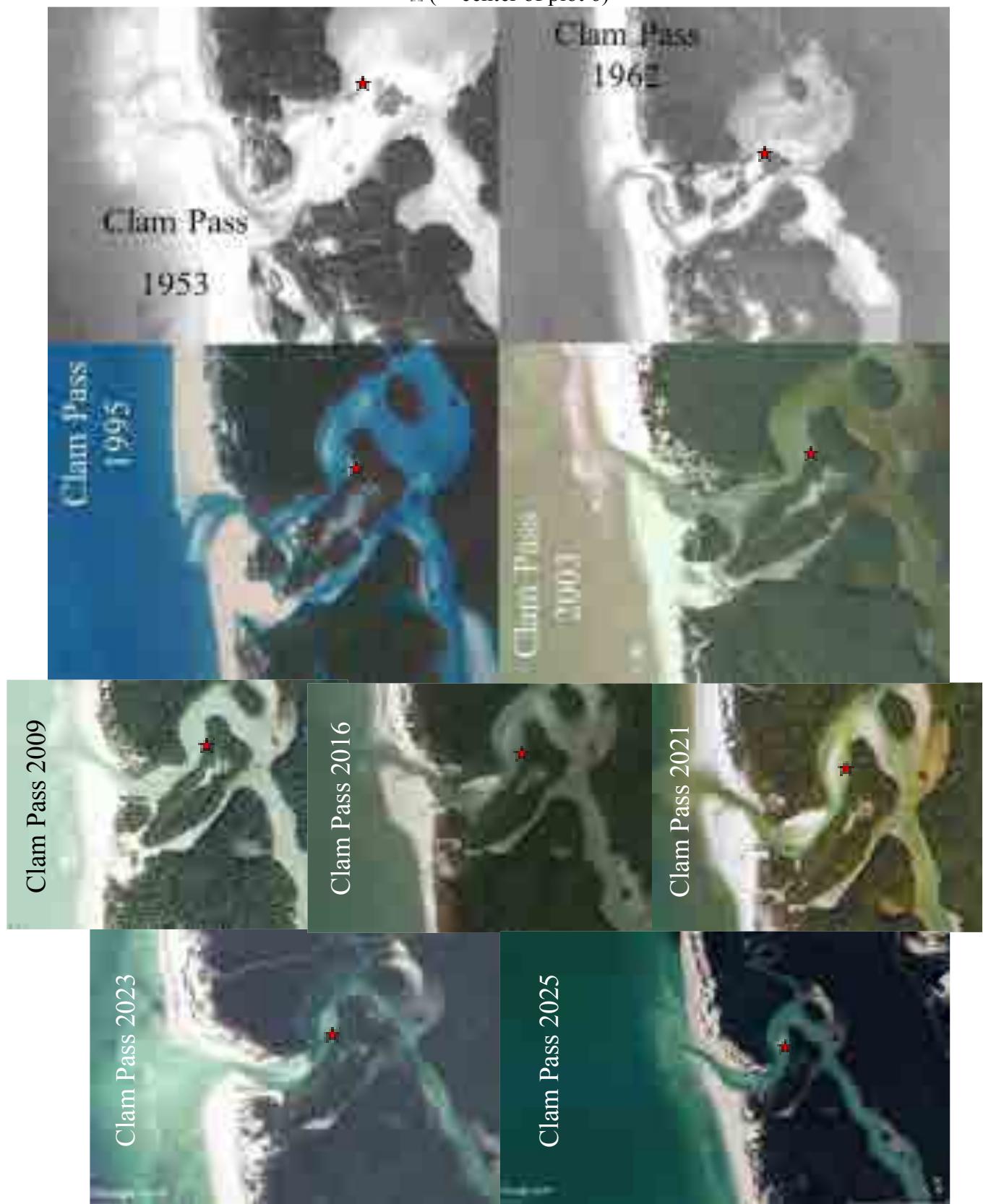
Plot 11 in the spring of 1999 was almost completely devoid of mangroves, which died as a result of altered hydrology and subsequent water impoundment. Similar to plot 3, plot 11 exhibited early signs of restoration success through 2015. Actual seedling numbers in plot

11 were not as impressive as in plot 3, as the forest in this area initially recovered at a slower pace. White mangrove seedlings rapidly attained tree status. Similar to plots 2 and 3, competition for resources ensued, which elevated mortality rates in the young trees, particularly during 2006 - 2010, albeit some of the tree mortality that did occur was also due to impacts from Hurricane Wilma. In 2007, mangrove species dominance began to shift to black and red mangrove trees, with red mangroves emerging as the dominant tree in the later years (Figure 69).

Figure 69: Plot 11 Propagule and Tree Time Series

Setbacks occurred in 2016, following heavy rains and inundation during the dry season, propagule and tree mortality increased with trees declining steadily through 2024. This plot, though affected by Hurricanes Irma, Ian and Morton fared better than some of the other plots, since only 2% or less of the trees died. An estimated 62% of the trees that remain are stressed or very stressed. Similar to other die-off plots, if the periodic persistence of deep standing water and reduced soil conditions continue, this will be detrimental to future recovery. Recruitment remains low in a large section of this plot that has lower topography and has a tendency to impound water, which causes difficulty in long-term mangrove recruitment and establishment (Figures 70a & 70b & 70c & 70d). However, the more elevated sections of the plot have become crowded with new propagules and trees over the last 8 years as the plot attempts to recover. It is expected that soon intra and interspecific competition will ensue as the new trees mature and the canopy re-forms. If this occurs plot 11 is situated in a better position for full recovery in relation to plots 2 and 3.

Figure 70a: 2016 Low Topographical Area in Plot 11 Exhibiting Water Impoundment



Historically, **Plot 6** has and continues to demonstrate how shifting sands naturally cause barrier islands to be in a constant state of change. Depending upon the orientation of the Pass and the frequency and intensity of storms, sand can build up overtime to form an island or it can erode away (Figure 71). Today the Pass is dredged periodically to keep it from naturally closing and breaking open somewhere else. For many years plot 6 remained in a state of arrested development, kept in check by periodic episodes of shoreline erosion and accretion. However, more recently the western bank has continued to erode, preventing long-term stability and establishment of propagules and trees. Natural storm surge from periodic storms and even occasionally king tides, deposits sand and debris that buries propagules, while hurricane winds strip the tree of vegetation and branches. Since plot 6 is located close to Clam Pass (within ~300 ft.), the plot erodes at a higher than natural rate after each subsequent dredging event. Recent And more frequent dredging events, exacerbated bank erosion and subsequent mangrove washout, since tidal surge velocity often increases dramatically following dredging. The storm surge from hurricanes Ian and Milton over washed plot 6, depositing sand and debris into the interior of the plot, however the velocity of the surge increased the bank erosion (Figure 15) and ~85% and 53% of the propagules were washed away when the bank collapsed after hurricanes Ian and Milton respectively.

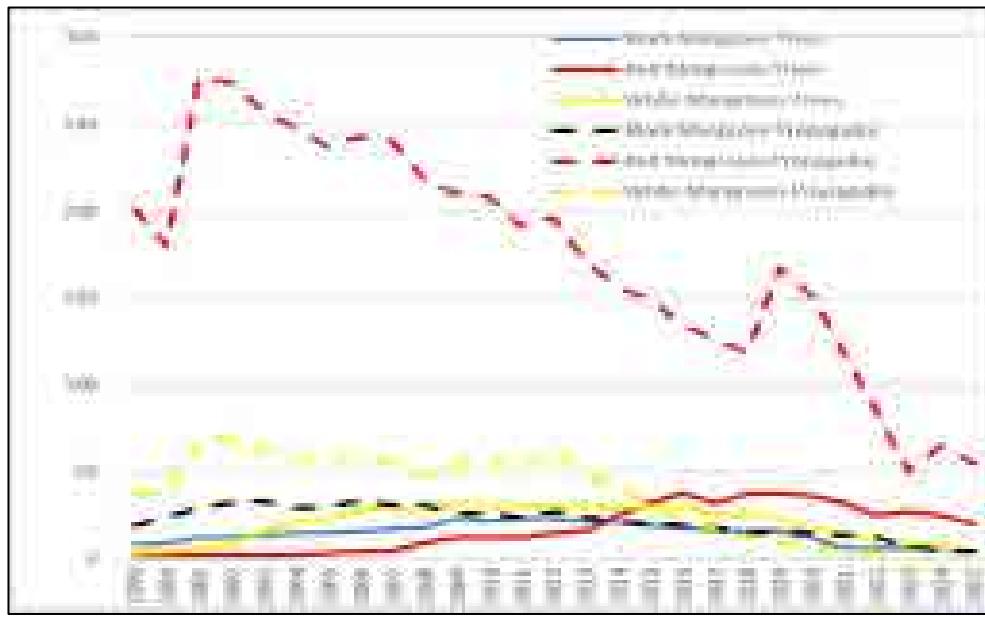

Plot 6 is representative of a mixed mangrove species forest. Species dominance fluctuated primarily between black mangrove and white mangrove trees during the early years of this study, with red mangrove trees dominating after 2015. Red mangrove seedlings, to date, have dominated over the other species, likely due to the plot's geographic location adjacent to the tidal flow, which washes in red propagules (Figure 72). In 2016, plot 6, unlike plots 2, 3 and 11, did not experience an increase in mortality rate for trees or seedlings. Its geographic location, sandy well drained soils, and topography do not favor water impoundment, which caused most of the mortality within the other plots. Plot 6 is now classified as a very, very stressed area, considering half of plot is underwater, erosion continues to outpace accretion, and tree and propagule mortality is outpacing recruitment. Only one original tree present in plot 6 in 1999 have survived to present day.

Figure 71. Episodic Accretion and Erosion in Plot 6

★ (= center of plot 6)

Figure 72: Plot 6 Propagule and Tree Time Series

Plots 5, 8, 9 and 12 were initially classified as stressed areas prior to restoration. Hurricanes, and other tropical disturbances, along with freshwater incursion have had varying degrees of effect on these plots. In some cases, these stressors caused mortality and in other cases the canopy was opened up, allowing sunlight to reach the forest floor. Responses to the anthropogenic and natural stressors ranged from increased propagule recruitment to increased mortality. Trees within plots 5 and 8 are showing less stress than plot 9. Hurricanes had higher impact in plot 9 and mortality rates were very high. In 2016, two of the plots (8 and 9) were subjected to waterlogging. Additionally, fungal disease and insect infestations have gained a foothold in some of the older trees at times in plots 8, 9, and 12 over the years. All of the four plots were initially classified as stressed areas prior to restoration. In 2025, plots 5 and 8 were still classified as stressed, while plot 9 continues to be classified as very stressed. Plot 12, is currently relatively healthy as conditions have dramatically improved over the last 7 years.

Plot 5 is a scrubby mixed mangrove forest, similar to plot 6. In 2025, 52% of the trees remain stressed or very stressed, slightly less than in 2023 and 2024. Tree mortality was negligible over most years, only increasing slightly following Hurricane Irma. Signs of overwash from hurricanes Ian and Milton caused some propagule mortality and trees were only slightly impacted (Figure 73), as stress levels pre and post hurricanes were similar.

Species assemblages slowly changed over the years from a white mangrove dominated forest to a red mangrove dominated forest (Figure 74). The elevated precipitation and subsequent runoff in the spring of 2016 did not affect this plot, likely due to a sandy, more permeable substrate that has better drainage. This plot also was less impacted from Hurricanes Irma and Ian, since it is in a sheltered location. Plot 6 remains stressed in a state of arrested development.

Figure 73: Plot 5 Sand Overwash 2025

Figure 74: Plot 5

Plot 8, in 1999 primarily consisted of mature red mangroves and a few mature black mangrove trees, with a high degree of canopy cover, greater individual tree DBH, and a limited understory. After Hurricane Wilma occurred, the canopy opened up and this part of

Figure 75: Plot 8 2016 Water Inundation

the forest was thrown back into a younger stage of development. Red mangrove seedlings dominated this plot throughout the study period. However, since red mangrove seedlings grow at a slower rate, the white mangrove seedlings, though fewer in number, attained tree height ahead of the red mangrove seedlings. White mangroves have a tendency to place their energy into stem growth, whereas red and black mangrove seedlings tend to focus on root structure first. As a result, white trees began to dominate the tree assemblage in 2011 and

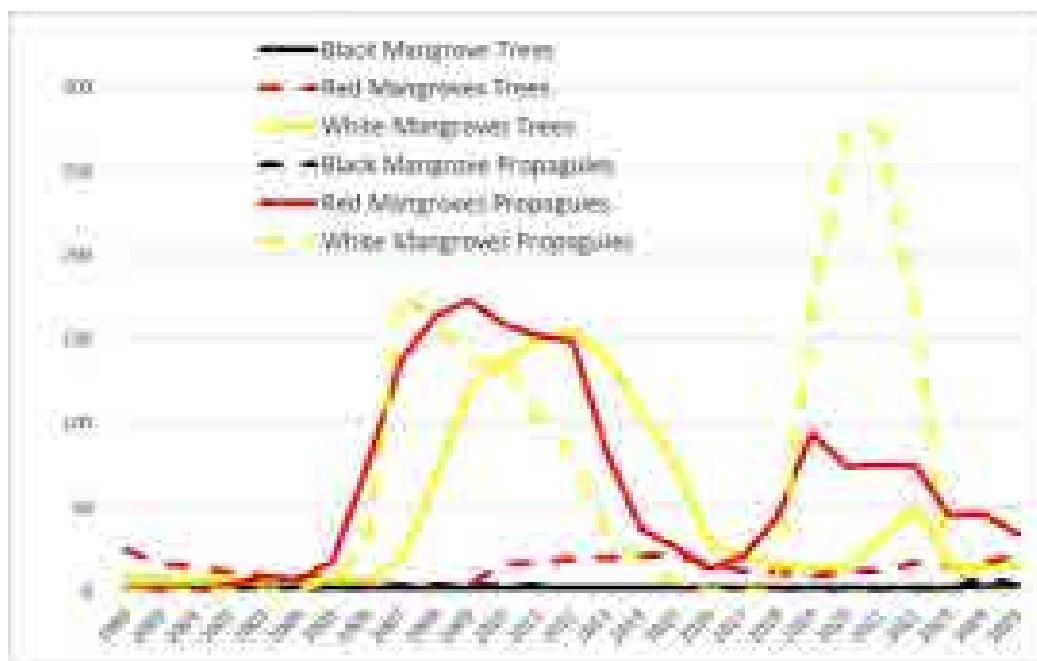
dominated throughout the remaining years. In 2016 and 2017, high levels of standing water during the dry season negatively impacted this area causing mangrove trees to be waterlogged and conditions deteriorated rapidly (Figure 75). Similar to other plots hurricane Irma caused further tree mortality between the 2017 and 2019 assessments, outpacing tree recruitment. Whereas, impacts from hurricanes Ian and Milton caused less tree mortality lessened from 2020 through 2023. This plot remains stressed, many of the trees have visible signs of waterlogging (61%), albeit water levels have receded to surface level. Sulfur odor remains present, indicative of soil reduction. Pneumatophores have grown to accommodate higher water levels and average 42 cm in height. *Cytospora rhizophorae*, a fungal infestation with a high mortality rate was observed adjacent to plot 8 in 2025, which is of concern.

Plot 9 consisted of a few mature black mangrove trees during the first five post-restoration. There was very little understory typical of a mature mangrove forest. Developmental pressure from the surrounding residential neighborhood during and post-construction, stressed the forest and contributed to the decline of the mature mangroves in this area. This construction was directly or indirectly responsible for the death of 18 trees. Furthermore, freshwater runoff from the surrounding development into the mangroves allowed freshwater ferns to become established, some of which are still present (Figure 76).

In 1999 through 2005 red mangrove trees were the dominant tree species, albeit the old growth black mangrove trees covered more of the area, due to their larger girths and canopies. In 2005, white mangrove recruitment was facilitated by Hurricane Wilma, which caused more stress to the older trees and opened up the canopy. Beginning in 2006, species dominance began to shift to white mangrove trees, as plot 9 regressed to a younger stage of development. This was evidenced by overall lower average DBH and the plethora of young white mangrove trees that became established. Tree recruitment peaked in 2009, and was followed by a

Figure 76: Freshwater Ferns within Plot 9 2021

Figure 77: 2019 *Cytospora rhizophorae* Infection within Plot 9



period of inter and intra species competition resulting in a decrease in trees. Prior to 2016, this plot appeared to be on the road to recovery, unfortunately this status abruptly changed. A high percentage of mangrove tree mortality occurred in 2016 (55%), in response to heavy spring precipitation. Hurricane Irma in 2017 further decimated the plot, downgrading its overall condition to very stressed. In 2019, 96% of the trees were stressed or very stressed, and boring beetles took advantage of the trees infirmity to infiltrate the bark. *Cytospora rhizophorae* also appeared and infected some of the red mangroves (Figure 77). In spite of all these challenges, plot 9 was attempting to recover when hurricane Ian set this plot back again. Storm surge was strong in this area during both hurricanes Ian and Milton contributing to a sharp decline in propagules. Trees that were already stressed or very stressed trees could not take the additional stress and perished. Debris was scattered throughout the plot and a scale *Paratachardina lobata*, became prevalent infecting trees, contributing to their mortality (Figure 78). In 2025, 53% of plot 9 was in a stressed to very stressed condition. Mangrove forest regeneration and population crashes occurred over the study period in plot 9 (Figure 79). The ultimate fate of this plot is uncertain. Continual stressors, natural and anthropogenic affect the trees in this area.

Figure 78: *Paratachardina lobata*

Figure 79: Plot 9 Propagule and Tree Time Series

Plot 12 was in a steady state of decline from 1999-2015. Intermittently a few attempts were made to recruit propagules, but these seedlings would subsequently die thereafter. During this period a plethora of freshwater vegetation, primarily ferns and saw palmetto were thriving in this area. In the early years, the County attempted some restoration, but these efforts yielded no significant positive results. The mangroves were headed toward total system collapse, especially when *Cytospora rhizophorae* infected some of the trees. Unless freshwater inflows and other anthropogenic stressors were alleviated to reverse the immigration of freshwater flora, this area was slowly shifting into a freshwater swamp as the number of mature mangroves continued to slowly die.

Figure 80: Plot 12 Propagule Recruitment 2022

However, in 2018, following diversion of some of the freshwater inflow away from this plot and only a glancing blow from Hurricane Irma, this plot began to recover and continued through 2025, despite hurricanes Ian and Milton. This recovery is a testament to mangrove resiliency. Recently, there has been an influx of primarily red mangrove propagules (Figures 80 & Figure 81). As a result, this plot has been re-classified as relatively healthy. This plot is now slowly phasing out of the initial propagule recruitment phase and slowly entering the tree recruitment phase as some of the propagules attain height necessary to reclassify them as trees.

In 2022, a scale, *Paratachardina lobata*, infested many of the young red mangrove tree stems. This scale is an invasive insect that damages trees, however thus far its effects have been minimal (Figure 78).

Figure 81: Plot 12 Propagule and Tree Time Series

Plots 1, 4, 7 and 10, initially classified as relatively healthy, have been downgraded to stressed or even die-off conditions. Weather disturbances over the years had varying degrees of effect on these plots. Plot 1 deteriorated to the extent that it is classified as a die-off, as it never fully recovered from Hurricane Wilma and subsequent water impoundment. Plot 4 is stressed, whose status is being exacerbated by bank erosion. Plot 7 is has degraded to the extent that it is classified as a die-off following hurricanes Ian and Milton. Plot 10 is

classified as stressed due primarily to waterlogging and past hurricane damage. If conditions affecting these plots persist, it is likely that at least two out of the four of these plots will likely continue deteriorating.

Plot 1 was located within a historic, very old mature black mangrove forest that had experienced very minor changes since the 1980's (Addison and Ritchie, 1990). The mature black mangrove trees dominated during the early years of monitoring, outlasting other competitors. Propagule recruitment favored red mangroves in the early years post-restoration, but recruitment was very low, consistent with the maturity of the forest and dense canopy coverage.

In 2005, a tornado, spawned from Hurricane Wilma, touched down right in the center of the plot causing extensive damage (Figure 82a). Since then, plot 1 faced a myriad of anthropogenic stressors and experienced minimal sustainable mangrove recovery. To date, anthropogenic stressors including increasing periods of freshwater discharge, which results in water impoundment and longer water retention periods. Extended periods of water impoundment, continues to prevent mangrove recovery, causing die-off expansion. Once Hurricane Wilma opened up the canopy, there was shift in forest composition. Most of the old growth black mangrove trees died. White and black mangrove seedlings became more dominant, along with young white mangrove trees. This assemblage persisted over the years until 2016 when all species of trees and seedlings suffered extensive mortality from extensive freshwater impoundment. This plot continues to decline and the heavy rainfall in 2016 and hurricanes Irma, Ian and Milton added considerable stress to plot 1, furthering the depth of water ponding within the area (Figures 82b & 82c & 82d). Plot 1 is in a state of extreme stress (90% of the trees) and its overall health continues to deteriorate. Only 1 of the original mature black mangrove trees present in 1999 is still alive, albeit very very stressed and dying.

Figure 82: **Plot 1**

Figure 82d: Plot 1 Post-Hurricane Milton

The County attempted, without success to abate inundation by installing a hand-dug channel in this area following hurricanes Wilma and Irma (Figure 83). Adding to the concerns, *Cytospora rhizophorae* gained a foothold in the area, exacerbating tree health and causing additional mortality. Over the years, tree mortality rates have outstripped recruitment and plot 1 has been reclassified as a die-off area. Unless water levels recede and retention periods decrease, this area is headed toward a peat collapse and likely become an extensive mudflat. Recovery is not likely possible without significant rerouting of storm water and investment of significant resources.

Figure 83: Plot 1 Hand-dug Channel



Plot 4 is typical of a mangrove forest that fringes a tributary where red mangrove trees and seedlings dominate. Pre-restoration, older relatively healthy red mangrove trees existed with an understory of primarily red mangrove seedlings. Following the initial dredging of the tributary adjacent to this plot, tidal water levels remained within the area for a longer period of time and at deeper depths. This stressed the mangroves and the trees became waterlogged. In 2001 – 2002, forty out of a hundred red mangrove trees died from a severe infestation of *Cytospora rhizophorae*. This plot began to slowly recover from this fungal infestation and the plot regressed to a younger stage where primarily red mangrove propagules became established and slowly became trees (Figure 84).

Figure 84: Plot 4 Propagule and Tree Time Series

Propagule recruitment and mortality rates remain high, due to high availability of propagules from the adjacent tributary. This plot seems to have a difficult time maturing, likely due more frequent and increased tidal flow and accompanied water levels seem to undermine some of the mangrove's root systems causing plant instability and sometimes mortality. In 2016, similar to other plots, plot 4 was further stressed from an increase in precipitation and water impoundment, exacerbated by the more frequent and increased tidal flow. However, unlike some of the other areas within the Clam Bay system, this plot rode out hurricanes Irma, Ian and Milton fairly well with minimal tree mortality.

**Figure 85: Plot 4 Proximity to Tributary
2023 (15") & 2024 (0") & 2025 (-12")**

Fringe mangroves along the tributary adjacent to plot 4 continue to fall into the tributary as the bank erodes. After each time the pass and interior tributaries are dredged the tributary flow velocity increases along the bank, causing increased erosion. The width of the tributary adjacent to plot 4 has continued to widen with increasing erosion causing further land subsidence (Figure 85). This cyclic pattern of slow continual erosion, slowly eats away at the bank toward the northeast side of plot 4. The overall condition of the plot 4 has vacillated

between healthy and relatively stressed overtime. Today, 67% of the trees are stressed or very stressed and the overall status of plot 4 is slightly stressed.

Plot 7, was relatively healthy and consisted of a closed canopy of primarily older black mangroves and red mangrove trees pre-restoration. This mature old growth status remained until Hurricane Wilma opened up the canopy, allowing an influx of young primarily red

**Figure 86: Plot 7
2016 Waterlogged**

forest regeneration and population crashes over the study period.

A mudflat, located just north of plot 7, developed following the initial dieback in 1995 and was of some concern since it slowly expanded south into this plot through 2024 (Figure 88). This plot was reclassified as a die-off area in 2023. Further tree mortality and minimal propagule recruitment occurred in 2024. The storm surge from the tropical storms of 2024 and Hurricane Milton devastated this plot depositing feet of sand from the dunes into the area. This resulted in almost a complete wipeout of the mangroves in this vicinity. Only 2 very stressed mangrove trees remain, which will likely die (Figure 89). The sand deposited in this area did increase the topographical elevation negating water inundation. The County had plans to scrape out some of the sand, which in the long-term could impair mangrove longevity.

Figure 87: Plot 7 Propagule and Tree Time Series

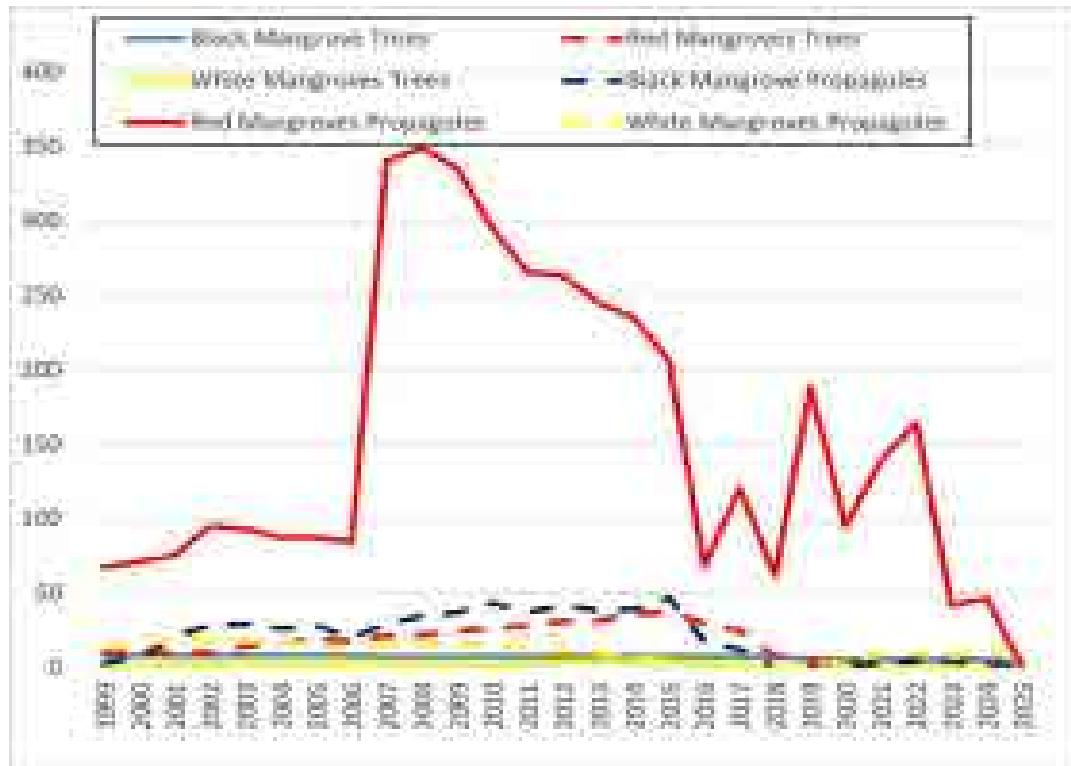


Figure 88: 2019
Mudflat near Plot 7

Figure 89: Plot 7 2025 Sand Overwash & Dead Mangrove Trees Post Hurricane Milton

Plot 10 was a relatively healthy mature mangrove forest pre-restoration, consisting primarily of red and black mangroves. Throughout the early years of this study, there were more red mangrove trees, but the black mangrove trees covered more basal area. Since that time, several factors have caused this plot to decline. Prior to Hurricane Wilma channels were installed through this plot to drain water out of a die-off area to the west of this plot. During channel installation, mangrove root systems were cut or damaged causing these healthy mangrove trees to become unstable and subsequently fall over and die during Hurricane Wilma. Mangroves of comparable species and age that were located in the same vicinity, but not directly adjacent to the channels and did not have severed roots, easily weathered this storm. White mangroves became the dominant mangrove species between the 2008 and 2009 assessments. This shift is indicative of regression to an earlier stage of development, as younger trees began to take over the area and older trees died out.

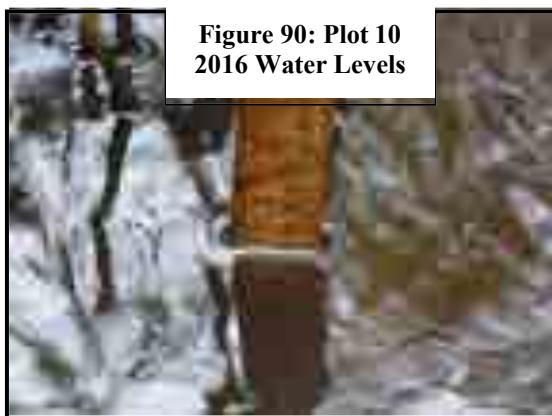


Figure 90: Plot 10
2016 Water Levels

Tree mortality rates were minimal until 2016 when water impoundment caused tree and propagule mortality to almost triple (Figure 90). Following Hurricane Irma, conditions further declined, stabilizing in 2020.

Hurricanes Ian and Milton did minor damage to this plot, albeit plot 7 remains stressed (Figure 91a).

Water stress continues to be evident. Black mangrove trees are trying to cope with flooded conditions by altering their pneumatophore architecture, sometimes radically, to attempt to maintain gaseous exchange (Figure 91b). This plot is currently classified as stressed.

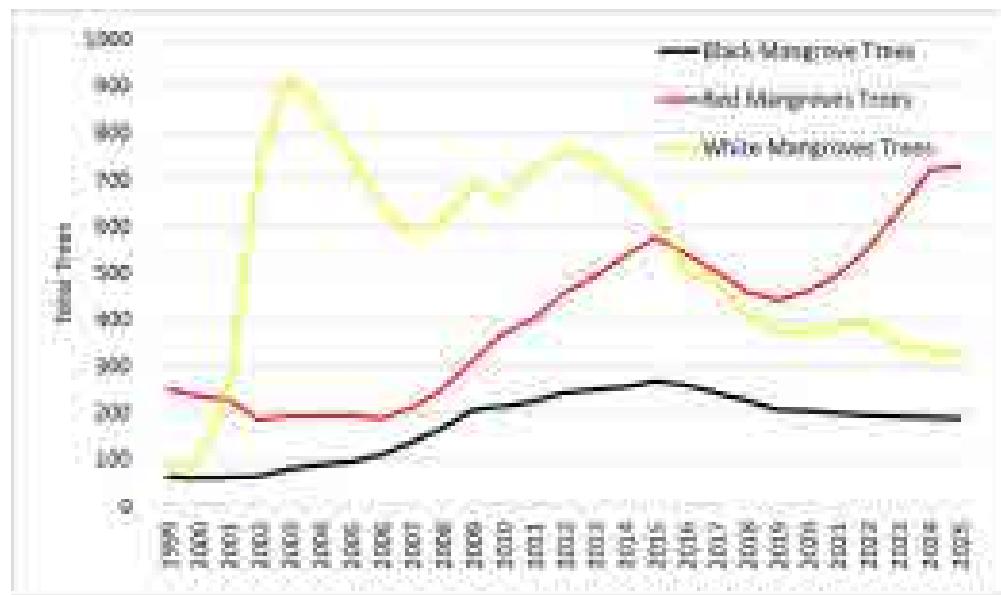

Figure 91a: Plot 10 2025

Figure 91b: Extreme Stress Reflected in the Pneumatophores of Plot 10 2019-2025

Overall, the mangrove forest within the Clam Bay system is currently ~62% stressed or very stressed. Currently white mangrove and black trees are trending slightly downward, while red mangrove trees are trending slightly upward, with red trees dominating overall (Figure 92).

Figure 92: All Plots Overtime by Species

Mangroves were not the only species impacted by altered hydrology. Prior to restoration, there was a concurrent reduction in the epifauna. Fiddler crabs, once abundant in the area, fled as the soil became unsuitable due to very low soil redox levels. The die-off caused a cascading effect within the ecosystem as wildlife usage shifted from terrestrial to aquatic.

Fish and wading birds immigrated and terrestrial invertebrates, reptiles, mammals and arboreal birds exited the area. Seventeen years post-restoration, when the original die-offs were exhibiting signs of recovery and when surface water impoundment was absent, the some of the terrestrial epifauna such as fiddler crabs and other wildlife responded to the estuarine improvements and returned. However, today that pattern has reversed.

Leaf Area Index (LAI)

LAI (Leaf Area Index) measurements are frequently used to compare mangrove study sites over time (Pool, 1973) and is used to assess photosynthetic leaf area, which converts solar energy to chemical energy and is often related to the age of the mangrove stand. LAI generally peaks when a mangrove forest is undisturbed for approximately 20 years (Pool, D. J., 1973). Achieving maximum LAI is rare due to the prevalence of natural events such as hurricanes and anthropogenic disturbances. Latitude also influences LAI, with tropical mangrove forests typically having higher values than temperate forests. This year, the average LAI measurements were slightly higher compared to the previous years as the forest continued to recover from the impacts of Hurricane Irma and Hurricane Ian. During the dry season, the mean LAI for the study area was 1.38, with values ranging from 0.14 at plot 7 to 2.55 at plot 9 (Table 5).

Photosynthetically Active Radiation (PAR)

PAR is influenced by the arrangement of vegetation in the forest canopy and the position of the sun in the sky (Clough, et al. 1997). Consequently, PAR is more challenging to compare over time. Individual instantaneous rates of net canopy photosynthetic production (PAR) in the entire study area varied from $0 \text{ g C m}^{-2} \text{ leaf h}^{-1}$ at plot 8 to $1525.43 \text{ g C m}^{-2} \text{ leaf h}^{-1}$ at plot 9, with a mean of $394.41 \text{ g C m}^{-2} \text{ leaf h}^{-1}$ (Table 5). Variations in mean LAI and PAR within the Clam Bay system are likely due to differing degrees of hurricane impact and the health of individual plots before and after the storms.

DISCUSSION

Mangrove die-offs are often the result of rapid environmental alterations (Jimenez and Lugo, 1985). Alteration the hydrologic regime is the primary cause of black mangrove die-offs that occur adjacent to development. When development and roads are built next to or bisect mangrove forests, normal hydrologic flow is impacted. Construction of roads or buildings adjacent to estuarine areas can act like a dam interrupting the natural tidal cycle by preventing or impeding tidal waters from entering and exiting the adjacent mangrove area (Menon, et. al., 2000). Roadways directly affect the landscape by changing the adjacent slope, which results in alteration of the timing and volume of surface water flow (Trombulak and Frissell, 2000). Furthermore, soil compaction during building can prevent above and belowground tidal sheetflow into and out of mangrove estuaries. Since roads and buildings are typically built at higher elevations than the surrounding mangroves, precipitation and stormwater runoff is shunted directly or indirectly into the mangroves. Stormwater can become impounded, contributing to higher floodwaters and longer water retention times (i.e., extended hydroperiods) within the mangroves. Extended hydroperiod in combination with high surface water levels leads to ponding. If surface waters are deep enough to cause pneumatophore submersion for an extended period of time, black mangrove die-offs result.

Ideally, there are four stages of forest development: colonization, early development, maturation and senescence. For the last two and a half decades, Clam Bay has experienced multiple stressors, both anthropogenic and natural, which have interrupted or setback forest development and maturity. Typically, an inverse relationship develops between percent cover and the number of established trees and propagules overtime. As the canopy fills in, cover increases and the number of propagules that successfully establish themselves decreases. The larger and older trees tend to outcompete younger trees as the forest matures and the increased canopy cover keeps the number of propagules to a minimum due to shading. Senescence and subsequent forest succession are rarely reached in mangrove forests due to external forces such as hurricanes, which regulate the forest into an earlier stage of development (Jimenez and Lugo, 1985).

Initially die-off plots 2, 3 and 11 positively responded to the 2000 hydrologic restoration and began to embark on the four stages of development. Plot 3 serves as an example. Restoration activities re-established tidal flushing and alleviated water impoundment, allowing plot 3 to enter the colonization phase by beginning to naturally recruit primarily white mangrove propagules. White mangrove seedlings have an affinity for disturbed open areas, like the drained tidally flushed landscape present post-restoration. They often serve as a pioneer species and thereby have a tendency to be the first mangrove species recruited. They typically grow rapidly, investing the majority of their energy in gaining height quickly. Within a short expanse of time, a multitude of white mangrove seedlings attained tree height, entering the early development phase. The presence of so many thin white mangroves within a small area naturally caused competition for space and resources. The taller and healthier white mangroves quickly outcompeted their siblings, triggering a decrease in recruitment rates and an increase in mortality rates. Healthier and more robust trees gradually dominated the plot as they edged out the competition. Plot 3 began to show early signs of “succession” as seedling recruitment, as early as 2003 began to favor red mangrove seedlings. Red mangroves, in contrast to white mangroves, have a different development strategy. They grow much slower, initially investing their energy into developing root systems. Once established red mangroves, develop thicker stems and eventually achieve a bush-like appearance as saplings, before slowly maturing into trees. In 2014, red mangrove trees began outcompeting the white mangrove trees and slowly became the dominant species. At the same time, some black mangrove seedlings had matured to the extent that they also outcompeted the white trees. Similar to red mangroves, black mangroves also develop slowly. Black mangroves first concentrate their energy into developing a rather extensive underground and aboveground root system. In 2014, this plot seemed to be on the path of transforming into a mature mangrove forest, similar to the forest structure that was present prior to the 1995 die-off. Plot 3 served as an excellent example of how a die-off caused by encroaching development and altered hydrology could be revegetated, by restoring tidal flow and abating flood water levels and retention periods until 2016. In 2016, water became impounded once again, following a higher-than-normal dry season rainfall event. Higher water levels and longer water retention periods caused mangrove mortality. Hurricane Irma in 2017 further slowed recovery. This area survived hurricanes Ian and Milton and while impacted, the damage was not as severe as in other areas. Plot 3 serves as an example of what occurred throughout parts of the forest that suffered from the 1995 mangrove die-offs in Clam Bay, the 2016 precipitation event, and several storms. The increased freshwater discharge from development, repeated storm impacts, and sea level rise present difficult challenges to overcome in mangrove systems.

Many factors that influence the health of the mangrove system. Factors such as storms, natural mortality, biotic factors, inundation and waterlogging can affect the state of the mangrove forests.

Storms

The 2024 storm season, was extremely busy with 2 tropical storms that passed by the area and hurricane Milton, all of which had accompanied storm surge, albeit the wind was not as much of a factor. The storm surge (~5 ft), flowed into and out of Clam Bay, in some cases, causing minor and primarily seedling damage. However, those areas that had a tendency to impound water had problems, along with the parts of Clam Bay situated near the coast that had high sand accretion, which buried seedlings and killed trees. This report also covers the period twenty-eight months post Hurricane Ian, a Category 4 hurricane that made landfall, approximately 40 miles north as the crow flies from Clam Bay. Hurricane Ian had significant storm surge, ranging from 6-10 ft., that over washed the entire Clam Bay mangrove system and flooded the Pelican Bay development. The mangroves slowed down the surge significantly and dropped the water level an estimated 2 feet saving much of the residential area adjacent to the mangrove forest from more extensive damage. The 2024 storms close on the heels of Hurricane Ian in 2022 exacerbated mangrove recovery efforts as not enough time had passed between storms to enable recovery. During the 2024 storms, storm surge deposited an average of 3-5 ft of sand in the mangroves closest to the beach dune system, which also suffered significant damage.

Over the years, from February 1999 through February 2025, several severe weather events have impacted the Clam Bay estuary including:

- Hurricane Wilma (fall 2005)
- Tropical Storm Fay (summer 2008)
- An extended cold snap (winter 2008 & 2010)
- Tropical Storm Debbie (summer 2012)
- A heavier than average rainfall during the dry season (winter 2016)
- Hurricane Irma (summer 2017)
- A Meteotsunami, a wind storm, in December of 2018
- Tropical Storm Eta (fall 2020)
- Hurricane Ian (September 2022)
- Tropical Storm Idalia (August 2023)
- Tropical Storm Debbie (August 2024)
- Tropical Storm Helene (September 2024)
- Hurricane Milton (October 2024)

Meteorological and physical conditions within the site can influence the extent of hurricane damage within a forest and its subsequent recovery response. These conditions include factors such as:

- Storm intensity
- Topography
- Soil characteristics
- Wind direction
- Storm surge

The extent and types of storm damage was variable throughout the Clam Bay estuary, even from the same storm, since storm dynamics and in situ conditions vary, even in areas of close proximity. For example, Hurricanes Wilma, Irma, Ian and Milton all impacted Clam Bay to some degree. The mangrove trees in plot 1 were decimated during Hurricane Wilma, continued to decline thereafter, and suffered additional decline following Hurricanes Irma, Ian and Milton. Whereas, plots 5 and 6 survived relatively unscathed from all four storms.

Mangrove susceptibility to hurricane-induced mortality can be species-specific (Sherman and Fahey, 2001). Alternatively, stand level structural complexity, relating to site-specific factors can influence a forests susceptibility to hurricane damage. Factors such as:

- Forest age
- Height
- Health
- Soil conditions

In Florida, younger, suppler, and shorter trees are often able to withstand sustained hurricane winds and tend to suffer less mortality than older more mature mangrove stands (Baldwin, et. al., 2001, Smith and Robblee, 1994). Hurricane Wilma was a wind storm, with very minimal storm surge. Larger more mature trees in plots 1, 7, 8, 9, 10 and 12 were more impacted by Hurricane Wilma than the younger trees in plots 2, 3, 4, 5, 6, and 11. Following Hurricane Irma, more widespread effects were felt throughout the Clam Bay system, even though this storm was not as strong in this area of Collier County in comparison to Hurricane Wilma. The effects were worse since the mangrove forest was more stressed prior to Hurricane Irma, than forest conditions prior to Hurricane Wilma. Plots 7, 9, 10 and 8, which still had older trees standing prior to Hurricane Irma, were heavily impacted. In many cases, Hurricane Irma delivered the coup de grâce to many areas within the forest. Alternatively, when storms produce heavy storm surge and wave action, mangroves situated closest to the surge are usually more impacted than the inland forested areas. These types of storms tend to deposit extensive quantities of sand from the beach and dune systems into the adjacent mangroves. This happened in plot 7 during Hurricane Ian and plot 8 during hurricane Milton, resulting in many mangrove seedlings smothered by sand. Only 5 years had passed since Hurricane Irma when Hurricane Ian hit this area, and only 2 years separated hurricanes Ian and Milton, which is not enough time for forests recovery. The frequency of storms has taken a toll on Clam Bay.

Differences in mangrove mortality patterns likely indicate that both initial and delayed tree mortality from hurricanes is complex. Mortality patterns are based on a variety of factors including:

- Local stand characteristics
- Physical site parameters
- Individual storm characteristics
- Degree of natural and anthropogenic stressors present that influence forest health.

Tree mortality is not always instantaneous. Often the bulk of tree mortality following severe storms is delayed. In 1996, Everham and Brokaw estimated that it could take five years for mortality rates to return to base-line conditions following a severe storm. However, we have documented storm related effects from Hurricane Wilma causing “delayed” mortality well beyond their 5-year estimate. As of 2025, there is still one mangrove living that was severely

damaged by Hurricane Wilma in 2005 and is still slowly dying. It is likely that delayed mortality following hurricanes Irma, Ian and Milton will cause further loss of trees in the future within the Clam Bay mangrove forest. This year four trees died as a direct result of delayed mortality from hurricanes consisting of one tree each from plots 6 and 8 and two trees from plot 4. Delayed mortality from hurricanes also contributed to the death of 16 additional trees along with another factor(s), one tree from each of plots 2, 6, 9; two trees from plot 11; three trees from plot 8; and four trees from each of plots 7 and 4 (Table 6). It is expected that the combination of Hurricanes Irma, Ian, Milton and others will likely be responsible either solely or in combination with another factor for more tree mortality in the future. Given the poor condition of some of the plots, recovery will likely be delayed or even difficult without intervention.

Mangrove forest recovery following a storm often depends on:

- The severity of the storm
- The health of the trees
- The frequency between storm events
- Localized resource availability

Recovery could favor regrowth (resprouting), recruitment (new seedlings), release (rapid growth of the subcanopy), reversion (secondary succession) or a combination of these mechanisms. Less severe hurricanes, such as a Category 1 storm, result in defoliation, whereas severe hurricanes, like Category 4 and 5 storms tend to produce gaps in forest structure or burial. Recovery from a severe hurricane can take several decades and begins with recruited seedlings, becoming trees and reforming the canopy overtime.

Propagule recruitment will generally increase when storms or other circumstances cause a reduction in the canopy cover. Gaps in the canopy were created in areas where trees were knocked down or leaves were stripped from the mangrove branches during storms. In many cases, storms can cause the forest to revert to an earlier stage of development. Hurricanes can also influence biotic factors (Everham and Brokaw, 1996) such as:

- Stem size (unimodal relationship)
- Species composition (different species are more susceptible to severe storms and have varying degrees of resprouting responses)
- Canopy structure (related to crown shape and tree geometry)
- Maturity (younger age classes generally fair better)
- Presence or absence of pathogens (disease increases the trees susceptibility to damage and insect infestations).

Following each storm there was usually a subsequent rise in mangrove seedling recruitment, unless conditions have deteriorated to the extent that recruitment is no longer viable. Six years post-hurricane Irma, during the 2023 assessment, those areas stressed prior to the storm were still very stressed. Hurricanes Ian and Milton was not as impactful to the forest overall since this hurricane produced a strong storm surge, but less of a wind field in the Clam Bay area than Hurricanes Wilma and Irma. How Clam Bay responds in the long-term is very uncertain due to the variety of anthropogenic and natural stressors that continue to impact this forest. It will be interesting to see how the forest responds in the upcoming 2026 Clam Bay assessment, given the respite of storms over the summer of 2025.

Natural Mortality

Natural mortality is a process associated with normal interactions between individual trees independent of changes within the physical environment. Natural mortality is primarily density dependent, dictated by stand maturation and usually occurs in the smaller diameter class sizes. This type of mortality is primarily a result of inter or intraspecific competition, herbivory, endemic diseases or senescence (Jimenez and Lugo, 1985). Mortality within younger age class trees is primarily due to intra and interspecific competition, a natural occurrence as the forest matures. This occurs as the taller and heartier trees outcompete the smaller trees as the canopy forms overtime. Following initial colonization, mangroves exhibit species-specific growth responses to site conditions. They compete for light, nutrients and space. In dense stands, density-dependent mortality will occur, as larger diameter healthy trees will generally outcompete smaller diameter trees. This type of intra and interspecies competition was evident in many of the plots within Clam Bay throughout the course of this study, primarily within the original die-off plots as they attempted to recover overtime. In 2025, competition was responsible for the deaths of four trees (three trees in plot 3 and one tree in plot 11). Competition, while not solely responsible, played a role in the mortality of three trees, (one tree in plot 3 and two trees in plot 12 (Table 6).

Biotic Factors

Mangrove die-offs are not normally the result of disease or other biotic factors. Instead, these factors preferentially attack forests weakened by changes in the physical environment. Disease and infestations tend to occur in mangrove areas that are stressed, allowing the disease or infecting agent to gain a foothold (Jimenez and Lugo, 1985).

Cytospora rhizophorae is a classic example of a biotic factor that can stress or even cause death to red mangroves in particular, with a mortality rate of ~32% within an infected area of mangrove forest (Weir, et. al., 2000). *Cytospora rhizophorae* spores enter trees through damaged roots or branches and are often associated with cankers that weaken trees (Tattar, et. al., 1994). Plot 4 was particularly susceptible to *Cytospora rhizophorae*, as these red mangrove trees were stressed from continual inundation prior to the infestation. *Cytospora rhizophorae* caused 40 of the 100 trees in this plot to die between the 2001 and 2002 assessments, a higher percentage (40%) than described in the literature. This particular outbreak lasted ~5 years. Forest recovery has been slow and plot 4 is still recruiting mangrove trees to replace those that succumbed to this disease. Unfortunately, there has been a re-emergence of this fungus in 2020 that contributed to the death of another red mangrove in plot 4, which thankfully did not spread to other trees in the plot. Over the years, this fungal disease was found in other areas within the Clam Bay system including plots 1, 2, 7, 8, 9, 10, 11 and 12. The plots that are currently showing symptoms, are stressed. In 2025, *Cytospora rhizophorae* was responsible for the death of two trees in plot 11 (Table 6), and was observed in some mangrove trees adjacent to plot 8.

In 2022, a scale, *Paratachardina lobata*, had infested many of the young red mangrove tree stems in plot 12, although it was not directly responsible for any tree deaths it does weaken the trees immune system. This insect is an invasive species native to India and Sri Lanka. *Paratachardina lobata* tends to cluster on woody stems, forming bumps or blackened areas when their numbers soar. The scales suction sap from the host plant and secrete the excess fluid that can cover woody stems and foliage. The scale causes stunted growth and die-back of the stems stressing the plant, sometimes causing death. A severe infestation of

Paratachardina lobata occurred in plot 9. The infestation was so severe in small young trees with minimal girths that the insects girdled the trunks killing 20 trees in 2023. *Paratachardina lobata* spreads during their nymph stage much like plant pollination, via the wind or hitching a ride on animals. As an adult they remain on the host they land on. Unfortunately, these pests have no natural enemies to check their populations in Florida (Howard, et al., 2002). In 2025, three trees, one tree in plot 3 and two trees in plot 12 died as a result of *Paratachardina lobata* and other factor (Table 6).

Cold snaps often weaken mangrove trees. Diseases and insects take advantage of the tree's infirmity and lower resistance to infection and infestation. Sections of the Clam Bay system were very stressed from cold snaps that occurred in the winters of 2008 and 2010. These areas subsequently became infested with wood boring beetles (xylovores). Under healthy conditions, wood borers that feed on living wood tend to attack living twigs or branches and the loss of these branches is usually and was recoverable. These beetle infestations become problematic if infected rates rise substantially and can contribute to an increase in tree mortality. Severe infestations are more likely to develop in trees that are stressed, sometimes to the extent that the trees become girdled and die. Chronic and acute infestations could have major negative consequences on the mangrove trees growth and reproduction (Feller, 2002). An unidentified scale infestation caused the death of four trees in 2025 (2 trees in each of plots 3 and 4) and contributed to the mortality of five trees (3 trees in plot 4 and one tree in each of plots 9 and 11) (Table 6).

Inundation and Waterlogging

Mortality caused by inundation is of primary concern in the Clam Bay mangrove system, given its history of die-backs caused from water impoundment and lack of tidal flushing. Anthropogenic hydrologic changes, exacerbated by periods of heavier than normal rainfall in 1992 and 1995, triggered the forest to collapse in some areas of the Clam Bay system after being stressed for decades (Figure 4). External stressors, exacerbated by higher-than-normal precipitation in the winter of 2016, led to multiple regions within the mangrove forest being impounded with standing water, resulting in renewed mangrove diebacks. Inundation continued in 2017 and 2018 and to a lesser extent from 2019 to 2025. As a result, forest health declined, particularly in areas of lower topography. In 2025, eleven trees died due to complications arising from waterlogging and other factors (one tree in each of plots 2, 4, 6, and 11; three trees in plot 8, and four trees in plot 7) (Table 6).

Other Concerns

Accretion and erosion are natural processes within mangrove forests. However, erosion appears to be accelerating faster than natural in some of the fringe mangrove areas bordering the tributaries. The accelerated erosion rates appear to correspond to the increased tidal flow velocity from anthropogenic dredging activities and the installation of numerous channels throughout the system. Natural accretion rates cannot keep up with the added anthropogenically caused erosion rates in addition to the natural erosion. In 2025, bank erosion resulted in the death of seven trees in plot 6 (Table 6) and several seedlings in plot 4. Plot 6 is severely eroded to the extent that there is very little land remaining that can support mangroves. It is anticipated, given the current rate of bank erosion at plot 4, will cause the death of more mangroves in the future in part due to increased tidal flushing from dredging events.

Sand accretion resultant from the 2024 storm surges contributed to the mortality of four trees in plot 7 along with other hurricane effects (Table 6). While the sudden movement of several feet of sand being deposited inland of the dunes in mangroves adjacent to the shoreline resulted in a drastic change within the forest, this is not unheard of and occurred in 1960 when Hurricane Donna hit our shores.

Forest Longevity

A complex myriad of factors and processes shape the condition and extent of mangrove forests. Our understanding of mangroves has risen over the last 26 years, but it is largely incomplete. Monitoring is essential to adaptively managing mangrove forests that have existed for hundreds of years. It is also to our benefit to continue expand our knowledge of how mangrove systems operate to be able to more accurately predict their long-term viability and their ability to buffer us in the future from severe climate related events. The future status of mangrove systems is very precarious and will largely depend on the health of these forests prior to a storm and their ability to rebound prior to another severe weather event. Outcomes will also depend on their ability locally to keep pace with sea level rise through sediment accretion. Northern and inland migration of mangroves into adjacent wetland communities has occurred in Florida since the 1950's in response to sea-level rise over those decades (IPCC, 2014). However, the mangroves adjacent to Pelican Bay do not have that option.

Mangrove trees often live for hundreds of years, yet it is evident that in this short period of annual monitoring, many changes, (both favorable and unfavorable), have occurred within the Clam Bay estuary. Favorable changes included initial revegetation of the die- off areas, reduction of impounded water, and return of tidal flushing in the northern terminus of the system. Unfavorable changes included:

- Increased tidal surge from dredging
- Tree stress and mortality
- Erosion of tributary banks
- Constructed channel expansion and subsequent increased bank erosion
- Increased water retention in 2016 and subsequent water impoundment
- Forest waterlogging
- Disease
- Invasion of freshwater and exotic plants
- Influx of new exotic species such as *Perna viridis*, (green mussels) and *Paratachardina lobata*, (scales) and other detrimental infestations.

Mangroves are inherently resilient. These trees are adapted to deal with adverse natural conditions. They are able to survive in saline and low oxygen environments, and they often take the brunt of storm effects. During the course of this project, from 1999 - 2025, the Clam Bay mangrove system has weathered natural events such as drought, frosts, extended periods of extreme heat and cold, tropical storms, above average rainfall, Hurricanes Wilma, Irma, Ian, Milton, and even a meteotsunami. In Florida, mangrove loss due to extreme climatic events is becoming more common. The ability of these mangroves to recover after a storm in the future is uncertain. If there is no longer enough time for these forests to recover in between storm events, the outcome becomes more tenuous (Feller, et al., 2015). Recovery takes time. Mangrove forests are also facing the likelihood of reduced resiliency due to sea level rise (IPCC, 2001), in concert with increased storminess.

Over twenty-six years ago, anthropogenic factors triggered a sequence of events that caused multiple die-offs in the Clam Bay estuary that required anthropogenic intervention to mitigate these past mistakes. Prior to intervention, the die-off area was slowly expanding. The mature mangroves in plots 2, 3 and 11 could not tolerate the altered inundation patterns caused by development adjacent to the forest that resulted in extended hydroperiods and flood levels (Worley, 2006). The restoration that took place in 1999-2000, alleviated the some of the anthropogenic hydrologic alterations and re-established tidal flushing, enabling forest recovery. Unfortunately, in 2016, higher than normal rainfall caused a reoccurrence of extended periods of inundation, in areas of lower topography, causing multiple die-backs and stress within the system. Regrettably the setbacks that occurred in 2016 were followed by coup d'état by Hurricane Irma in the fall of 2017 and to a lesser extent Hurricane Ian in 2022 and Hurricane Milton in 2024. As such, the long-term prognosis for this area is uncertain. Whether or not deteriorating conditions are due to the anthropogenic incursions, natural occurrences, restoration project, or a combination thereof is debatable. The original anthropogenic stressors to the system were never thoroughly addressed. Some of the water impoundment issues within the original mangrove die-off areas were mitigated by "draining the swamp" or moving the problem downstream. The primary source of the hydrologic problems from the adjacent development and nearby communities were never fully addressed. There is still too much water being impounded in the lower elevations within the forest. If solutions are initiated that alleviate both current stressors and the original source(s) of that stress, there could be improved results. The ability of mangroves to bounce back from the brink of annihilation is phenomenal. Given the chance and the right set of conditions, this system could rebound.

To reverse mangrove deterioration, it is necessary to diagnose the original causes(s) and remove and/or alleviate those stressors. There needs to be reciprocal sediment accretion and rebirth within the mangrove system, water impoundment must be attenuated; tidal flushing must be present; and erosion must be minimized. To return deteriorating mangrove systems to healthy forests, the system has to be able to withstand various stressors, and the Clam Bay system is no exception.

CONCLUDING REMARKS

These forests are the economic foundation in coastal regions in the tropics and are necessary to maintain quality of life for man and nature (Ashraf and Habjoka, 2013), yet their future is uncertain. Mangrove ecosystems are one of the most threatened ecosystems worldwide, yet these magnificent forests are also among the most valuable ecosystems, worth an estimated 1.6 billion dollars/year in revenue (Polidoro, et al., 2010). They are hotspots of biodiversity. Mangroves support local food webs, provide habitat and shelter for a variety of organisms, and serve as an indicator of overall estuarine health (Johansson and Greening, 2000). In Florida, mangrove estuaries play a major role in attracting tourists, the backbone of our economy, and provide food stock by suppling safe havens for ~75% of gamefish and 90% of south Florida's commercially caught fish and prawns to utilize at some stage in their lives (Law and Pyrell, 2012; Myers, 2003; Mesbahi and Pain, 2005). These forests have proven there worth ecologically and economically.

The Clam Bay system is a remnant of what once was a large mangrove system, cut off by development. Additional stress levied upon the Clam Bay system, primarily due to concurrent hydrologic, topographic and other anthropogenic alterations, specifically

isolation from surrounding development and roadways, have caused mangrove die-offs to expand and appear periodically within the forest. The lower topography and coastal positioning of the Clam Bay forest make it particularly vulnerable to sea level rise. Impacts could be significant, since a majority of this forest is a basin mangrove system, naturally lower in elevation. Whether mangrove forests survive sea level rise primarily hinges upon the forests ability to gain and maintain soil elevation, at least equal to, but preferably at a higher rate than the rising seas. Historically, soil accretion rates have for the most part kept pace with sea level rise (Parkinson et al., 2017). However, since sea- level rise is very likely to continue accelerating, the fate of mangrove systems, including the Clam Bay mangrove forest, is uncertain. In 2016, we saw an indication of how the Clam Bay mangrove system handles higher levels of water and the results were not encouraging.

There are contrary opinions on whether or not mangrove forests can survive a changing climate. Some scientists are convinced that mangroves will not keep pace with future sea level rise (DeLaune et al., 1994; Kirwan and Temmerman, 2009; Jarvis, 2010; Kearney and Turner, 2016; Meeder and Parkinson, 2018), while others believe these opinions are exaggerated (Kirwan and Megonigal, 2013; and Kirwan et al., 2016). Other scientists hedge their bets by suggesting that mangroves should be able to maintain pace with sea level rise until ~2055 in fringe forests and until ~2070 in basin forests, provided their landward migration is not impeded by areas of steep topography or hardened structures such as sea walls, levees, dams, houses and businesses (Oppenheimer, 2019). Regardless, in terms of the Clam Bay mangroves, unless soil accretion rates keep pace with rising sea levels and outpace erosion; freshwater runoff is decreased; water impoundment alleviated; and unless the trees and the ecosystem are healthy, eventually this mangrove system will not survive long-term. Unfortunately, there is no room for Clam Bay's mangroves to move inland as the seas rise. They are boxed in by development (coastal squeeze). Therefore, unless the forests can keep pace with sea level rise, their mortality is certain.

Climate change has the potential of altering the structure, condition and even location of mangroves worldwide. Sea level rise and the predicted increase in intensity and frequency of storms could be very problematic for mangrove forests, since they form the front line and meet these challenges head on. Worldwide the future survival will vary depending on factors unique to forest location (Oppenheimer, 2019). Investigations are necessary to determine probable responses to sea level rise, along with devising solutions that will hopefully enable the Clam Bay system to survive long-term. In 2019, the Conservancy established two sediment elevation tables (SET's) adjacent to plots 2 and 4. These instruments can assess changes in land elevation overtime, thereby allowing sea level rise to be measured in conjunction with mangrove response. However, this method requires many years to evaluate and unless we know what the probable outcomes are, it will be difficult to devise methods to abate what potentially could be disastrous effects to our coastline. Nature-based solutions in response to sea level rise will likely prove an important tool in mitigating the inland extent of sea level rise at the local level.

Unfortunately, human activities and development in particular, has fragmented and stressed mangrove forests. The forests are fragments of their former glory, isolated and restricted in their ability to migrate and respond to changing local conditions brought about by changes in hydrology. These challenges result in a cascading effect where mangrove systems, not only lose their ability to adapt to climate-induced changes, but lessen their ability to be effective at forming protective barriers to inland communities from storm surge, along with

decreasing their ability to provide ecosystem services. If mangrove systems are healthy, they have generally been able to accrete enough sediment to keep up with sea level rise, at least up to present day. The effect of increased intensity and frequency of storms is another unknown factor in a mangrove forests ability to adapt to shortened recovery periods in between storm events. Regardless, the importance of restoring these trees to a healthy state cannot be understated to protect coastal assets.

LITERATURE CITED

Addison, D.S. and Ritchie, S.A. 1990. Characterization of Preferred Habitats of *Aedes taeniorhynchus* in Coastal Mangrove Habitats. Florida Department of Health and Rehabilitation Services, Entomology Services, LCNPA4.

Allaway, W. G., Curran, M., Hollington, L.M., Ricketts, M.C. and Skelton, N.J. 2001. Gas space and oxygen exchange in roots of “*Avicennia marina*” (Forssk) Vierh. var. “*australisica*” (Walp) Moldenke ex N.C. Duke, the Gray Mangrove. *Wetlands Ecology and Management* 9:211-218.

Ashraf, M. and Habjoka, N. 2013. Tropical Mangroves; Biologically Most Diverse ‘The Global 200’ Ecosystem: Megachiroptera as Key Ecological and Conservation Tool. MAP Newsletter 315.

Baldwin, A., Egnotovich, M., Ford, M. and Platt, W. 2001. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. *Plant Ecology*. 157: 149 - 162.

Beck, M.W., Heck Jr, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F. and Weinstein, M.P. 2001. A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. *Bioscience* 51(8): 633-645.

Benedict, M.A. 1984. Part 1: Natural resources management plan. Department of Natural Resources, Collier County. Tech. Report 84-1.

Bickel, M.H. and Inscore, A. 2023. Hurricane Ian made landfall in SW Florida on Sep, 28, 2022: A look at recovery one year later. News Press: <https://www.newspress.com/story/news/2023/09/28/florida-hurricane-ian-anniversary-fort-myers-beach-sanibel-pine-island-naples-cape-coral-captiva/70826275007/>

Boer, W.F. 2000. Biomass Dynamics of Seagrasses and the Role of Mangrove and Seagrass Vegetation as Different Nutrient Sources for an Intertidal Ecosystem. *Aquatic Botany*. 66(3):225-239.

Burch, J.N. 1990. Coastal barrier management plan. Department of Natural Resources, Collier County.

Clough, B.F., Ong, J.E. and Gong, W.K. 1997. Estimating leaf area index and photosynthetic production in canopies of the mangrove *Rhizophora apiculata*. *Marine Ecology Progress Series*. 159: 285-292.

DeLaune, R. D., Nyman, J. A., & Patrick Jr, W. H. (1994). Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. *Journal of Coastal Research*, 1021-1030.

LITERATURE CITED

Donato, D.C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., and Kanninen, M, 2011. Mangroves among the most carbon-rich forests in the tropics. *Nature Geoscience*. 4: 293-297.

Duke, N., Haller, A., Brisbane, S., Wood, A. and Rogers, B (August 2010). Sinking Centres in Moreton Bay Mangroves. Maps showing areas of unusual anoxic ponds and mangrove dieback in tidal wetlands of the Bay area in 2003 – 08. School of Biological Sciences, University of Queensland.

Earth Tech Environmental, 2018. Clam Bay Monitoring & Management 2018 Annual Monitoring Report. Earth Tech Environmental. pp. 104.

ELAW, 2021. Environmental Law Alliance Worldwide. <https://mangroves.elaw.org/>

Everham, E.M. III and Brokaw, N.V.L. 1996. Forest Damage and Recovery from Catastrophic Wind. *The Botanical Review*. 62(2): 113-185.

Feller, I.C., Dangremond, E.M., Devlin, D.J., Lovelock, C. E., Proffitt, E., and Rodriguez, W. 2015. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA. *Ecology*, 96(11): 2960–2972.

Feller, I.C. 2002. The role of herbivory by wood-boring insects in mangrove ecosystems in Belize. *OUKOS* 97: 167-176.

Feller, I.C. 2018. Mangroves. Smithsonian Institute. <https://ocean.si.edu/ocean-life/plants-algae/mangroves>.

FRC Environmental (2008; 2010). Fisherman Islands and Whyte Island Mangrove Health Assessment Reports for Port of Brisbane.

Gillison, A.N. and Brewer, K.R.W. 1985. The use of gradient directed transects or gradsects in natural resource survey. *Journal of Environmental Management*. 20:103-127.

Goldberg L, Lagomasino D, Thomas N, Fatoyinbo T. Global declines in human-driven mangrove loss. *Glob Change Biol*. 2020; 26:5844–5855. <https://doi.org/10.10000/gcb.15275>.

Howard, F. W., Pemberton, R., Hamon, A., Hodges, G.S., Steinberg, B., Mannion, C. M., McLean, D., and Wofford, J. 2002. Lobate Lac Scale, *Paratachardina lobata* (Chamberlin) (Hemiptera: Sternorrhyncha: Coccoidea: Kerriidae). The Institute of Food and Agricultural Sciences (IFAS). Department of Entomology, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.

LITERATURE CITED

IUCN. 2016. Mangrove forest in worldwide decline.
<https://www.zsl.org/conservation/regions/asia/rehabilitating-mangroves-in-the-philippines>.

IUCN. 2022. The Mangrove Breakthrough: a call to action for a critical ecosystem.
<https://www.iucn.org/story/202211/mangrove-breakthrough-call-action-critical-ecosystem>.

IPCC, 2001: *Climate Change 2001: Impacts, Adaptation, and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change*. McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., and K.S. White (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1042 pp.

IPCC, 2014: *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.

Jarvis, Jessie. (2010). Vertical Accretion Rates in Coastal Louisiana: A Review of the Scientific Literature.

Jimenez, J.A. and Lugo, A.E. 1985. Tree Mortality in Mangrove Forests. *Biotropica*, Vol. 17, No. 3 (Sep., 1985), pp. 177-185.

Johansson, J.O.R. and Greening, H.S. 2000. Seagrass Restoration in Tampa Bay: A Resource- Based Approach to Estuarine Management. In: *Seagrasses Monitoring, Ecology, Physiology, and Management*. (S.A. Bortone (ed.) CRC Press LLC. 2000. pp. 279-293.

Kearney, M. S., & Turner, R. E. (2016). Microtidal marshes: Can these widespread and fragile marshes survive increasing climate–sea level variability and human action?. *Journal of Coastal Research*, 32(3), 686-699.

Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., & Fagherazzi, S. (2016). Overestimation of marsh vulnerability to sea level rise. *Nature Climate Change*, 6(3), 253-260.

Kirwan, M., & Temmerman, S. (2009). Coastal marsh response to historical and future sea-level acceleration. *Quaternary Science Reviews*, 28(17-18), 1801-1808.

LITERATURE CITED

Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. *Nature*, 504(7478), 53-60.

Law, B. E. and Pyrell, N. 2012. Mangroves-Florida's Coastal Trees Forest Resources and Conservation Fact Sheet FRC-43. UNIVERSITY OF FLORIDA/Cooperative Extension Service/Institute of Food and Agricultural Sciences.

Lewis, R.R. III. 1999. Key concepts in successful ecological restoration of mangrove forests. In: TCE-Project Workshop II: Coastal Environmental Improvement in Mangrove/Wetland Ecosystems, 18-23 August 1998, Danish-SE Asian Collaboration in Tropical Coastal Ecosystems (TCE). 19-32.

Meeder, J. F., & Parkinson, R. W. (2018). SE Saline Everglades transgressive sedimentation in response to historic acceleration in sea-level rise: a viable marker for the base of the Anthropocene?. *Journal of Coastal Research*, 34(2), 490-497.

Menon, N.N., Balchand, A.N. and Menon, N.R. 2000. Hydrobiology of the Cochin backwater system – a review. *Hydrobiologia*. 430:149-183.

Mesbahi, M. and Pain. A. 2005. Tsunami and Brandt Report Part 1. Share the Worlds Resources. EDGE. Earth Island Institute Publication.

Myers, M. 2003. Mangrove Ecology of Florida and the Caribbean. Available from: <http://jrscience.wcp.mu.ohio.edu>.

Odum, W.E. and Heald, E.J. 1975. Mangrove forests and Aquatic Productivity. In: *Coupling Land and Water*. Hasler, A. (ed). Springer-Verlag. New York. 129-136.

Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari, 2019: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)].xInxpress.

Parkinson, R. W., Craft, C., DeLaune, R. D., Donoghue, J. F., Kearney, M., Meeder, J. F., ... & Turner, R. E. (2017). Marsh vulnerability to sea-level rise. *Nature Climate Change*, 7(11), 756-756.

Parks, P.J. and Bonifaz, M. 1994. Nonsuitable use of renewable resources: mangrove deforestation and mariculture in Ecuador. *Marine Resources Economics*. 91:1-18.

LITERATURE CITED

Polidoro, B. A., Carpenter, K.E., Collins, L., Duke, N.C., Ellison, A.M., Ellison, J.C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Vien, N. N., Ong, J. E., Primavera, J.H., Salmo, S.G., Sanciangco, J. C., Sukardjo, S., Wang, Y.M., and Yong. J.W.H. 2010. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5(4): e10095. 10.1371/journal.pone.0010095.

Pool, D.J. 1973. The Role of Mangrove Ecosystems: Mangrove leaf area indices. Bureau of Sport Fisheries and Wildlife. PB-231-745. pp. 1-10.

Powell. E., 2022, Hurricane Ian: A major hurricane that brought wide-ranging catastrophic impacts to Florida.
https://climatecenter.fsu.edu/images/docs/Hurricane_Ian_Report_Emily_Powell,
Florida Climate Center for Ocean-Atmospheric Prediction Studies (COAPS),
Florida State University November 14, 2022 pp1-18.

Robertson, A.I. and Blaber, S.J.M. 1992. Plankton. Epibenthos and Fish Communities. In: *Tropical Mangrove Ecosystems*. Robertson, A.I. and Alongi, D.M. (Eds.). American Geophysical Union. Washington D.C. 173-224.

Saintilan, N. 2010. Review report for Fisheries. Queensland.

Sanderman, J., Hengl, T, Fiske1, G., Solvik, K., Adame, M.F., Benson, L., Bukoski, J.J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E.M., zu Ermgassen, P., Ewers Lewis, C.J., Macreadie, P.I., Glass, L., Gress, S., Jardine, S.L., Jones, T.G., Ndemem Nsombo, E., Rahman, Md. M., Sanders, C.J., Spalding, M. and Landis, E. 2018. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13 055002.

Sherman, R.E. and Fahey, T.J. 2001. Hurricane Impacts on a Mangrove Forest in the Dominican Republic: Damage Patterns and Recovery. Biotropica. 33(3): 393-408.

Smith, T. J., III. 2000. It's Been Five Years Since Hurricane Andrew: Long-Term Growth and Recovery in Mangrove Forests Following Catastrophic Disturbance. U. S. Geological Survey, BRD, Florida International University, SERP, OE-148, Miami, FL

Smith T.J. III, and Robblee, M.B. 1994. Mangroves, Hurricanes and Lightning Strikes. Bioscience. 44(4): 256-263.

Smith III, T.J. and Whelan, R.T. 2006. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem Restoration. Wetland Ecology and Management 14: 409 – 419.

LITERATURE CITED

Stumpf, K.A. 1993. The Estimation of Forest Vegetation Cover Descriptions Using a Vertical Densiometer. SAF National Convention. Inventory and Biometrics Working Group. Indianapolis, IN, 1993.

Tattar, T.A., Klekowski, E.J., and Stern, A.I. 1994. Dieback and mortality in red mangrove, *Rhizophora mangle* L. in southwestern Puerto Rico. Arboricultural Journal. 18(4): 419 – 429.

Teas, H. 1979. Silviculture with saline water. In: The biosaline concept. Hollaender, A. (ed). Plenum Publishing Corporation. 117-161.

Trombulak, S.C. and Frissell, C.A. 2000. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conservation Biology. 14(1):18-30.

Turner, R.E and Lewis, R.R. III. 1997. Hydrologic restoration of Coastal Wetlands. *Wetlands Ecology and Management*. 4(2): 65-72.

Turrell & Associates, Inc. 2006. Clam Bay Restoration and Management. Biological Monitoring Report. Sixth Annual Report No. 9.

U.S. Fish & Wildlife Service. 1999. Multi-Species Recovery Plan South Florida. (3) pp. 522-552

Valiela, I., Bowen, J. L. and York, J.K. 2001. Mangrove forests: One of the world's threatened major tropical environments. Bioscience: 51 (10): 807-815.

Watson, D.J. 1947. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. (1947) 11 (1): 41-76.

Weir, A.M., Tattar, T.A. and Klekowski Jr., E.J. 2000. Disease of Red Mangrove (*Rhizophora mangle*) in Southwest Puerto Rico Caused by *Cytospora rhizophorae*. Biotropica. 32(2): 299 –306.

Worley, K. and Gore, J. A. 1995. Status of the Clam Bay ecosystem - phase I. Technical report. The Conservancy, Inc. Naples, Florida.

Worley, K. 2005. Mangrove Assessments as an Indicator of Estuarine Conditions in Restoration Areas. In: *Estuarine Indicators*. Bortone, S.A. (eds). CRC Press LLC. Boca Raton. 247-259.

Worley, K. 2006. Relating Mangrove Die-offs to Encroaching Human Development in Southwest Florida. NOAA Technical Report 160R2407. Conservancy of Southwest Florida. Naples, Florida. pp 59.

Worley, K. 2017. Clam Bay Mangrove Assessment Project 1999-2017. Technical Report. Conservancy of Southwest Florida. Naples, Florida. pp 123.

ADDENDUM

In 2022, the Conservancy's science team teamed up with Dr. Joseph Smoak and his graduate team from the University of South Florida to investigate the long-term sustainability of the Clam Bay mangrove ecosystem in the face of rising sea levels and the capacity of the soil to accumulate carbon and nutrients. Soil cores were collected, on July 28, 2022, in proximity to our two existing Sediment Elevation Tables (SETs) near mangrove plots 2 and 4. The cores were transported to the University of South Florida to discern nitrogen and inorganic carbon content, along with carbon dating, mass and depths for each age interval and were used to calculate mass accumulation and accretion rates. To date cores have been sectioned and the carbon dating and nutrient laboratory analysis is complete, along with data analysis. A journal article is in the preparation stages and expected to be drafted in the late summer of 2026. This work will provide answers to some of the questions regarding the future of the Clam Bay mangrove system.

Table 1: Mangrove Floristic Characteristics
1999

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	87.30	13	0	8	21	15.73	0.00	2.23	10.58	0.313	0.000	0.003	0.316	2.40E-02	0.00E+00	4.36E-04	1.50E-02
2	14.30	1	0	6	7	19.50	0.00	1.83	4.36	0.030	0.000	0.002	0.032	2.99E-02	0.00E+00	2.97E-04	4.52E-03
3	0.00	0	2	3	5	0.00	2.85	0.80	1.62	0.000	0.001	0.000	0.001	0.00E+00	6.40E-04	6.02E-05	2.92E-04
4	87.80	1	112	0	113	10.40	5.29	0.00	5.33	0.008	0.271	0.000	0.279	8.50E-03	2.42E-03	0.00E+00	2.47E-03
5	46.90	15	6	38	59	9.38	1.02	4.55	5.42	0.159	0.001	0.102	0.261	1.06E-02	8.76E-05	2.68E-03	4.43E-03
6	4.00	8	2	3	13	3.44	2.55	3.23	3.25	0.010	0.002	0.005	0.016	1.20E-03	8.41E-04	1.54E-03	1.22E-03
7	77.60	8	10	2	20	23.76	3.08	5.25	11.57	0.425	0.011	0.006	0.442	5.31E-02	1.12E-03	2.94E-03	2.21E-02
8	98.00	4	31	0	35	42.55	5.68	0.00	9.90	0.821	0.100	0.000	0.921	2.05E-01	3.22E-03	0.00E+00	2.63E-02
9	89.80	2	24	8	34	57.35	4.88	6.18	8.27	0.660	0.110	0.032	0.802	3.30E-01	4.58E-03	4.02E-03	2.36E-02
10	83.70	9	19	2	30	14.32	6.97	0.80	8.76	0.154	0.076	0.000	0.230	1.71E-02	4.00E-03	6.99E-05	7.68E-03
11	0.00	0	1	0	1	0.00	17.00	0.00	17.00	0.000	0.023	0.000	0.023	0.00E+00	2.27E-02	0.00E+00	2.27E-02
12	91.80	1	44	16	61	22.00	5.79	14.20	8.26	0.038	0.125	0.292	0.455	3.80E-02	2.85E-03	1.82E-02	7.46E-03
Total		62	251	86	399	18.20	4.59	3.26	7.86	2.617	0.719	0.442	3.778	4.22E-02	2.87E-03	5.14E-03	9.47E-03

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	61.90	0.00	38.10	5.26	0.115	0.000	0.071	0.186	98.90	0.00	1.10	8.36	2.76E-03	0.00E+00	3.09E-05	2.79E-03
2	14.29	0.00	85.71	1.75	0.009	0.000	0.053	0.062	94.37	0.00	5.63	0.84	2.64E-04	0.00E+00	1.58E-05	2.80E-04
3	0.00	40.00	60.00	1.25	0.000	0.018	0.027	0.044	0.00	87.63	12.37	0.04	0.00E+00	1.13E-05	1.60E-06	1.29E-05
4	0.88	99.12	0.00	28.32	0.009	0.990	0.000	0.999	3.04	96.96	0.00	7.39	7.51E-05	2.39E-03	0.00E+00	2.47E-03
5	25.42	10.17	64.41	14.79	0.133	0.053	0.336	0.522	60.83	0.20	38.97	6.92	1.41E-03	4.65E-06	9.01E-04	2.31E-03
6	61.54	15.38	23.08	3.26	0.071	0.018	0.027	0.115	60.29	10.61	29.10	0.42	8.45E-05	1.49E-05	4.08E-05	1.40E-04
7	40.00	50.00	10.00	5.01	0.071	0.088	0.018	0.177	96.12	2.54	1.33	11.70	3.76E-03	9.94E-05	5.21E-05	3.91E-03
8	11.43	88.57	0.00	8.77	0.035	0.274	0.000	0.309	89.17	10.83	0.00	24.36	7.26E-03	8.82E-04	0.00E+00	8.14E-03
9	5.88	70.59	23.53	8.52	0.018	0.212	0.071	0.301	82.27	13.72	4.01	21.22	5.83E-03	9.72E-04	2.85E-04	7.09E-03
10	30.00	63.33	6.67	7.52	0.080	0.168	0.018	0.265	66.90	33.04	0.06	6.09	1.36E-03	6.73E-04	1.24E-06	2.04E-03
11	0.00	100.00	0.00	0.25	0.000	0.009	0.000	0.009	0.00	100.00	0.00	0.60	0.00E+00	2.01E-04	0.00E+00	2.01E-04
12	1.64	72.13	26.23	15.29	0.009	0.389	0.141	0.539	8.35	27.54	64.11	12.05	3.36E-04	1.11E-03	2.58E-03	4.03E-03
Total	15.54	62.91	21.55	100	0.046	0.185	0.063	0.294	69.26	19.04	11.70	100.00	1.93E-03	5.30E-04	3.26E-04	2.78E-03

Table 1: Mangrove Floristic Characteristics

2000

Plot	% Canopy	Tree Numbers				Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	67.30	12	0	10	22	17.03	0.00	2.43	10.39	0.310	0.000	0.006	0.316	2.59E-02	0.00E+00	6.10E-04	1.44E-02
2	12.20	1	0	2	3	21.60	0.00	3.80	9.73	0.037	0.000	0.002	0.039	3.66E-02	0.00E+00	1.15E-03	1.30E-02
3	0.00	0	2	6	8	0.00	3.25	2.35	2.58	0.000	0.002	0.003	0.005	0.00E+00	8.30E-04	5.00E-04	5.82E-04
4	83.70	1	107	0	108	10.70	5.23	0.00	5.28	0.009	0.256	0.000	0.265	8.99E-03	2.39E-03	0.00E+00	2.45E-03
5	30.60	15	6	39	60	10.06	0.98	4.66	5.64	0.177	0.000	0.114	0.292	1.18E-02	8.03E-05	2.93E-03	4.86E-03
6	4.10	9	2	4	15	3.23	2.75	2.63	3.01	0.011	0.002	0.005	0.018	1.19E-03	8.93E-04	1.28E-03	1.17E-03
7	71.40	8	10	2	20	23.93	2.73	5.30	11.47	0.429	0.009	0.006	0.444	5.36E-02	8.90E-04	3.01E-03	2.22E-02
8	79.60	4	30	0	34	43.03	5.84	0.00	10.22	0.835	0.102	0.000	0.937	2.09E-01	3.42E-03	0.00E+00	2.76E-02
9	85.70	2	17	7	26	58.75	5.99	6.44	10.17	0.692	0.105	0.033	0.830	3.46E-01	6.16E-03	4.72E-03	3.19E-02
10	79.60	9	19	2	30	14.44	7.07	1.50	8.91	0.156	0.078	0.000	0.235	1.74E-02	4.12E-03	2.05E-04	7.84E-03
11	0.00	0	1	6	7	0.00	18.20	0.77	3.26	0.000	0.026	0.000	0.026	0.00E+00	2.60E-02	5.05E-05	3.76E-03
12	89.80	0	43	16	59	0.00	5.94	13.87	8.09	0.000	0.129	0.277	0.406	0.00E+00	3.01E-03	1.73E-02	6.89E-03
Total		61	237	94	392	16.90	4.83	3.64	7.39	2.656	0.709	0.447	3.812	4.35E-02	2.99E-03	4.76E-03	9.73E-03

2000

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	54.55	0.00	45.45	5.61	0.11	0.00	0.09	0.19	98.07	0.00	1.93	8.30	2.74E-03	0.00E+00	5.39E-05	2.80E-03
2	33.33	0.00	66.67	0.77	0.01	0.00	0.02	0.03	94.08	0.00	5.92	1.02	3.24E-04	0.00E+00	2.04E-05	3.44E-04
3	0.00	25.00	75.00	2.04	0.00	0.02	0.05	0.07	0.00	35.62	64.38	0.12	0.00E+00	1.47E-05	2.65E-05	4.12E-05
4	0.93	99.07	0.00	27.55	0.01	0.95	0.00	0.95	3.40	96.60	0.00	6.94	7.95E-05	2.26E-03	0.00E+00	2.34E-03
5	25.00	10.00	65.00	15.31	0.13	0.05	0.34	0.53	60.69	0.17	39.15	7.65	1.56E-03	4.26E-06	1.01E-03	2.58E-03
6	60.00	13.33	26.67	3.83	0.08	0.02	0.04	0.13	60.86	10.13	29.01	0.46	9.48E-05	1.58E-05	4.52E-05	1.56E-04
7	40.00	50.00	10.00	5.10	0.07	0.09	0.02	0.18	96.64	2.00	1.36	11.65	3.79E-03	7.87E-05	5.32E-05	3.93E-03
8	11.76	88.24	0.00	8.67	0.04	0.27	0.00	0.30	89.07	10.93	0.00	24.58	7.38E-03	9.06E-04	0.00E+00	8.29E-03
9	7.69	65.38	26.92	6.63	0.02	0.15	0.06	0.23	83.39	12.63	3.99	21.76	6.12E-03	9.26E-04	2.92E-04	7.33E-03
10	30.00	63.33	6.67	7.65	0.08	0.17	0.02	0.27	66.54	33.29	0.17	6.17	1.38E-03	6.92E-04	3.63E-06	2.08E-03
11	0.00	14.29	85.71	1.79	0.00	0.01	0.05	0.06	0.00	98.85	1.15	0.69	0.00E+00	2.30E-04	2.68E-06	2.33E-04
12	0.00	72.88	27.12	15.05	0.00	0.38	0.14	0.52	0.00	31.85	68.15	10.66	0.00E+00	1.14E-03	2.45E-03	3.59E-03
Total	15.56	60.46	23.98	100	0.04	0.17	0.07	0.29	69.66	18.60	11.73	100.00	1.96E-03	5.23E-04	3.30E-04	2.81E-03

Table 1: Mangrove Floristic Characteristics
2001

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	59.00	10	1	10	21	17.38	0.60	3.42	9.93	0.273	0.000	0.013	0.286	2.73E-02	2.83E-05	1.27E-03	1.36E-02
2	0.00	1	0	2	3	24.80	0.00	2.10	9.67	0.048	0.000	0.001	0.049	4.83E-02	0.00E+00	5.23E-04	1.65E-02
3	0.00	0	3	82	85	0.00	4.33	1.10	1.21	0.000	0.006	0.035	0.041	0.00E+00	2.11E-03	4.21E-04	4.81E-04
4	84.00	1	99	0	100	10.70	5.75	0.00	5.80	0.009	0.274	0.000	0.283	8.99E-03	2.77E-03	0.00E+00	2.83E-03
5	24.00	16	7	37	60	10.55	1.29	4.92	6.00	0.219	0.001	0.094	0.314	1.37E-02	1.60E-04	2.54E-03	5.23E-03
6	4.00	12	2	6	20	2.90	3.35	2.15	2.72	0.014	0.002	0.006	0.023	1.16E-03	1.24E-03	1.06E-03	1.14E-03
7	76.00	8	10	2	20	24.27	3.66	5.95	12.13	0.443	0.013	0.007	0.463	5.54E-02	1.26E-03	3.37E-03	2.31E-02
8	67.00	4	28	0	32	43.21	6.51	0.00	11.10	0.845	0.110	0.000	0.955	2.11E-01	3.94E-03	0.00E+00	2.99E-02
9	76.00	2	14	7	23	59.25	7.50	7.46	11.98	0.700	0.111	0.039	0.850	3.50E-01	7.90E-03	5.64E-03	3.70E-02
10	82.00	9	20	2	31	14.63	6.88	1.63	8.79	0.160	0.081	0.000	0.242	1.78E-02	4.04E-03	2.38E-04	7.80E-03
11	6.00	0	1	86	87	0.00	19.90	1.14	1.36	0.000	0.031	0.030	0.061	0.00E+00	3.11E-02	3.46E-04	7.00E-04
12	82.00	0	43	16	59	0.00	6.09	13.79	8.18	0.000	0.133	0.275	0.408	0.00E+00	3.09E-03	1.72E-02	6.92E-03
Total		63	228	250	541	17.31	5.49	3.64	7.41	2.712	0.763	0.500	3.975	4.30E-02	3.35E-03	2.00E-03	7.35E-03

Plot	2001															
	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	47.62	4.76	47.62	3.88	0.09	0.01	0.09	0.19	95.55	0.01	4.44	7.19	2.41E-03	2.50E-07	1.12E-04	2.53E-03
2	33.33	0.00	66.67	0.55	0.01	0.00	0.02	0.03	97.88	0.00	2.12	1.24	4.27E-04	0.00E+00	9.25E-06	4.36E-04
3	0.00	3.53	96.47	15.71	0.00	0.03	0.73	0.75	0.00	15.45	84.55	1.03	0.00E+00	5.59E-05	3.06E-04	3.61E-04
4	1.00	99.00	0.00	18.48	0.01	0.88	0.00	0.88	3.17	96.83	0.00	7.13	7.95E-05	2.43E-03	0.00E+00	2.51E-03
5	26.67	11.67	61.67	11.09	0.14	0.06	0.33	0.53	69.72	0.36	29.92	7.90	1.94E-03	9.90E-06	8.31E-04	2.78E-03
6	60.00	10.00	30.00	3.70	0.11	0.02	0.05	0.18	61.09	10.94	27.97	0.57	1.23E-04	2.20E-05	5.63E-05	2.01E-04
7	40.00	50.00	10.00	3.70	0.07	0.09	0.02	0.18	95.81	2.73	1.46	11.64	3.92E-03	1.12E-04	5.97E-05	4.09E-03
8	12.50	87.50	0.00	5.91	0.04	0.25	0.00	0.28	88.45	11.55	0.00	24.04	7.47E-03	9.76E-04	0.00E+00	8.45E-03
9	8.70	60.87	30.43	4.25	0.02	0.12	0.06	0.20	82.35	13.01	4.64	21.39	6.19E-03	9.78E-04	3.49E-04	7.52E-03
10	29.03	64.52	6.45	5.73	0.08	0.18	0.02	0.27	66.39	33.42	0.20	6.08	1.42E-03	7.14E-04	4.21E-06	2.14E-03
11	0.00	1.15	98.85	16.08	0.00	0.01	0.76	0.77	0.00	51.11	48.89	1.53	0.00E+00	2.75E-04	2.63E-04	5.38E-04
12	0.00	72.88	27.12	10.91	0.00	0.38	0.14	0.52	0.00	32.58	67.42	10.27	0.00E+00	1.18E-03	2.43E-03	3.61E-03
Total	11.65	42.14	46.21	100	0.05	0.17	0.18	0.40	68.22	19.19	12.58	100.00	2.00E-03	5.62E-04	3.69E-04	2.93E-03

Table 1: Mangrove Floristic Characteristics
2002

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	61.00	10	2	9	21	17.50	1.35	4.29	10.30	0.275	0.000	0.015	0.291	2.75E-02	1.76E-04	1.72E-03	1.38E-02
2	6.00	1	0	0	1	28.70	0.00	0.00	28.70	0.065	0.000	0.000	0.065	6.47E-02	0.00E+00	0.00E+00	6.47E-02
3	14.00	2	3	469	474	0.75	6.80	1.10	1.14	0.000	0.012	0.283	0.295	5.38E-05	3.92E-03	6.04E-04	6.22E-04
4	55.00	0	60	0	60	0.00	5.82	0.00	5.82	0.000	0.170	0.000	0.170	0.00E+00	2.83E-03	0.00E+00	2.83E-03
5	24.00	16	7	38	61	9.89	1.73	5.37	6.14	0.187	0.002	0.126	0.315	1.17E-02	2.79E-04	3.31E-03	5.16E-03
6	2.00	12	2	8	22	3.43	3.00	1.93	2.84	0.018	0.002	0.007	0.027	1.50E-03	9.61E-04	8.85E-04	1.23E-03
7	86.00	8	10	2	20	24.64	3.84	7.65	12.54	0.457	0.014	0.009	0.480	5.71E-02	1.39E-03	4.72E-03	2.40E-02
8	82.00	4	27	0	31	43.44	6.80	0.00	11.53	0.849	0.116	0.000	0.965	2.12E-01	4.28E-03	0.00E+00	3.11E-02
9	63.00	2	11	7	20	59.80	8.96	7.51	13.54	0.713	0.113	0.041	0.866	3.56E-01	1.02E-02	5.86E-03	4.33E-02
10	69.00	9	20	2	31	14.81	7.09	2.90	9.06	0.165	0.084	0.001	0.250	1.83E-02	4.20E-03	7.24E-04	8.08E-03
11	27.00	0	1	191	192	0.00	21.10	1.35	1.46	0.000	0.035	0.092	0.127	0.00E+00	3.50E-02	4.83E-04	6.63E-04
12	78.00	0	43	16	59	0.00	6.15	13.86	8.24	0.000	0.135	0.280	0.415	0.00E+00	3.14E-03	1.75E-02	7.03E-03
Total		64	186	742	992	16.91	6.05	3.83	9.28	2.729	0.682	0.855	4.266	4.26E-02	3.67E-03	1.15E-03	4.30E-03

2002

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	47.62	9.52	42.86	2.12	0.09	0.02	0.08	0.19	94.57	0.12	5.31	6.81	2.43E-03	3.12E-06	1.37E-04	2.57E-03
2	100.00	0.00	0.00	0.10	0.01	0.00	0.00	0.01	100.00	0.00	0.00	1.52	5.72E-04	0.00E+00	0.00E+00	5.72E-04
3	0.42	0.63	98.95	47.78	0.02	0.03	4.15	4.19	0.04	3.99	95.97	6.91	9.52E-07	1.04E-04	2.50E-03	2.61E-03
4	0.00	100.00	0.00	6.05	0.00	0.53	0.00	0.53	0.00	100.00	0.00	3.99	0.00E+00	1.50E-03	0.00E+00	1.50E-03
5	26.23	11.48	62.30	6.15	0.14	0.06	0.34	0.54	59.43	0.62	39.95	7.38	1.65E-03	1.72E-05	1.11E-03	2.78E-03
6	54.55	9.09	36.36	2.22	0.11	0.02	0.07	0.19	66.62	7.13	26.25	0.63	1.59E-04	1.70E-05	6.26E-05	2.38E-04
7	40.00	50.00	10.00	2.02	0.07	0.09	0.02	0.18	95.14	2.89	1.96	11.26	4.04E-03	1.23E-04	8.35E-05	4.25E-03
8	12.90	87.10	0.00	3.13	0.04	0.24	0.00	0.27	88.02	11.98	0.00	22.62	7.51E-03	1.02E-03	0.00E+00	8.53E-03
9	10.00	55.00	35.00	2.02	0.02	0.10	0.06	0.18	82.26	13.00	4.74	20.31	6.30E-03	9.96E-04	3.63E-04	7.66E-03
10	29.03	64.52	6.45	3.13	0.08	0.18	0.02	0.27	65.85	33.57	0.58	5.87	1.46E-03	7.43E-04	1.28E-05	2.21E-03
11	0.00	0.52	99.48	19.35	0.00	0.01	1.69	1.70	0.00	27.49	72.51	2.98	0.00E+00	3.09E-04	8.16E-04	1.12E-03
12	0.00	72.88	27.12	5.95	0.00	0.38	0.14	0.52	0.00	32.59	67.41	9.72	0.00E+00	1.20E-03	2.47E-03	3.67E-03
Total	6.45	18.75	74.80	100	0.05	0.14	0.55	0.73	63.96	16.00	20.04	100.00	2.01E-03	5.03E-04	6.30E-04	3.14E-03

**Table 1: Mangrove Floristic Characteristics
2003**

Plot	% Canopy	Tree Numbers			Average DBH (cm)			Total Basal Area (m ²)			Average Basal Area (m ²)			Total			
		B	R	W	Total	B	R	W	Total	B	R	W	B	R	W		
1	63.30	10	3	11	24	17.95	2.10	4.30	9.71	0.285	0.002	0.022	0.308	2.85E-02	5.73E-04	1.97E-03	1.28E-02
2	6.00	1	0	0	1	28.50	0.00	0.00	28.50	0.064	0.000	0.000	0.064	6.38E-02	0.00E+00	0.00E+00	6.38E-02
3	39.00	17	5	588	610	1.02	5.80	1.79	1.80	0.002	0.021	0.632	0.656	1.24E-04	4.27E-03	1.08E-03	1.07E-03
4	63.00	0	58	0	58	0.00	5.86	0.00	5.86	0.000	0.167	0.000	0.167	0.00E+00	2.88E-03	0.00E+00	2.88E-03
5	35.00	16	9	37	62	11.22	1.24	5.56	6.40	0.240	0.002	0.122	0.364	1.50E-02	1.69E-04	3.30E-03	5.87E-03
6	10.00	13	2	16	31	3.72	2.25	1.52	2.49	0.021	0.001	0.008	0.030	1.65E-03	5.20E-04	4.96E-04	9.80E-04
7	63.00	8	14	2	24	24.74	3.01	7.65	10.64	0.462	0.015	0.009	0.486	5.77E-02	1.10E-03	4.74E-03	2.03E-02
8	84.00	4	27	0	31	44.01	6.63	0.00	11.45	0.872	0.112	0.000	0.984	2.18E-01	4.14E-03	0.00E+00	3.17E-02
9	82.00	2	9	6	17	60.30	9.93	7.70	15.07	0.715	0.113	0.040	0.868	3.58E-01	1.26E-02	6.62E-03	5.11E-02
10	89.79	9	21	2	32	14.85	6.84	1.85	8.78	0.166	0.087	0.001	0.253	1.84E-02	4.13E-03	2.78E-04	7.91E-03
11	45.00	0	2	241	243	0.00	11.35	2.18	2.25	0.000	0.038	0.234	0.272	0.00E+00	1.90E-02	9.72E-04	1.12E-03
12	78.00	0	43	16	59	0.00	6.09	13.92	8.21	0.000	0.134	0.282	0.416	0.00E+00	3.11E-03	1.76E-02	7.04E-03
Total		80	193	919	1192	17.19	5.09	3.87	9.26	2.827	0.692	1.349	4.868	3.53E-02	3.58E-03	1.47E-03	4.08E-03

2003

Plot	% Relative Density			Absolute Density (m ²)			% Relative Dominance			Absolute Dominance			Total			
	B	R	W	Total	B	R	W	Total	B	R	W	B	R	W		
1	41.67	12.50	45.83	2.01	0.09	0.03	0.10	0.21	92.42	0.56	7.03	6.33	2.52E-03	1.52E-05	1.91E-04	2.72E-03
2	100.00	0.00	0.00	0.08	0.01	0.00	0.00	0.01	100.00	0.00	0.00	1.31	5.64E-04	0.00E+00	0.00E+00	5.64E-04
3	2.79	0.82	96.39	51.17	0.15	0.04	5.20	5.39	0.32	3.26	96.42	13.47	1.86E-05	1.89E-04	5.59E-03	5.80E-03
4	0.00	100.00	0.00	4.87	0.00	0.51	0.00	0.51	0.00	100.00	0.00	3.44	0.00E+00	1.48E-03	0.00E+00	1.48E-03
5	25.81	14.52	59.68	5.20	0.14	0.08	0.33	0.55	66.01	0.42	33.58	7.47	2.12E-03	1.35E-05	1.08E-03	3.22E-03
6	41.94	6.45	51.61	2.60	0.11	0.02	0.14	0.27	70.47	3.43	26.10	0.62	1.89E-04	9.20E-06	7.01E-05	2.69E-04
7	33.33	58.33	8.33	2.01	0.07	0.12	0.02	0.21	94.90	3.15	1.95	9.99	4.08E-03	1.36E-04	8.38E-05	4.30E-03
8	12.90	87.10	0.00	2.60	0.04	0.24	0.00	0.27	88.63	11.37	0.00	20.21	7.71E-03	9.89E-04	0.00E+00	8.70E-03
9	11.76	52.94	35.29	1.43	0.02	0.08	0.05	0.15	82.41	13.01	4.58	17.83	6.33E-03	9.99E-04	3.51E-04	7.68E-03
10	28.13	65.63	6.25	2.68	0.08	0.19	0.02	0.28	65.50	34.28	0.22	5.20	1.47E-03	7.68E-04	4.92E-06	2.24E-03
11	0.00	0.82	99.18	20.39	0.00	0.02	2.13	2.15	0.00	13.98	86.02	5.59	0.00E+00	3.36E-04	2.07E-03	2.41E-03
12	0.00	72.88	27.12	4.95	0.00	0.38	0.14	0.52	0.00	32.19	67.81	8.54	0.00E+00	1.18E-03	2.49E-03	3.67E-03
Total	6.71	16.19	77.10	100	0.06	0.14	0.68	0.88	58.07	14.21	27.72	100.00	2.08E-03	5.10E-04	9.94E-04	3.59E-03

Table 1: Mangrove Floristic Characteristics
2004

Plot	% Canopy	Tree Numbers			Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)					
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	61.20	10	4	21	35	19.12	2.75	3.41	7.82	0.309	0.004	0.033	0.346	3.09E-02	8.94E-04	1.58E-03	9.88E-03
2	12.20	1	0	0	1	29.40	0.00	0.00	29.40	0.068	0.000	0.000	0.068	6.79E-02	0.00E+00	0.00E+00	6.79E-02
3	59.00	25	6	480	511	1.70	5.32	2.44	2.43	0.008	0.024	0.659	0.691	3.21E-04	3.96E-03	1.37E-03	1.35E-03
4	61.00	0	53	0	53	0.00	6.04	0.00	6.04	0.000	0.162	0.000	0.162	0.00E+00	3.05E-03	0.00E+00	3.05E-03
5	35.00	16	11	39	66	11.15	1.36	5.75	6.33	0.231	0.002	0.148	0.381	1.44E-02	1.89E-04	3.80E-03	5.77E-03
6	14.00	15	2	22	39	4.18	2.40	1.71	2.70	0.031	0.001	0.015	0.047	2.10E-03	6.54E-04	6.65E-04	1.22E-03
7	75.50	8	17	2	27	26.26	3.34	9.00	10.55	0.510	0.023	0.013	0.546	6.38E-02	1.34E-03	6.38E-03	2.02E-02
8	75.50	4	26	0	30	43.95	7.11	0.00	12.02	0.870	0.121	0.000	0.991	2.18E-01	4.66E-03	0.00E+00	3.30E-02
9	87.70	2	8	6	16	63.50	11.40	8.30	16.75	0.780	0.116	0.044	0.940	3.90E-01	1.45E-02	7.32E-03	5.87E-02
10	79.50	9	23	2	34	14.98	6.52	3.50	8.58	0.169	0.090	0.002	0.261	1.87E-02	3.91E-03	9.82E-04	7.66E-03
11	39.00	0	3	260	263	0.00	8.20	2.50	2.57	0.000	0.040	0.387	0.427	0.00E+00	1.34E-02	1.49E-03	1.63E-03
12	51.00	0	41	16	57	0.00	6.14	13.82	8.29	0.000	0.131	0.278	0.408	0.00E+00	3.18E-03	1.74E-02	7.16E-03
Total		90	194	848	1132	17.85	5.05	4.20	9.46	2.975	0.713	1.579	5.268	3.31E-02	3.68E-03	1.86E-03	4.65E-03

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	28.57	11.43	60.00	3.09	0.09	0.04	0.19	0.31	89.37	1.03	9.60	6.56	2.73E-03	3.16E-05	2.93E-04	3.06E-03
2	100.00	0.00	0.00	0.09	0.01	0.00	0.00	0.01	100.00	0.00	0.00	1.29	6.00E-04	0.00E+00	0.00E+00	6.00E-04
3	4.89	1.17	93.93	45.14	0.22	0.05	4.24	4.52	1.16	3.44	95.40	13.12	7.09E-05	2.10E-04	5.83E-03	6.11E-03
4	0.00	100.00	0.00	4.68	0.00	0.47	0.00	0.47	0.00	100.00	0.00	3.07	0.00E+00	1.43E-03	0.00E+00	1.43E-03
5	24.24	16.67	59.09	5.83	0.14	0.10	0.34	0.58	60.55	0.55	38.91	7.23	2.04E-03	1.84E-05	1.31E-03	3.37E-03
6	38.46	5.13	56.41	3.45	0.13	0.02	0.19	0.34	66.39	2.76	30.85	0.90	2.78E-04	1.16E-05	1.29E-04	4.19E-04
7	29.63	62.96	7.41	2.39	0.07	0.15	0.02	0.24	93.49	4.17	2.34	10.36	4.51E-03	2.01E-04	1.13E-04	4.82E-03
8	13.33	86.67	0.00	2.65	0.04	0.23	0.00	0.27	87.77	12.23	0.00	18.82	7.69E-03	1.07E-03	0.00E+00	8.77E-03
9	12.50	50.00	37.50	1.41	0.02	0.07	0.05	0.14	82.95	12.38	4.68	17.84	6.89E-03	1.03E-03	3.89E-04	8.31E-03
10	26.47	67.65	5.88	3.00	0.08	0.20	0.02	0.30	64.72	34.53	0.75	4.95	1.49E-03	7.96E-04	1.74E-05	2.30E-03
11	0.00	1.14	98.86	23.23	0.00	0.03	2.30	2.33	0.00	9.43	90.57	8.11	0.00E+00	3.56E-04	3.42E-03	3.78E-03
12	0.00	71.93	28.07	5.04	0.00	0.36	0.14	0.50	0.00	31.98	68.02	7.75	0.00E+00	1.15E-03	2.46E-03	3.61E-03
Total	7.95	17.14	74.91	100	0.07	0.14	0.62	0.83	56.48	13.54	29.97	100.00	2.19E-03	5.26E-04	1.16E-03	3.88E-03

Table 1: Mangrove Floristic Characteristics
2005

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	73.50	10	4	25	39	20.94	3.30	3.59	8.01	0.403	0.006	0.043	0.452	4.03E-02	1.57E-03	1.71E-03	1.16E-02
2	10.20	5	0	0	5	6.10	0.00	0.00	6.10	0.067	0.000	0.000	0.067	1.33E-02	0.00E+00	0.00E+00	1.33E-02
3	53.10	27	8	377	412	2.40	4.51	2.96	2.95	0.015	0.026	0.783	0.825	5.54E-04	3.27E-03	2.08E-03	2.00E-03
4	42.90	0	53	0	53	0.00	6.21	0.00	6.21	0.000	0.170	0.000	0.170	0.00E+00	3.21E-03	0.00E+00	3.21E-03
5	24.50	16	11	39	66	12.18	2.41	6.63	7.27	0.261	0.007	0.206	0.474	1.63E-02	6.45E-04	5.28E-03	7.18E-03
6	8.20	15	3	23	41	5.97	1.17	2.36	3.59	0.073	0.000	0.027	0.100	4.84E-03	1.11E-04	1.18E-03	2.44E-03
7	73.50	8	18	2	28	25.83	3.85	9.60	10.54	0.481	0.027	0.014	0.522	6.01E-02	1.51E-03	7.24E-03	1.87E-02
8	71.40	4	26	0	30	44.40	7.16	0.00	12.13	0.882	0.122	0.000	1.003	2.20E-01	4.69E-03	0.00E+00	3.34E-02
9	75.50	2	8	6	16	65.80	11.59	8.68	17.28	0.810	0.120	0.048	0.978	4.05E-01	1.49E-02	7.93E-03	6.11E-02
10	53.10	9	22	2	33	15.07	6.51	4.90	8.75	0.170	0.088	0.004	0.262	1.89E-02	3.99E-03	1.95E-03	7.95E-03
11	59.20	0	4	262	266	0.00	6.55	3.01	3.06	0.000	0.039	0.539	0.579	0.00E+00	9.83E-03	2.06E-03	2.18E-03
12	67.30	0	38	16	54	0.00	6.28	14.04	8.58	0.000	0.126	0.286	0.412	0.00E+00	3.30E-03	1.79E-02	7.62E-03
Total		96	195	752	1043	16.56	4.96	4.65	7.87	3.161	0.731	1.951	5.843	3.29E-02	3.75E-03	2.59E-03	5.60E-03

2005

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	25.64	10.26	64.10	3.74	0.09	0.04	0.22	0.34	89.15	1.39	9.46	7.73	3.56E-03	5.55E-05	3.78E-04	4.00E-03
2	100	0.00	0.00	0.48	0.04	0.00	0.00	0.04	100.00	0.00	0.00	1.14	5.89E-04	0.00E+00	0.00E+00	5.89E-04
3	6.55	1.94	91.50	39.50	0.24	0.07	3.33	3.64	1.82	3.17	95.01	14.11	1.32E-04	2.31E-04	6.93E-03	7.29E-03
4	0.00	100	0.00	5.08	0.00	0.47	0.00	0.47	0.00	100.00	0.00	2.91	0.00E+00	1.50E-03	0.00E+00	1.50E-03
5	24.24	16.67	59.09	6.33	0.14	0.10	0.34	0.58	55.03	1.50	43.47	8.11	2.31E-03	6.27E-05	1.82E-03	4.19E-03
6	36.59	7.32	56.10	3.93	0.13	0.03	0.20	0.36	72.58	0.33	27.08	1.71	6.41E-04	2.95E-06	2.39E-04	8.84E-04
7	28.57	64.29	7.14	2.68	0.07	0.16	0.02	0.25	92.01	5.21	2.77	8.94	4.25E-03	2.41E-04	1.28E-04	4.62E-03
8	13.33	86.67	0.00	2.88	0.04	0.23	0.00	0.27	87.85	12.15	0.00	17.17	7.79E-03	1.08E-03	0.00E+00	8.87E-03
9	12.50	50.00	37.50	1.53	0.02	0.07	0.05	0.14	82.90	12.23	4.87	16.73	7.17E-03	1.06E-03	4.21E-04	8.64E-03
10	27.27	66.67	6.06	3.16	0.08	0.19	0.02	0.29	65.01	33.50	1.49	4.49	1.51E-03	7.77E-04	3.45E-05	2.32E-03
11	0.00	1.50	98.50	25.50	0.00	0.04	2.32	2.35	0.00	6.79	93.21	9.90	0.00E+00	3.48E-04	4.77E-03	5.12E-03
12	0.00	70.37	29.63	5.18	0.00	0.34	0.14	0.48	0.00	30.51	69.49	7.04	0.00E+00	1.11E-03	2.53E-03	3.64E-03
Total	9.20	18.70	72.10	100	0.07	0.14	0.55	0.77	54.10	12.52	33.39	100.00	2.33E-03	5.39E-04	1.44E-03	4.31E-03

Table 1: Mangrove Floristic Characteristics

2006

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	14.29	10	3	6	19	21.26	2.83	6.57	13.71	0.414	0.003	0.024	0.441	4.14E-02	9.23E-04	4.06E-03	2.32E-02
2	10.20	17	1	3	21	3.89	1.00	1.60	3.42	0.122	0.000	0.001	0.123	7.18E-03	7.86E-05	2.34E-04	5.85E-03
3	42.86	29	9	304	342	2.48	3.84	3.08	3.05	0.019	0.022	0.648	0.688	6.49E-04	2.40E-03	2.13E-03	2.01E-03
4	51.02	0	48	1	49	0.00	6.17	1.50	6.08	0.000	0.156	0.000	0.156	0.00E+00	3.24E-03	1.77E-04	3.18E-03
5	44.90	16	15	39	70	11.73	2.48	7.27	7.27	0.233	0.010	0.243	0.486	1.45E-02	6.64E-04	6.24E-03	6.94E-03
6	0.00	16	4	28	48	4.76	1.40	2.35	3.07	0.049	0.001	0.038	0.088	3.07E-03	2.04E-04	1.37E-03	1.84E-03
7	67.35	8	18	2	28	25.59	3.17	7.68	9.90	0.472	0.019	0.010	0.502	5.91E-02	1.07E-03	5.02E-03	1.79E-02
8	59.18	4	26	0	30	44.03	7.15	0.00	12.07	0.873	0.122	0.000	0.995	2.18E-01	4.70E-03	0.00E+00	3.32E-02
9	63.27	2	5	6	13	62.25	10.48	8.20	17.39	0.765	0.073	0.047	0.885	3.83E-01	1.47E-02	7.81E-03	6.81E-02
10	44.90	9	22	3	34	15.00	6.37	4.10	8.45	0.170	0.085	0.006	0.261	1.88E-02	3.88E-03	2.02E-03	7.68E-03
11	38.78	1	4	241	246	1.00	6.78	2.96	3.01	0.000	0.043	0.410	0.453	7.86E-05	1.06E-02	1.70E-03	1.84E-03
12	38.78	0	33	15	48	0.00	6.47	15.40	9.26	0.000	0.116	0.313	0.429	0.00E+00	3.52E-03	2.09E-02	8.94E-03
Total		112	188	648	948	16.00	4.85	5.06	8.06	3.117	0.649	1.741	5.507	2.78E-02	3.45E-03	2.69E-03	5.81E-03

2006

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	52.63	15.79	31.58	2.00	0.09	0.03	0.05	0.17	93.85	0.63	5.52	8.02	3.66E-03	2.45E-05	2.15E-04	3.90E-03
2	80.95	4.76	14.29	2.22	0.15	0.01	0.03	0.19	99.36	0.06	0.57	2.23	1.08E-03	6.95E-07	6.21E-06	1.09E-03
3	8.48	2.63	88.89	36.08	0.26	0.08	2.69	3.02	2.74	3.14	94.12	12.50	1.66E-04	1.91E-04	5.73E-03	6.09E-03
4	0.00	97.96	2.04	5.17	0.00	0.42	0.01	0.43	0.00	99.89	0.11	2.83	0.00E+00	1.38E-03	1.56E-06	1.38E-03
5	22.86	21.43	55.71	7.38	0.14	0.13	0.34	0.62	47.89	2.05	50.06	8.82	2.06E-03	8.81E-05	2.15E-03	4.30E-03
6	33.33	8.33	58.33	5.06	0.14	0.04	0.25	0.42	55.67	0.92	43.41	1.60	4.35E-04	7.21E-06	3.39E-04	7.81E-04
7	28.57	64.29	7.14	2.95	0.07	0.16	0.02	0.25	94.18	3.82	2.00	9.11	4.18E-03	1.70E-04	8.87E-05	4.44E-03
8	13.33	86.67	0.00	3.16	0.04	0.23	0.00	0.27	87.73	12.27	0.00	18.07	7.72E-03	1.08E-03	0.00E+00	8.80E-03
9	15.38	38.46	46.15	1.37	0.02	0.04	0.05	0.11	86.42	8.28	5.29	16.08	6.77E-03	6.48E-04	4.14E-04	7.83E-03
10	26.47	64.71	8.82	3.59	0.08	0.19	0.03	0.30	64.97	32.72	2.32	4.74	1.50E-03	7.55E-04	5.35E-05	2.31E-03
11	0.41	1.63	97.97	25.95	0.01	0.04	2.13	2.18	0.02	9.39	90.60	8.22	6.95E-07	3.76E-04	3.63E-03	4.00E-03
12	0.00	68.75	31.25	5.06	0.00	0.29	0.13	0.42	0.00	27.05	72.95	7.79	0.00E+00	1.03E-03	2.77E-03	3.79E-03
Total	11.81	19.83	68.35	100	0.08	0.14	0.48	0.70	56.60	11.79	31.61	100	2.30E-03	4.78E-04	1.28E-03	4.06E-03

Table 1: Mangrove Floristic Characteristics
2007

Plot	% Canopy	Tree Numbers			Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)					
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	32.60	8	5	2	15	19.95	2.50	7.65	12.49	0.303	0.005	0.015	0.324	3.79E-02	1.04E-03	7.57E-03	2.16E-02
2	20.40	40	1	11	52	2.47	1.50	1.76	2.30	0.140	0.000	0.008	0.148	3.51E-03	1.77E-04	7.10E-04	2.85E-03
3	55.10	33	18	251	302	3.79	2.50	3.71	3.65	0.048	0.023	0.764	0.835	1.47E-03	1.26E-03	3.04E-03	2.77E-03
4	67.30	0	48	1	49	0.00	6.06	2.10	5.98	0.000	0.158	0.000	0.158	0.00E+00	3.29E-03	3.46E-04	3.23E-03
5	32.60	17	22	39	78	11.34	2.01	7.22	6.65	0.247	0.012	0.246	0.506	1.45E-02	5.39E-04	6.32E-03	6.48E-03
6	6.10	17	4	29	50	4.98	1.30	2.88	3.47	0.056	0.001	0.051	0.107	3.28E-03	1.39E-04	1.76E-03	2.14E-03
7	65.30	7	21	2	30	25.77	2.50	9.05	8.37	0.423	0.016	0.013	0.452	6.04E-02	7.76E-04	6.67E-03	1.51E-02
8	73.50	4	28	2	34	44.38	6.66	0.50	10.74	0.886	0.122	0.000	1.009	2.22E-01	4.37E-03	2.04E-05	2.97E-02
9	71.40	2	3	19	24	61.95	12.77	3.80	9.77	0.755	0.066	0.076	0.898	3.78E-01	2.21E-02	4.01E-03	3.74E-02
10	67.30	8	24	19	51	15.71	6.45	1.42	6.03	0.164	0.096	0.014	0.274	2.05E-02	4.00E-03	7.30E-04	5.37E-03
11	42.80	2	6	195	203	2.35	5.15	3.35	3.39	0.001	0.043	0.390	0.434	6.74E-04	7.24E-03	2.00E-03	2.14E-03
12	65.30	0	32	15	47	0.00	6.67	15.59	9.52	0.000	0.120	0.321	0.441	0.00E+00	3.75E-03	2.14E-02	9.37E-03
Total		138	212	585	935	16.06	4.67	4.92	6.86	3.025	0.663	1.898	5.586	2.19E-02	3.13E-03	3.25E-03	5.97E-03

2007

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	53.33	33.33	13.33	1.60	0.07	0.04	0.02	0.13	93.73	1.60	4.68	5.79	2.68E-03	4.58E-05	1.34E-04	2.86E-03
2	76.92	1.92	21.15	5.56	0.35	0.01	0.10	0.46	94.62	0.12	5.26	2.66	1.24E-03	1.56E-06	6.91E-05	1.31E-03
3	10.93	5.96	83.11	32.30	0.29	0.16	2.22	2.67	5.79	2.72	91.49	14.95	4.28E-04	2.01E-04	6.76E-03	7.38E-03
4	0.00	97.96	2.04	5.24	0.00	0.42	0.01	0.43	0.00	99.78	0.22	2.83	0.00E+00	1.40E-03	3.06E-06	1.40E-03
5	21.79	28.21	50.00	8.34	0.15	0.19	0.34	0.69	48.91	2.35	48.74	9.05	2.19E-03	1.05E-04	2.18E-03	4.47E-03
6	34.00	8.00	58.00	5.35	0.15	0.04	0.26	0.44	51.96	0.52	47.52	1.92	4.93E-04	4.93E-06	4.51E-04	9.48E-04
7	23.33	70.00	6.67	3.21	0.06	0.19	0.02	0.27	93.45	3.60	2.95	8.10	3.74E-03	1.44E-04	1.18E-04	4.00E-03
8	11.76	82.35	5.88	3.64	0.04	0.25	0.02	0.30	87.86	12.13	0.00	18.06	7.84E-03	1.08E-03	3.61E-07	8.92E-03
9	8.33	12.50	79.17	2.57	0.02	0.03	0.17	0.21	84.14	7.37	8.49	16.07	6.68E-03	5.85E-04	6.74E-04	7.94E-03
10	15.69	47.06	37.25	5.45	0.07	0.21	0.17	0.45	59.91	35.03	5.06	4.91	1.45E-03	8.49E-04	1.23E-04	2.42E-03
11	0.99	2.96	96.06	21.71	0.02	0.05	1.72	1.79	0.31	10.00	89.69	7.77	1.19E-05	3.84E-04	3.44E-03	3.84E-03
12	0.00	68.09	31.91	5.03	0.00	0.28	0.13	0.42	0.00	27.24	72.76	7.89	0.00E+00	1.06E-03	2.83E-03	3.89E-03
Total	14.76	22.67	62.57	100	0.10	0.16	0.43	0.69	54.16	11.86	33.98	100	2.23E-03	4.88E-04	1.40E-03	4.12E-03

Table 1: Mangrove Floristic Characteristics

2008

Plot	% Canopy	Tree Numbers				Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	26.50	7	7	3	17	19.94	2.60	5.07	10.18	0.278	0.008	0.014	0.300	3.97E-02	1.11E-03	4.69E-03	1.76E-02
2	24.50	58	7	44	109	2.39	0.70	0.99	1.72	0.143	0.000	0.013	0.157	2.47E-03	6.99E-05	3.00E-04	1.44E-03
3	51.00	37	21	231	289	4.10	2.11	3.08	3.14	0.062	0.020	0.599	0.681	1.68E-03	9.63E-04	2.59E-03	2.36E-03
4	67.40	1	62	2	65	0.10	4.74	2.25	4.59	0.000	0.158	0.002	0.159	7.86E-07	2.55E-03	7.61E-04	2.45E-03
5	20.40	19	27	37	83	9.68	1.60	6.50	5.64	0.231	0.010	0.191	0.432	1.21E-02	3.89E-04	5.15E-03	5.20E-03
6	14.30	18	9	27	54	4.18	0.52	2.25	2.61	0.047	0.000	0.020	0.067	2.61E-03	3.22E-05	7.44E-04	1.25E-03
7	63.30	7	22	2	31	25.61	2.51	8.70	8.13	0.410	0.016	0.013	0.439	5.86E-02	7.37E-04	6.52E-03	1.42E-02
8	61.20	4	28	9	41	43.55	6.39	0.27	8.67	0.856	0.114	0.000	0.970	2.14E-01	4.07E-03	1.43E-05	2.37E-02
9	73.50	2	3	68	73	61.30	12.27	1.29	3.38	0.738	0.065	0.049	0.852	3.69E-01	2.16E-02	7.23E-04	1.17E-02
10	65.30	8	25	26	59	15.61	5.83	1.28	5.15	0.161	0.090	0.008	0.259	2.01E-02	3.59E-03	3.20E-04	4.39E-03
11	22.50	8	8	149	165	3.00	4.10	2.59	2.69	0.019	0.045	0.138	0.202	2.32E-03	5.60E-03	9.27E-04	1.22E-03
12	57.10	0	32	15	47	0.00	6.76	15.45	9.53	0.000	0.124	0.318	0.442	0.00E+00	3.89E-03	2.12E-02	9.40E-03
Total		169	251	613	1033	15.79	4.18	4.14	5.45	2.946	0.651	1.365	4.961	1.74E-02	2.59E-03	2.23E-03	4.80E-03

2008

Plot	% Relative Density			Absolute Density (m ²)			% Relative Dominance			Absolute Dominance						
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	41.18	41.18	17.65	1.65	0.06	0.06	0.03	0.15	92.71	2.60	4.69	6.05	2.46E-03	6.90E-05	1.24E-04	2.65E-03
2	53.21	6.42	40.37	10.55	0.51	0.06	0.39	0.96	91.28	0.31	8.41	3.17	1.27E-03	4.33E-06	1.17E-04	1.39E-03
3	12.80	7.27	79.93	27.98	0.33	0.19	2.04	2.56	9.10	2.97	87.93	13.73	5.48E-04	1.79E-04	5.30E-03	6.02E-03
4	1.54	95.38	3.08	6.29	0.01	0.55	0.02	0.57	0.00	99.04	0.95	3.21	6.95E-09	1.40E-03	1.35E-05	1.41E-03
5	22.89	32.53	44.58	8.03	0.17	0.24	0.33	0.73	53.45	2.43	44.12	8.71	2.04E-03	9.28E-05	1.68E-03	3.82E-03
6	33.33	16.67	50.00	5.23	0.16	0.08	0.24	0.48	69.79	0.43	29.78	1.36	4.16E-04	2.56E-06	1.78E-04	5.96E-04
7	22.58	70.97	6.45	3.00	0.06	0.19	0.02	0.27	93.34	3.69	2.97	8.85	3.62E-03	1.43E-04	1.15E-04	3.88E-03
8	9.76	68.29	21.95	3.97	0.04	0.25	0.08	0.36	88.24	11.75	0.01	19.55	7.57E-03	1.01E-03	1.14E-06	8.58E-03
9	2.74	4.11	93.15	7.07	0.02	0.03	0.60	0.65	86.63	7.60	5.76	17.18	6.53E-03	5.73E-04	4.34E-04	7.54E-03
10	13.56	42.37	44.07	5.71	0.07	0.22	0.23	0.52	62.17	34.61	3.22	5.22	1.42E-03	7.93E-04	7.37E-05	2.29E-03
11	4.85	4.85	90.30	15.97	0.07	0.07	1.32	1.46	9.22	22.23	68.56	4.06	1.64E-04	3.96E-04	1.22E-03	1.78E-03
12	0.00	68.09	31.91	4.55	0.00	0.28	0.13	0.42	0.00	28.14	71.86	8.91	0.00E+00	1.10E-03	2.81E-03	3.91E-03
Total	16.36	24.298	59.342	100	0.125	0.185	0.452	0.761	59.37	13.12	27.51	100	2.17E-03	4.80E-04	1.01E-03	3.66E-03

Table 1: Mangrove Floristic Characteristics
2009

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	24.50	7	10	32	49	18.00	2.63	1.91	4.36	0.260	0.011	0.025	0.296	3.72E-02	1.05E-03	7.72E-04	6.03E-03
2	32.70	67	22	100	189	2.79	0.76	1.03	1.62	0.193	0.002	0.021	0.216	2.88E-03	7.68E-05	2.12E-04	1.14E-03
3	38.80	41	28	193	262	4.43	2.19	3.19	3.28	0.086	0.035	0.523	0.644	2.10E-03	1.27E-03	2.71E-03	2.46E-03
4	59.10	4	81	6	91	0.83	4.04	1.18	3.71	0.000	0.169	0.001	0.170	5.64E-05	2.08E-03	2.37E-04	1.87E-03
5	32.70	19	30	37	86	9.36	1.52	5.74	5.07	0.214	0.008	0.182	0.405	1.13E-02	2.72E-04	4.93E-03	4.70E-03
6	8.16	23	12	32	67	3.44	0.85	2.11	2.34	0.050	0.001	0.023	0.074	2.19E-03	6.22E-05	7.13E-04	1.10E-03
7	71.40	7	24	2	33	26.33	2.50	9.95	8.01	0.428	0.018	0.016	0.462	6.11E-02	7.45E-04	8.02E-03	1.40E-02
8	65.30	4	28	20	52	43.93	6.57	0.83	7.23	0.868	0.119	0.001	0.989	2.17E-01	4.26E-03	7.25E-05	1.90E-02
9	81.60	2	4	120	126	62.00	9.50	1.60	2.81	0.747	0.065	0.202	1.014	3.74E-01	1.63E-02	1.68E-03	8.05E-03
10	57.10	8	32	44	84	15.88	4.93	1.26	4.05	0.166	0.097	0.012	0.275	2.08E-02	3.02E-03	2.79E-04	3.28E-03
11	20.40	25	12	89	126	1.52	3.12	2.57	2.41	0.017	0.047	0.094	0.158	6.67E-04	3.95E-03	1.05E-03	1.25E-03
12	69.40	0	31	15	46	0.00	6.99	14.83	9.55	0.000	0.129	0.298	0.427	0.00E+00	4.15E-03	1.99E-02	9.27E-03
Total		207	314	690	1211	15.71	3.80	3.85	4.54	3.030	0.700	1.398	5.129	1.46E-02	2.23E-03	2.03E-03	4.23E-03

2009

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	14.29	20.41	65.31	4.05	0.06	0.09	0.28	0.43	88.09	3.55	8.36	5.76	2.30E-03	9.29E-05	2.18E-04	2.61E-03
2	35.45	11.64	52.91	15.61	0.59	0.19	0.88	1.67	89.38	0.78	9.83	4.21	1.70E-03	1.49E-05	1.87E-04	1.91E-03
3	15.65	10.69	73.66	21.64	0.36	0.25	1.71	2.32	13.34	5.50	81.16	12.56	7.60E-04	3.13E-04	4.62E-03	5.69E-03
4	4.40	89.01	6.59	7.51	0.04	0.72	0.05	0.80	0.13	99.03	0.83	3.32	1.99E-06	1.49E-03	1.26E-05	1.51E-03
5	22.09	34.88	43.02	7.10	0.17	0.27	0.33	0.76	52.92	2.02	45.06	7.89	1.89E-03	7.23E-05	1.61E-03	3.58E-03
6	34.33	17.91	47.76	5.53	0.20	0.11	0.28	0.59	68.15	1.01	30.84	1.44	4.46E-04	6.60E-06	2.02E-04	6.54E-04
7	21.21	72.73	6.06	2.73	0.06	0.21	0.02	0.29	92.66	3.87	3.47	9.01	3.78E-03	1.58E-04	1.42E-04	4.08E-03
8	7.69	53.85	38.46	4.29	0.04	0.25	0.18	0.46	87.80	12.05	0.15	19.29	7.68E-03	1.05E-03	1.28E-05	8.75E-03
9	1.59	3.17	95.24	10.40	0.02	0.04	1.06	1.11	73.68	6.42	19.90	19.77	6.61E-03	5.76E-04	1.78E-03	8.97E-03
10	9.52	38.10	52.38	6.94	0.07	0.28	0.39	0.74	60.43	35.10	4.47	5.36	1.47E-03	8.54E-04	1.09E-04	2.43E-03
11	19.84	9.52	70.63	10.40	0.22	0.11	0.79	1.11	10.57	30.03	59.39	3.08	1.47E-04	4.19E-04	8.28E-04	1.39E-03
12	0.00	67.39	32.61	3.80	0.00	0.27	0.13	0.41	0.00	30.13	69.87	8.32	0.00E+00	1.14E-03	2.64E-03	3.77E-03
Total	17.09	25.93	56.98	100	0.15	0.23	0.51	0.89	59.09	13.65	27.27	100	2.23E-03	5.16E-04	1.03E-03	3.78E-03

Table 1: Mangrove Floristic Characteristics
2010

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	42.90	7	11	59	77	18.20	3.09	1.48	3.23	0.262	0.017	0.030	0.310	3.75E-02	1.58E-03	5.08E-04	4.02E-03
2	32.70	71	31	116	218	2.88	0.88	1.28	1.76	0.201	0.003	0.031	0.235	2.83E-03	8.94E-05	2.69E-04	1.08E-03
3	28.60	44	31	127	202	4.23	2.17	3.17	3.25	0.090	0.043	0.357	0.490	2.05E-03	1.39E-03	2.81E-03	2.43E-03
4	61.20	4	107	8	119	1.23	3.39	1.35	3.18	0.000	0.191	0.003	0.194	1.22E-04	1.79E-03	3.18E-04	1.63E-03
5	28.60	19	35	37	91	9.25	1.38	5.99	4.90	0.212	0.009	0.196	0.416	1.12E-02	2.45E-04	5.28E-03	4.58E-03
6	10.20	22	12	31	65	3.82	1.07	2.25	2.56	0.057	0.001	0.025	0.083	2.57E-03	9.20E-05	8.14E-04	1.28E-03
7	65.30	7	26	2	35	27.51	2.56	10.55	8.01	0.464	0.020	0.018	0.502	6.63E-02	7.77E-04	8.93E-03	1.43E-02
8	55.10	4	26	36	66	44.75	6.67	0.94	5.85	0.907	0.114	0.004	1.025	2.27E-01	4.40E-03	1.08E-04	1.55E-02
9	63.30	2	16	137	155	62.95	2.59	1.84	2.71	0.764	0.066	0.228	1.058	3.82E-01	4.12E-03	1.66E-03	6.83E-03
10	63.30	8	32	56	96	15.99	5.23	1.44	3.92	0.169	0.105	0.024	0.297	2.11E-02	3.27E-03	4.21E-04	3.10E-03
11	24.50	27	12	39	78	2.11	3.23	2.21	2.33	0.022	0.046	0.035	0.103	8.15E-04	3.85E-03	8.97E-04	1.32E-03
12	63.30	0	31	14	45	0.00	7.10	14.76	9.48	0.000	0.132	0.288	0.421	0.00E+00	4.27E-03	2.06E-02	9.35E-03
Total		215	370	662	1247	16.08	3.28	3.94	4.26	3.149	0.748	1.238	5.135	1.46E-02	2.02E-03	1.87E-03	4.12E-03

2010

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	9.09	14.29	76.62	6.17	0.06	0.10	0.52	0.68	84.72	5.60	9.68	6.03	2.32E-03	1.53E-04	2.65E-04	2.74E-03
2	32.57	14.22	53.21	17.48	0.63	0.27	1.03	1.93	85.52	1.18	13.30	4.58	1.78E-03	2.45E-05	2.76E-04	2.08E-03
3	21.78	15.35	62.87	16.20	0.39	0.27	1.12	1.79	18.41	8.79	72.81	9.55	7.98E-04	3.81E-04	3.16E-03	4.34E-03
4	3.36	89.92	6.72	9.54	0.04	0.95	0.07	1.05	0.25	98.44	1.31	3.78	4.31E-06	1.69E-03	2.25E-05	1.72E-03
5	20.88	38.46	40.66	7.30	0.17	0.31	0.33	0.80	50.99	2.06	46.95	8.11	1.88E-03	7.58E-05	1.73E-03	3.68E-03
6	33.85	18.46	47.69	5.21	0.19	0.11	0.27	0.57	68.21	1.33	30.46	1.61	5.00E-04	9.77E-06	2.23E-04	7.33E-04
7	20.00	74.29	5.71	2.81	0.06	0.23	0.02	0.31	92.42	4.02	3.56	9.78	4.10E-03	1.79E-04	1.58E-04	4.44E-03
8	6.06	39.39	54.55	5.29	0.04	0.23	0.32	0.58	88.45	11.17	0.38	19.96	8.02E-03	1.01E-03	3.44E-05	9.06E-03
9	1.29	10.32	88.39	12.43	0.02	0.14	1.21	1.37	72.25	6.23	21.52	20.61	6.76E-03	5.82E-04	2.01E-03	9.35E-03
10	8.33	33.33	58.33	7.70	0.07	0.28	0.50	0.85	56.85	35.22	7.93	5.79	1.49E-03	9.25E-04	2.08E-04	2.63E-03
11	34.62	15.38	50.00	6.26	0.24	0.11	0.34	0.69	21.31	44.79	33.90	2.01	1.95E-04	4.09E-04	3.09E-04	9.13E-04
12	0.00	68.89	31.11	3.61	0.00	0.27	0.12	0.40	0.00	31.44	68.56	8.19	0.00E+00	1.17E-03	2.55E-03	3.72E-03
Total	17.24	29.67	53.09	100.00	0.16	0.27	0.49	0.92	61.33	14.56	24.11	100.00	2.32E-03	5.51E-04	9.12E-04	3.78E-03

Table 1: Mangrove Floristic Characteristics

2011

Plot	% Canopy	Tree Numbers				Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	34.69	8	12	73	93	15.34	3.36	1.89	3.23	0.221	0.021	0.045	0.288	2.77E-02	1.79E-03	6.15E-04	3.09E-03
2	26.53	74	38	130	242	3.03	1.04	1.47	1.88	0.227	0.004	0.046	0.277	3.07E-03	1.12E-04	3.52E-04	1.15E-03
3	42.85	44	36	109	189	4.57	2.05	2.53	2.91	0.094	0.043	0.126	0.264	2.14E-03	1.20E-03	1.16E-03	1.40E-03
4	51.02	4	121	8	133	1.35	3.30	1.88	3.15	0.001	0.209	0.004	0.214	1.46E-04	1.73E-03	4.70E-04	1.61E-03
5	16.33	19	35	36	90	8.88	1.69	5.79	4.85	0.203	0.011	0.144	0.358	1.07E-02	3.11E-04	4.01E-03	3.98E-03
6	12.44	23	12	30	65	4.19	1.13	2.34	2.77	0.071	0.001	0.027	0.099	3.07E-03	1.05E-04	8.99E-04	1.52E-03
7	69.39	7	28	3	38	26.97	2.65	6.97	7.47	0.454	0.022	0.017	0.494	6.49E-02	8.02E-04	5.70E-03	1.30E-02
8	59.18	5	25	56	86	36.32	9.52	1.13	5.62	0.931	0.656	0.008	1.596	1.86E-01	2.63E-02	1.43E-04	1.86E-02
9	77.55	2	17	149	168	63.45	2.90	1.87	2.71	0.779	0.067	0.273	1.119	3.90E-01	3.96E-03	1.83E-03	6.66E-03
10	51.02	8	33	76	117	16.14	5.13	1.42	3.47	0.172	0.105	0.024	0.301	2.15E-02	3.17E-03	3.15E-04	2.57E-03
11	28.57	31	16	40	87	2.26	2.71	2.05	2.25	0.027	0.048	0.034	0.109	8.78E-04	3.00E-03	8.42E-04	1.25E-03
12	63.27	0	29	13	42	0.00	7.21	16.06	9.95	0.000	0.127	0.307	0.434	0.00E+00	4.39E-03	2.36E-02	1.03E-02
Total		225	402	723	1350	15.21	3.56	3.78	4.19	3.180	1.317	1.054	5.551	1.41E-02	3.28E-03	1.46E-03	4.11E-03

2011

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	8.60	12.90	78.49	6.89	0.07	0.11	0.65	0.82	7.46	15.60	5.18	5.18	1.96E-03	1.90E-04	3.97E-04	2.54E-03
2	30.58	15.70	53.72	17.93	0.65	0.34	1.15	2.14	1.54	16.49	4.99	4.99	2.01E-03	3.77E-05	4.04E-04	2.45E-03
3	23.28	19.05	57.67	14.00	0.39	0.32	0.96	1.67	16.43	47.93	4.75	4.75	8.31E-04	3.83E-04	1.12E-03	2.33E-03
4	3.01	90.98	6.02	9.85	0.04	1.07	0.07	1.18	97.97	1.76	3.85	3.85	5.18E-06	1.85E-03	3.33E-05	1.89E-03
5	21.11	38.89	40.00	6.67	0.17	0.31	0.32	0.80	3.03	40.26	6.45	6.45	1.80E-03	9.61E-05	1.28E-03	3.17E-03
6	35.38	18.46	46.15	4.81	0.20	0.11	0.27	0.57	1.28	27.31	1.78	1.78	6.24E-04	1.11E-05	2.38E-04	8.73E-04
7	18.42	73.68	7.89	2.81	0.06	0.25	0.03	0.34	4.55	3.46	8.89	8.89	4.01E-03	1.99E-04	1.51E-04	4.36E-03
8	5.81	29.07	65.12	6.37	0.04	0.22	0.50	0.76	41.14	0.50	28.74	28.74	8.23E-03	5.80E-03	7.08E-05	1.41E-02
9	1.19	10.12	88.69	12.44	0.02	0.15	1.32	1.49	6.01	24.37	20.16	20.16	6.89E-03	5.95E-04	2.41E-03	9.89E-03
10	6.84	28.21	64.96	8.67	0.07	0.29	0.67	1.03	34.78	7.97	5.41	5.41	1.52E-03	9.24E-04	2.12E-04	2.66E-03
11	35.63	18.39	45.98	6.44	0.27	0.14	0.35	0.77	44.07	30.93	1.96	1.96	2.41E-04	4.24E-04	2.98E-04	9.63E-04
12	0.00	69.05	30.95	3.11	0.00	0.26	0.11	0.37	29.37	70.63	7.82	7.82	0.00E+00	1.13E-03	2.71E-03	3.84E-03
Total	16.67	29.78	53.56	100.00	0.17	0.30	0.53	0.99	23.72	18.99	100.00	100.00	2.34E-03	9.70E-04	7.77E-04	4.09E-03

Table 1: Mangrove Floristic Characteristics
2012

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	44.9	12	15	80	107	10.81	3.15	2.26	3.35	0.233	0.026	0.062	0.321	1.94E-02	1.72E-03	7.80E-04	3.00E-03
2	42.9	78	42	138	258	3.11	1.08	1.56	1.95	0.256	0.005	0.049	0.310	3.29E-03	1.27E-04	3.52E-04	1.20E-03
3	38.8	49	49	98	196	4.39	1.90	2.42	2.78	0.104	0.047	0.114	0.265	2.12E-03	9.64E-04	1.16E-03	1.35E-03
4	49.0	4	134	9	147	1.60	3.08	1.93	2.97	0.001	0.211	0.004	0.216	2.04E-04	1.58E-03	4.86E-04	1.47E-03
5	36.7	18	36	35	89	9.29	1.75	6.01	4.95	0.192	0.012	0.151	0.355	1.07E-02	3.39E-04	4.30E-03	3.98E-03
6	12.0	23	15	30	68	4.10	1.06	2.61	2.77	0.063	0.002	0.029	0.094	2.74E-03	1.09E-04	9.81E-04	1.38E-03
7	63.3	7	31	4	42	26.56	2.50	5.43	6.79	0.440	0.023	0.017	0.480	6.28E-02	7.41E-04	4.35E-03	1.14E-02
8	57.1	5	26	76	107	36.56	6.36	1.10	4.03	0.928	0.108	0.011	1.046	1.86E-01	4.14E-03	1.41E-04	9.78E-03
9	69.4	2	19	155	176	63.90	2.83	1.97	2.76	0.791	0.069	0.294	1.154	3.96E-01	3.64E-03	1.89E-03	6.56E-03
10	61.2	8	35	88	131	16.15	4.84	1.36	3.19	0.174	0.102	0.024	0.300	2.18E-02	2.90E-03	2.75E-04	2.29E-03
11	18.4	38	25	39	102	2.28	2.12	1.58	1.97	0.033	0.047	0.012	0.091	8.62E-04	1.88E-03	2.97E-04	8.96E-04
12	77.6	0	29	12	41	0.00	7.39	17.18	10.26	0.000	0.136	0.308	0.444	0.00E+00	4.68E-03	2.57E-02	1.08E-02
Total		244	456	764	1464	14.89	3.17	3.78	3.98	3.215	0.787	1.075	5.077	1.32E-02	1.73E-03	1.41E-03	3.47E-03

Plot	2012															
	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	11.21	14.02	74.77	7.31	0.11	0.13	0.71	0.95	72.52	8.03	19.45	6.32	2.06E-03	2.28E-04	5.52E-04	2.84E-03
2	30.23	16.28	53.49	17.62	0.69	0.37	1.22	2.28	82.64	1.72	15.63	6.11	2.27E-03	4.73E-05	4.29E-04	2.74E-03
3	25.00	25.00	50.00	13.39	0.43	0.43	0.87	1.73	39.19	17.82	42.98	5.22	9.18E-04	4.18E-04	1.01E-03	2.34E-03
4	2.72	91.16	6.12	10.04	0.04	1.18	0.08	1.30	0.38	97.60	2.02	4.26	7.21E-06	1.87E-03	3.87E-05	1.91E-03
5	20.22	40.45	39.33	6.08	0.16	0.32	0.31	0.79	54.09	3.44	42.48	6.98	1.70E-03	1.08E-04	1.33E-03	3.14E-03
6	33.82	22.06	44.12	4.64	0.20	0.13	0.27	0.60	66.97	1.74	31.29	1.85	5.57E-04	1.45E-05	2.60E-04	8.32E-04
7	16.67	73.81	9.52	2.87	0.06	0.27	0.04	0.37	91.59	4.78	3.62	9.46	3.89E-03	2.03E-04	1.54E-04	4.25E-03
8	4.67	24.30	71.03	7.31	0.04	0.23	0.67	0.95	88.70	10.28	1.02	20.60	8.20E-03	9.51E-04	9.46E-05	9.25E-03
9	1.14	10.80	88.07	12.02	0.02	0.17	1.37	1.56	68.57	6.00	25.43	22.74	7.00E-03	6.12E-04	2.60E-03	1.02E-02
10	6.11	26.72	67.18	8.95	0.07	0.31	0.78	1.16	58.08	33.86	8.06	5.91	1.54E-03	8.98E-04	2.14E-04	2.65E-03
11	37.25	24.51	38.24	6.97	0.34	0.22	0.34	0.90	35.83	51.48	12.68	1.80	2.90E-04	4.16E-04	1.03E-04	8.08E-04
12	0.00	70.73	29.27	2.80	0.00	0.26	0.11	0.36	0.00	30.56	69.44	8.74	0.00E+00	1.20E-03	2.72E-03	3.92E-03
Total	16.67	31.15	52.19	100.00	0.18	0.34	0.56	1.08	63.32	15.51	21.17	100.00	2.37E-03	5.80E-04	7.92E-04	3.74E-03

Table 1: Mangrove Floristic Characteristics

2013

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	77.55	14	14	76	104	9.69	3.44	2.60	3.67	0.226	0.030	0.075	0.331	1.62E-02	2.12E-03	9.87E-04	3.18E-03
2	42.85	79	43	145	267	3.52	1.56	1.87	2.31	0.335	0.010	0.071	0.415	4.24E-03	2.29E-04	4.88E-04	1.56E-03
3	38.77	50	55	77	182	4.21	2.05	2.65	2.90	0.097	0.054	0.091	0.242	1.94E-03	9.78E-04	1.19E-03	1.33E-03
4	61.22	4	145	10	159	1.70	3.06	2.05	2.96	0.001	0.216	0.005	0.222	2.36E-04	1.49E-03	4.99E-04	1.40E-03
5	38.80	18	38	33	89	9.61	1.77	6.19	4.99	0.199	0.013	0.149	0.361	1.11E-02	3.42E-04	4.50E-03	4.05E-03
6	16.32	22	16	29	67	4.17	1.24	3.04	2.98	0.047	0.002	0.037	0.086	2.13E-03	1.33E-04	1.29E-03	1.29E-03
7	81.63	7	31	4	42	26.40	2.63	5.80	6.89	0.438	0.023	0.018	0.480	6.26E-02	7.51E-04	4.54E-03	1.14E-02
8	67.35	5	27	97	129	37.06	6.28	1.35	3.76	0.945	0.112	0.019	1.075	1.89E-01	4.13E-03	1.95E-04	8.34E-03
9	91.83	2	20	139	161	63.40	2.96	2.27	3.11	0.774	0.070	0.328	1.171	3.87E-01	3.48E-03	2.36E-03	7.28E-03
10	69.39	7	39	87	133	17.31	4.62	1.61	3.32	0.171	0.109	0.031	0.311	2.45E-02	2.79E-03	3.60E-04	2.34E-03
11	30.61	41	37	41	119	2.44	1.83	1.63	1.97	0.039	0.050	0.012	0.102	9.51E-04	1.36E-03	3.01E-04	8.53E-04
12	100.00	0	27	12	39	0.00	7.56	17.51	10.62	0.000	0.136	0.314	0.449	#DIV/0!	5.03E-03	2.61E-02	1.15E-02
Total		249	492	750	1491	14.96	3.25	4.05	4.12	3.273	0.823	1.150	5.246	1.31E-02	1.67E-03	1.53E-03	3.52E-03

2013

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	13.46	13.46	73.08	6.98	0.12	0.12	0.67	0.92	68.38	8.95	22.66	6.31	2.00E-03	2.62E-04	6.63E-04	2.93E-03
2	29.59	16.10	54.31	17.91	0.70	0.38	1.28	2.36	80.60	2.37	17.03	7.92	2.96E-03	8.70E-05	6.26E-04	3.67E-03
3	27.47	30.22	42.31	12.21	0.44	0.49	0.68	1.61	40.04	22.23	37.73	4.61	8.56E-04	4.75E-04	8.07E-04	2.14E-03
4	2.52	91.19	6.29	10.66	0.04	1.28	0.09	1.41	0.43	97.33	2.25	4.23	8.35E-06	1.91E-03	4.41E-05	1.96E-03
5	20.22	42.70	37.08	5.97	0.16	0.34	0.29	0.79	55.23	3.60	41.17	6.88	1.76E-03	1.15E-04	1.31E-03	3.19E-03
6	32.84	23.88	43.28	4.49	0.19	0.14	0.26	0.59	54.28	2.46	43.26	1.65	4.15E-04	1.88E-05	3.30E-04	7.64E-04
7	16.67	73.81	9.52	2.82	0.06	0.27	0.04	0.37	91.37	4.85	3.78	9.15	3.88E-03	2.06E-04	1.61E-04	4.24E-03
8	3.88	20.93	75.19	8.65	0.04	0.24	0.86	1.14	87.86	10.38	1.76	20.50	8.35E-03	9.87E-04	1.68E-04	9.51E-03
9	1.24	12.42	86.34	10.80	0.02	0.18	1.23	1.42	66.06	5.95	27.99	22.33	6.84E-03	6.16E-04	2.90E-03	1.04E-02
10	5.26	29.32	65.41	8.92	0.06	0.34	0.77	1.18	55.03	34.91	10.06	5.94	1.52E-03	9.61E-04	2.77E-04	2.75E-03
11	34.45	31.09	34.45	7.98	0.36	0.33	0.36	1.05	38.41	49.43	12.17	1.94	3.45E-04	4.44E-04	1.09E-04	8.98E-04
12	0.00	69.23	30.77	2.62	0.00	0.24	0.11	0.34	0.00	30.21	69.79	8.57	#DIV/0!	1.20E-03	2.77E-03	3.97E-03
Total	16.70	33.00	50.30	100.00	0.18	0.36	0.55	1.10	62.38	15.70	21.92	100.00	2.41E-03	6.07E-04	8.48E-04	3.87E-03

Table 1: Mangrove Floristic Characteristics
2014

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	59.18	14	13	68	95	9.41	3.75	2.73	3.85	0.22	0.03	0.07	0.32	1.56E-02	2.62E-03	9.77E-04	3.36E-03
2	46.94	82	43	149	274	3.21	1.59	1.67	2.12	0.27	0.02	0.06	0.34	3.27E-03	3.63E-04	4.03E-04	1.25E-03
3	42.86	50	60	42	152	4.01	2.07	1.94	2.67	0.08	0.06	0.02	0.16	1.68E-03	1.00E-03	4.29E-04	1.07E-03
4	69.39	4	154	11	169	1.75	2.84	2.05	2.77	0.00	0.21	0.01	0.22	2.49E-04	1.35E-03	6.89E-04	1.28E-03
5	30.61	20	38	33	91	8.48	1.82	5.90	4.76	0.19	0.01	0.13	0.34	9.72E-03	3.61E-04	4.01E-03	3.74E-03
6	22.45	21	25	30	76	4.71	0.92	2.55	2.61	0.06	0.00	0.02	0.08	2.78E-03	9.35E-05	7.81E-04	1.11E-03
7	61.22	7	36	4	47	26.67	2.34	5.98	6.27	0.45	0.02	0.02	0.49	6.43E-02	6.67E-04	5.24E-03	1.05E-02
8	59.18	5	27	108	140	37.82	6.40	1.45	3.70	0.99	0.11	0.02	1.13	1.98E-01	4.23E-03	2.16E-04	8.05E-03
9	75.51	2	21	106	129	63.45	2.64	2.57	3.53	0.78	0.07	0.31	1.16	3.90E-01	3.18E-03	2.97E-03	9.00E-03
10	65.31	7	40	76	123	17.03	4.61	1.73	3.54	0.16	0.11	0.03	0.30	2.35E-02	2.71E-03	4.18E-04	2.48E-03
11	32.65	44	56	46	146	2.87	1.57	1.65	1.99	0.05	0.05	0.01	0.12	1.12E-03	9.54E-04	3.26E-04	8.06E-04
12	85.71	0	25	11	36	0.00	7.78	18.04	10.92	0.00	0.13	0.30	0.44	0.00E+00	5.30E-03	2.77E-02	1.21E-02
Total		256	538	684	1478	14.95	3.19	4.02	4.06	3.26	0.83	1.02	5.11	1.27E-02	1.55E-03	1.49E-03	3.46E-03

Plot	2014															
	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	14.74	13.68	71.58	6.43	0.12	0.11	0.60	0.84	68.53	10.66	20.81	6.25	1.93E-03	3.01E-04	5.87E-04	2.82E-03
2	29.93	15.69	54.38	18.54	0.73	0.38	1.32	2.42	77.99	4.54	17.47	6.72	2.37E-03	1.38E-04	5.30E-04	3.04E-03
3	32.89	39.47	27.63	10.28	0.44	0.53	0.37	1.34	51.76	37.14	11.10	3.18	7.42E-04	5.33E-04	1.59E-04	1.43E-03
4	2.37	91.12	6.51	11.43	0.04	1.36	0.10	1.49	0.46	96.04	3.50	4.24	8.79E-06	1.84E-03	6.70E-05	1.91E-03
5	21.98	41.76	36.26	6.16	0.18	0.34	0.29	0.80	57.10	4.03	38.86	6.66	1.72E-03	1.21E-04	1.17E-03	3.01E-03
6	27.63	32.89	39.47	5.14	0.19	0.22	0.27	0.67	69.38	2.78	27.84	1.65	5.16E-04	2.07E-05	2.07E-04	7.44E-04
7	14.89	76.60	8.51	3.18	0.06	0.32	0.04	0.42	90.91	4.85	4.24	9.69	3.98E-03	2.12E-04	1.85E-04	4.38E-03
8	3.57	19.29	77.14	9.47	0.04	0.24	0.95	1.24	87.78	10.15	2.07	22.06	8.75E-03	1.01E-03	2.06E-04	9.96E-03
9	1.55	16.28	82.17	8.73	0.02	0.19	0.94	1.14	67.17	5.75	27.08	22.74	6.90E-03	5.91E-04	2.78E-03	1.03E-02
10	5.69	32.52	61.79	8.32	0.06	0.35	0.67	1.09	53.99	35.58	10.43	5.96	1.45E-03	9.58E-04	2.81E-04	2.69E-03
11	30.14	38.36	31.51	9.88	0.39	0.50	0.41	1.29	41.85	45.43	12.73	2.30	4.35E-04	4.73E-04	1.32E-04	1.04E-03
12	0.00	69.44	30.56	2.44	0.00	0.22	0.10	0.32	0.00	30.32	69.68	8.55	0.00E+00	1.17E-03	2.69E-03	3.86E-03
Total	17.32	36.40	46.28	100.00	0.19	0.40	0.50	1.09	63.76	16.31	19.92	100.00	2.40E-03	6.14E-04	7.50E-04	3.76E-03

Table 1: Mangrove Floristic Characteristics
2015

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	65.31	20	13	58	91	6.89	4.00	3.17	4.11	0.229	0.038	0.072	0.339	1.14E-02	2.93E-03	1.24E-03	3.72E-03
2	55.10	84	47	160	291	3.35	2.01	1.83	2.30	0.236	0.018	0.079	0.333	2.81E-03	3.85E-04	4.93E-04	1.14E-03
3	53.06	51	65	24	140	3.88	2.17	1.54	2.69	0.083	0.064	0.008	0.156	1.64E-03	9.84E-04	3.40E-04	1.11E-03
4	65.31	4	160	11	175	1.93	2.93	2.57	2.89	0.001	0.220	0.010	0.231	3.03E-04	1.37E-03	8.82E-04	1.32E-03
5	32.65	20	39	35	94	8.69	1.84	5.57	4.69	0.197	0.015	0.137	0.348	9.85E-03	3.76E-04	3.90E-03	3.71E-03
6	38.78	19	32	30	81	3.99	1.09	2.44	2.27	0.040	0.004	0.021	0.065	2.10E-03	1.23E-04	6.99E-04	8.01E-04
7	67.35	7	37	4	48	24.26	2.51	5.28	5.91	0.385	0.029	0.016	0.430	5.50E-02	7.83E-04	3.92E-03	8.96E-03
8	75.51	5	30	114	149	32.74	6.00	1.56	3.50	0.669	0.120	0.028	0.817	1.34E-01	4.01E-03	2.47E-04	5.49E-03
9	77.55	2	21	77	100	63.10	3.02	3.22	4.38	0.763	0.075	0.333	1.171	3.82E-01	3.56E-03	4.32E-03	1.17E-02
10	73.47	7	40	62	109	17.06	4.77	2.07	4.02	0.165	0.115	0.034	0.314	2.36E-02	2.86E-03	5.51E-04	2.88E-03
11	38.78	49	71	50	170	2.93	1.44	1.76	1.96	0.056	0.056	0.018	0.130	1.14E-03	7.82E-04	3.68E-04	7.62E-04
12	77.55	0	21	11	32	0.00	8.38	18.02	11.69	0.000	0.130	0.304	0.433	0.00E+00	6.18E-03	2.76E-02	1.35E-02
Total		268	576	636	1480	14.07	3.35	4.09	4.20	2.824	0.882	1.059	4.766	1.05E-02	1.53E-03	1.67E-03	3.22E-03

Plot	2015															
	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	21.98	14.29	63.74	6.15	0.18	0.11	0.51	0.80	67.51	11.25	21.24	7.11	2.02E-03	3.37E-04	6.36E-04	3.00E-03
2	28.87	16.15	54.98	19.66	0.74	0.42	1.41	2.57	70.87	5.44	23.69	6.98	2.08E-03	1.60E-04	6.97E-04	2.94E-03
3	36.43	46.43	17.14	9.46	0.45	0.57	0.21	1.24	53.63	41.13	5.24	3.26	7.38E-04	5.66E-04	7.21E-05	1.38E-03
4	2.29	91.43	6.29	11.82	0.04	1.41	0.10	1.55	0.53	95.27	4.21	4.84	1.07E-05	1.94E-03	8.58E-05	2.04E-03
5	21.28	41.49	37.23	6.35	0.18	0.34	0.31	0.83	56.55	4.22	39.24	7.31	1.74E-03	1.30E-04	1.21E-03	3.08E-03
6	23.46	39.51	37.04	5.47	0.17	0.28	0.27	0.72	61.60	6.07	32.33	1.36	3.53E-04	3.48E-05	1.85E-04	5.74E-04
7	14.58	77.08	8.33	3.24	0.06	0.33	0.04	0.42	89.61	6.74	3.65	9.02	3.41E-03	2.56E-04	1.39E-04	3.80E-03
8	3.36	20.13	76.51	10.07	0.04	0.27	1.01	1.32	81.84	14.71	3.45	17.15	5.91E-03	1.06E-03	2.49E-04	7.23E-03
9	2.00	21.00	77.00	6.76	0.02	0.19	0.68	0.88	65.19	6.38	28.42	24.56	6.75E-03	6.61E-04	2.94E-03	1.04E-02
10	6.42	36.70	56.88	7.36	0.06	0.35	0.55	0.96	52.63	36.49	10.89	6.59	1.46E-03	1.01E-03	3.02E-04	2.77E-03
11	28.82	41.76	29.41	11.49	0.43	0.63	0.44	1.50	42.98	42.84	14.18	2.72	4.93E-04	4.91E-04	1.62E-04	1.15E-03
12	0.00	65.63	34.38	2.16	0.00	0.19	0.10	0.28	0.00	29.95	70.05	9.09	0.00E+00	1.15E-03	2.68E-03	3.83E-03
Total	18.11	38.92	42.97	100.00	0.20	0.42	0.47	1.09	59.26	18.52	22.22	100.00	2.08E-03	6.50E-04	7.80E-04	3.51E-03

Table 1: Mangrove Floristic Characteristics

2016

Plot	% Canopy	Tree Numbers				Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	57.14	14	9	31	54	8.51	5.12	4.29	5.52	0.218	0.035	0.050	0.303	1.56E-02	3.90E-03	1.62E-03	5.62E-03
2	57.14	83	39	147	269	3.48	1.89	2.04	2.46	0.282	0.019	0.067	0.368	3.40E-03	4.76E-04	4.55E-04	1.37E-03
3	36.73	48	54	8	110	4.26	2.19	2.78	3.14	0.092	0.047	0.006	0.145	1.92E-03	8.65E-04	7.07E-04	1.31E-03
4	73.47	4	155	11	170	1.90	2.91	2.64	2.87	0.001	0.205	0.011	0.217	3.10E-04	1.32E-03	9.89E-04	1.28E-03
5	20.41	20	39	35	94	8.62	1.68	5.26	4.49	0.191	0.012	0.127	0.330	9.56E-03	3.02E-04	3.64E-03	3.51E-03
6	34.69	18	38	30	86	3.88	1.27	2.62	2.29	0.034	0.006	0.026	0.066	1.91E-03	1.70E-04	8.52E-04	7.73E-04
7	65.31	7	30	3	40	24.86	2.92	6.67	7.04	0.406	0.028	0.015	0.449	5.80E-02	9.46E-04	4.96E-03	1.12E-02
8	69.39	5	30	114	149	38.04	6.11	1.69	3.80	1.010	0.124	0.032	1.166	2.02E-01	4.12E-03	2.85E-04	7.82E-03
9	79.59	2	16	27	45	63.00	3.81	7.29	8.53	0.760	0.077	0.421	1.257	3.80E-01	4.79E-03	1.56E-02	2.79E-02
10	55.10	7	28	35	70	14.86	6.06	2.83	5.32	0.130	0.111	0.032	0.273	1.86E-02	3.95E-03	9.26E-04	3.90E-03
11	32.65	51	84	53	188	2.92	1.41	1.96	1.97	0.057	0.054	0.024	0.136	1.12E-03	6.48E-04	4.52E-04	7.22E-04
12	65.31	0	19	11	30	0.00	8.62	18.33	12.18	0.000	0.126	0.316	0.442	0.00E+00	6.61E-03	2.88E-02	1.47E-02
Total		259	541	505	1305	14.53	3.67	4.87	4.97	3.183	0.843	1.127	5.153	1.23E-02	1.56E-03	2.23E-03	3.95E-03

2016

Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance			
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	25.93	16.67	57.41	4.14	0.12	0.08	0.27	0.48	71.91	11.57	16.53	5.89	1.93E-03	3.10E-04	4.43E-04	2.68E-03
2	30.86	14.50	54.65	20.61	0.73	0.34	1.30	2.38	76.76	5.05	18.19	7.13	2.50E-03	1.64E-04	5.91E-04	3.25E-03
3	43.64	49.09	7.27	8.43	0.42	0.48	0.07	0.97	63.78	32.31	3.91	2.80	8.15E-04	4.13E-04	5.00E-05	1.28E-03
4	2.35	91.18	6.47	13.03	0.04	1.37	0.10	1.50	0.57	94.42	5.01	4.22	1.10E-05	1.81E-03	9.62E-05	1.92E-03
5	21.28	41.49	37.23	7.20	0.18	0.34	0.31	0.83	57.86	3.57	38.57	6.41	1.69E-03	1.04E-04	1.13E-03	2.92E-03
6	20.93	44.19	34.88	6.59	0.16	0.34	0.27	0.76	51.86	9.70	38.44	1.29	3.05E-04	5.70E-05	2.26E-04	5.88E-04
7	17.50	75.00	7.50	3.07	0.06	0.27	0.03	0.35	90.38	6.32	3.31	8.72	3.59E-03	2.51E-04	1.32E-04	3.97E-03
8	3.36	20.13	76.51	11.42	0.04	0.27	1.01	1.32	86.61	10.60	2.78	22.62	8.93E-03	1.09E-03	2.87E-04	1.03E-02
9	4.44	35.56	60.00	3.45	0.02	0.14	0.24	0.40	60.46	6.09	33.45	24.40	6.72E-03	6.77E-04	3.72E-03	1.11E-02
10	10.00	40.00	50.00	5.36	0.06	0.25	0.31	0.62	47.60	40.53	11.87	5.30	1.15E-03	9.79E-04	2.87E-04	2.41E-03
11	27.13	44.68	28.19	14.41	0.45	0.74	0.47	1.66	42.27	40.08	17.65	2.63	5.07E-04	4.81E-04	2.12E-04	1.20E-03
12	0.00	63.33	36.67	2.30	0.00	0.17	0.10	0.27	0.00	28.41	71.59	8.57	0.00E+00	1.11E-03	2.80E-03	3.91E-03
Total	19.85	41.46	38.70	100.00	0.19	0.40	0.37	0.96	61.77	16.36	21.87	100.00	2.35E-03	6.21E-04	8.31E-04	3.80E-03

Table 1: Mangrove Floristic Characteristics

2017

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	42.86	9	7	24	40	10.10	6.56	4.79	6.30	0.184	0.039	0.052	0.275	2.04E-02	5.62E-03	2.16E-03	6.87E-03
2	46.94	80	29	147	256	3.49	2.01	2.06	2.50	0.286	0.017	0.069	0.372	3.57E-03	5.78E-04	4.72E-04	1.45E-03
3	28.57	40	44	5	89	4.29	2.03	3.20	3.11	0.079	0.035	0.004	0.118	1.98E-03	7.90E-04	8.32E-04	1.33E-03
4	75.51	4	156	11	171	2.00	2.99	2.74	2.95	0.001	0.215	0.012	0.228	3.39E-04	1.38E-03	1.07E-03	1.33E-03
5	24.49	20	41	35	96	8.64	1.76	4.59	4.22	0.187	0.013	0.095	0.295	9.35E-03	3.20E-04	2.71E-03	3.07E-03
6	14.29	16	32	25	73	3.68	1.31	2.78	2.33	0.027	0.005	0.020	0.052	1.66E-03	1.52E-04	8.09E-04	7.07E-04
7	51.02	7	25	3	35	24.59	3.04	6.57	7.65	0.402	0.025	0.015	0.442	5.75E-02	9.93E-04	4.84E-03	1.26E-02
8	75.51	5	31	116	152	38.12	6.03	1.73	3.81	1.010	0.127	0.034	1.172	2.02E-01	4.11E-03	2.94E-04	7.71E-03
9	69.39	2	12	21	35	64.45	4.87	8.43	10.41	0.800	0.077	0.408	1.285	4.00E-01	6.40E-03	1.94E-02	3.67E-02
10	69.39	7	23	28	58	14.67	6.88	3.28	6.08	0.129	0.108	0.035	0.272	1.84E-02	4.71E-03	1.25E-03	4.69E-03
11	26.53	53	87	56	196	2.92	1.58	2.13	2.10	0.058	0.059	0.032	0.148	1.09E-03	6.74E-04	5.69E-04	7.58E-04
12	98.00	0	16	10	26	0.00	9.17	18.01	12.57	0.000	0.120	0.279	0.399	0.00E+00	7.50E-03	2.79E-02	1.54E-02
Total		243	503	481	1227	14.75	4.02	5.02	5.34	3.163	0.840	1.054	5.056	1.30E-02	1.67E-03	2.19E-03	4.12E-03

2017

Plot	% Relative Density			Total	Absolute Density (m ²)			Total	% Relative Dominance			Total	Absolute Dominance			Total
	B	R	W		B	R	W		B	R	W		B	R	W	
1	22.50	17.50	60.00	3.26	0.08	0.06	0.21	0.35	66.83	14.32	18.86	5.43	1.62E-03	3.48E-04	4.58E-04	2.43E-03
2	31.25	11.33	57.42	20.86	0.71	0.26	1.30	2.26	76.85	4.51	18.64	7.36	2.53E-03	1.48E-04	6.13E-04	3.29E-03
3	44.94	49.44	5.62	7.25	0.35	0.39	0.04	0.79	67.00	29.47	3.53	2.33	6.99E-04	3.08E-04	3.68E-05	1.04E-03
4	2.34	91.23	6.43	13.94	0.04	1.38	0.10	1.51	0.60	94.26	5.15	4.50	1.20E-05	1.90E-03	1.04E-04	2.01E-03
5	20.83	42.71	36.46	7.82	0.18	0.36	0.31	0.85	63.41	4.45	32.14	5.83	1.65E-03	1.16E-04	8.38E-04	2.61E-03
6	21.92	43.84	34.25	5.95	0.14	0.28	0.22	0.65	51.37	9.44	39.19	1.02	2.35E-04	4.31E-05	1.79E-04	4.57E-04
7	20.00	71.43	8.57	2.85	0.06	0.22	0.03	0.31	91.09	5.62	3.29	8.73	3.56E-03	2.20E-04	1.28E-04	3.90E-03
8	3.29	20.39	76.32	12.39	0.04	0.27	1.03	1.34	86.22	10.87	2.91	23.17	8.93E-03	1.13E-03	3.02E-04	1.04E-02
9	5.71	34.29	60.00	2.85	0.02	0.11	0.19	0.31	62.28	5.97	31.74	25.41	7.07E-03	6.79E-04	3.61E-03	1.14E-02
10	12.07	39.66	48.28	4.73	0.06	0.20	0.25	0.51	47.29	39.82	12.89	5.38	1.14E-03	9.58E-04	3.10E-04	2.40E-03
11	27.04	44.39	28.57	15.97	0.47	0.77	0.50	1.73	39.04	39.48	21.48	2.94	5.13E-04	5.18E-04	2.82E-04	1.31E-03
12	0.00	61.54	38.46	2.12	0.00	0.14	0.09	0.23	0.00	30.07	69.93	7.89	0.00E+00	1.06E-03	2.47E-03	3.53E-03
Total	19.80	40.99	39.20	100.00	0.18	0.37	0.35	0.90	62.54	16.60	20.86	100.00	2.33E-03	6.18E-04	7.77E-04	3.73E-03

Table 1: Mangrove Floristic Characteristics

2018

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	0.00	6	6	18	30	4.18	7.78	5.10	5.45	0.017	0.048	0.044	0.108	2.87E-03	7.94E-03	2.42E-03	3.62E-03
2	18.37	67	12	118	197	3.82	2.83	2.21	2.79	0.255	0.014	0.055	0.324	3.81E-03	1.16E-03	4.66E-04	1.64E-03
3	0.00	38	37	4	79	4.19	2.14	2.55	3.15	0.071	0.034	0.003	0.108	1.87E-03	9.07E-04	6.94E-04	1.36E-03
4	53.06	4	158	10	172	2.15	2.84	1.95	2.77	0.002	0.201	0.003	0.206	3.92E-04	1.27E-03	3.20E-04	1.20E-03
5	28.57	20	40	30	90	7.68	1.90	4.85	4.16	0.145	0.015	0.087	0.247	7.25E-03	3.75E-04	2.90E-03	2.74E-03
6	6.12	16	37	25	78	3.92	1.24	2.72	2.26	0.032	0.005	0.020	0.057	1.98E-03	1.45E-04	7.97E-04	7.31E-04
7	10.20	7	7	0	14	22.16	4.30	0.00	13.23	0.305	0.012	0.000	0.317	4.36E-02	1.71E-03	0.00E+00	2.26E-02
8	38.78	5	27	98	130	37.38	6.29	1.90	4.16	0.985	0.107	0.033	1.125	1.97E-01	3.95E-03	3.41E-04	8.65E-03
9	40.82	2	11	15	28	64.50	4.84	11.39	12.61	0.809	0.073	0.482	1.365	4.05E-01	6.68E-03	3.21E-02	4.87E-02
10	46.94	7	18	23	48	14.71	7.66	4.00	6.93	0.130	0.097	0.042	0.269	1.85E-02	5.37E-03	1.84E-03	5.60E-03
11	22.45	55	92	57	204	2.78	1.56	1.90	1.98	0.056	0.060	0.024	0.139	1.02E-03	6.47E-04	4.17E-04	6.84E-04
12	36.73	0	16	9	25	0.00	9.21	17.70	12.27	0.000	0.121	0.244	0.364	0.00E+00	7.55E-03	2.71E-02	1.46E-02
Total		227	461	407	1095	13.96	4.38	4.69	5.98	2.807	0.786	1.036	4.629	1.24E-02	1.71E-03	2.55E-03	4.23E-03

2018

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	20.00	20.00	60.00	2.74	0.053	0.053	0.159	0.265	15.87	43.90	40.23	2.34	1.52E-04	4.21E-04	3.86E-04	9.59E-04
2	34.01	6.09	59.90	17.99	0.592	0.106	1.043	1.742	78.72	4.30	16.97	7.00	2.25E-03	1.23E-04	4.86E-04	2.86E-03
3	48.10	46.84	5.06	7.21	0.336	0.327	0.035	0.699	66.22	31.20	2.58	2.32	6.30E-04	2.97E-04	2.45E-05	9.51E-04
4	2.33	91.86	5.81	15.71	0.035	1.397	0.088	1.521	0.76	97.69	1.55	4.45	1.38E-05	1.78E-03	2.83E-05	1.82E-03
5	22.22	44.44	33.33	8.22	0.177	0.354	0.265	0.796	58.73	6.08	35.19	5.33	1.28E-03	1.33E-04	7.68E-04	2.18E-03
6	20.51	47.44	32.05	7.12	0.141	0.327	0.221	0.690	55.62	9.40	34.98	1.23	2.80E-04	4.74E-05	1.76E-04	5.04E-04
7	50.00	50.00	0.00	1.28	0.062	0.062	0.000	0.124	96.23	3.77	0.00	6.85	2.70E-03	1.06E-04	0.00E+00	2.80E-03
8	3.85	20.77	75.38	11.87	0.044	0.239	0.867	1.149	87.54	9.49	2.97	24.30	8.71E-03	9.44E-04	2.96E-04	9.95E-03
9	7.14	39.29	53.57	2.56	0.018	0.097	0.133	0.248	59.31	5.38	35.30	29.48	7.16E-03	6.50E-04	4.26E-03	1.21E-02
10	14.58	37.50	47.92	4.38	0.062	0.159	0.203	0.424	48.27	36.01	15.72	5.80	1.15E-03	8.55E-04	3.73E-04	2.37E-03
11	26.96	45.10	27.94	18.63	0.486	0.813	0.504	1.804	40.30	42.68	17.03	3.01	4.97E-04	5.26E-04	2.10E-04	1.23E-03
12	0.00	64.00	36.00	2.28	0.000	0.141	0.080	0.221	0.00	33.17	66.83	7.87	0.00E+00	1.07E-03	2.15E-03	3.22E-03
Total	20.73	42.10	37.17	100.00	0.167	0.340	0.300	0.807	60.63	16.98	22.38	100.00	2.07E-03	5.79E-04	7.63E-04	3.41E-03

Table 1: Mangrove Floristic Characteristics

2019

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	2.04	6	2	16	24	2.47	5.00	5.01	4.37	0.009	0.004	0.040	0.053	1.45E-03	2.19E-03	2.47E-03	2.19E-03
2	36.73	53	2	109	164	4.20	1.40	2.21	2.85	0.319	0.008	0.044	0.372	6.02E-03	4.13E-03	4.05E-04	2.27E-03
3	22.45	34	33	4	71	4.15	2.03	2.88	3.09	0.065	0.031	0.003	0.099	1.90E-03	9.54E-04	8.16E-04	1.40E-03
4	59.18	4	158	11	173	2.10	2.93	2.15	2.86	0.002	0.207	0.005	0.213	3.81E-04	1.31E-03	4.16E-04	1.23E-03
5	28.57	20	41	26	87	7.94	1.80	4.69	4.08	0.155	0.013	0.077	0.246	7.77E-03	3.11E-04	2.98E-03	2.82E-03
6	18.37	16	38	24	78	3.79	1.50	2.67	2.33	0.025	0.010	0.007	0.052	1.55E-03	2.71E-04	3.01E-04	6.70E-04
7	20.41	5	5	0	10	22.68	4.12	0.00	13.40	0.257	0.008	0.000	0.265	5.13E-02	1.64E-03	0.00E+00	2.65E-02
8	61.22	6	25	88	119	31.67	6.84	2.07	4.57	1.003	0.110	0.035	1.148	1.67E-01	4.39E-03	3.98E-04	9.65E-03
9	53.06	2	9	13	24	64.75	2.31	10.48	11.94	0.809	0.006	0.317	1.132	4.05E-01	7.17E-04	2.44E-02	4.72E-02
10	65.31	7	18	23	48	13.06	7.69	4.18	6.79	0.117	0.097	0.046	0.260	1.67E-02	5.36E-03	2.01E-03	5.42E-03
11	24.49	55	95	57	207	2.81	1.73	2.18	2.14	0.053	0.061	0.031	0.145	9.55E-04	6.42E-04	5.52E-04	7.01E-04
12	38.78	0	15	9	24	0.00	8.84	17.44	12.07	0.000	0.103	0.237	0.340	0.00E+00	6.86E-03	2.64E-02	1.42E-02
Total		208	441	380	1029	13.30	3.85	4.66	5.87	2.813	0.659	0.843	4.325	1.35E-02	1.50E-03	2.22E-03	4.20E-03

2019

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	25.00	8.33	66.67	2.33	0.053	0.018	0.141	0.212	16.50	8.33	75.17	1.22	7.67E-05	3.87E-05	3.49E-04	4.65E-04
2	32.32	1.22	66.46	15.94	0.469	0.018	0.964	1.450	85.91	2.22	11.87	8.59	2.82E-03	7.31E-05	3.90E-04	3.29E-03
3	47.89	46.48	5.63	6.90	0.301	0.292	0.035	0.628	65.05	31.66	3.28	2.30	5.72E-04	2.78E-04	2.89E-05	8.79E-04
4	2.31	91.33	6.36	16.81	0.035	1.397	0.097	1.530	0.71	97.14	2.14	4.93	1.35E-05	1.83E-03	4.04E-05	1.89E-03
5	22.99	47.13	29.89	8.45	0.177	0.363	0.230	0.769	63.26	5.19	31.55	5.68	1.37E-03	1.13E-04	6.85E-04	2.17E-03
6	20.51	48.72	30.77	7.58	0.141	0.336	0.212	0.690	47.57	19.75	13.82	1.21	2.20E-04	9.12E-05	6.38E-05	4.62E-04
7	50.00	50.00	0.00	0.97	0.044	0.044	0.000	0.088	96.91	3.09	0.00	6.12	2.27E-03	7.25E-05	0.00E+00	2.34E-03
8	5.04	21.01	73.95	11.56	0.053	0.221	0.778	1.052	87.38	9.57	3.05	26.54	8.87E-03	9.71E-04	3.10E-04	1.01E-02
9	8.33	37.50	54.17	2.33	0.018	0.080	0.115	0.212	71.46	0.57	27.97	26.18	7.15E-03	5.70E-05	2.80E-03	1.00E-02
10	14.58	37.50	47.92	4.66	0.062	0.159	0.203	0.424	45.06	37.14	17.81	6.01	1.04E-03	8.54E-04	4.09E-04	2.30E-03
11	26.57	45.89	27.54	20.12	0.486	0.840	0.504	1.830	36.23	42.07	21.70	3.35	4.65E-04	5.39E-04	2.78E-04	1.28E-03
12	0.00	62.50	37.50	2.33	0.000	0.133	0.080	0.212	0.00	30.23	69.77	7.87	0.00E+00	9.10E-04	2.10E-03	3.01E-03
Total	20.21	42.86	36.93	100.00	0.153	0.325	0.280	0.758	65.03	15.24	19.49	100.00	2.07E-03	4.86E-04	6.21E-04	3.19E-03

Table 1: Mangrove Floristic Characteristics

2020

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	10.20	6	2	16	24	4.82	5.35	6.58	6.03	0.037	0.005	0.087	0.130	6.23E-03	2.52E-03	5.45E-03	5.40E-03
2	24.49	53	2	106	161	4.29	1.55	2.41	3.03	0.307	0.000	0.060	0.368	5.79E-03	1.98E-04	5.69E-04	2.28E-03
3	12.24	34	36	4	74	4.27	2.05	3.25	3.14	0.067	0.033	0.004	0.104	1.97E-03	9.05E-04	1.06E-03	1.40E-03
4	65.31	4	173	13	190	2.10	2.87	2.35	2.82	0.002	0.214	0.007	0.223	4.30E-04	1.24E-03	5.43E-04	1.17E-03
5	24.49	21	41	22	84	7.55	1.72	3.47	3.64	0.155	0.012	0.045	0.212	7.38E-03	2.90E-04	2.04E-03	2.52E-03
6	20.41	12	36	18	66	4.50	1.62	2.67	2.43	0.027	0.008	0.013	0.049	2.28E-03	2.36E-04	7.11E-04	7.36E-04
7	26.53	5	3	0	8	24.52	5.07	0.00	17.23	0.296	0.007	0.000	0.302	5.91E-02	2.17E-03	0.00E+00	3.78E-02
8	40.82	7	27	87	121	27.11	6.49	2.50	4.81	0.980	0.115	0.050	1.144	1.40E-01	4.25E-03	5.75E-04	9.46E-03
9	53.06	2	12	15	29	73.50	2.13	11.29	11.79	1.026	0.007	0.517	1.551	5.13E-01	6.20E-04	3.45E-02	5.35E-02
10	61.22	6	17	21	44	15.28	7.29	4.14	6.77	0.119	0.093	0.046	0.258	1.99E-02	5.48E-03	2.18E-03	5.87E-03
11	6.12	54	100	60	214	2.98	1.86	2.54	2.33	0.056	0.068	0.045	0.169	1.03E-03	6.84E-04	7.47E-04	7.89E-04
12	12.24	0	14	9	23	0.00	8.68	17.64	12.19	0.000	0.094	0.250	0.344	0.00E+00	6.71E-03	2.78E-02	1.49E-02
Total		204	463	371	1038	14.24	3.89	4.90	6.35	3.071	0.657	1.124	4.852	1.51E-02	1.42E-03	3.03E-03	4.67E-03

2020

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	25.00	8.33	66.67	2.31	0.053	0.018	0.141	0.212	28.82	3.88	67.30	2.67	3.30E-04	4.45E-05	7.71E-04	1.15E-03
2	32.92	1.24	65.84	15.51	0.469	0.018	0.937	1.424	83.49	0.11	16.41	7.57	2.71E-03	3.51E-06	5.33E-04	3.25E-03
3	45.95	48.65	5.41	7.13	0.301	0.318	0.035	0.654	64.47	31.43	4.11	2.14	5.91E-04	2.88E-04	3.76E-05	9.17E-04
4	2.11	91.05	6.84	18.30	0.035	1.530	0.115	1.680	0.77	96.06	3.16	4.60	1.52E-05	1.89E-03	6.24E-05	1.97E-03
5	25.00	48.81	26.19	8.09	0.186	0.363	0.195	0.743	73.19	5.61	21.20	4.36	1.37E-03	1.05E-04	3.97E-04	1.87E-03
6	18.18	54.55	27.27	6.36	0.106	0.318	0.159	0.584	56.21	17.46	26.33	1.00	2.42E-04	7.50E-05	1.13E-04	4.30E-04
7	62.50	37.50	0.00	0.77	0.044	0.027	0.000	0.071	97.84	2.16	0.00	6.22	2.61E-03	5.76E-05	0.00E+00	2.67E-03
8	5.79	22.31	71.90	11.66	0.062	0.239	0.769	1.070	85.61	10.02	4.37	23.58	8.66E-03	1.01E-03	4.42E-04	1.01E-02
9	6.90	41.38	51.72	2.79	0.018	0.106	0.133	0.256	66.17	0.48	33.35	31.96	9.07E-03	6.58E-05	4.57E-03	1.37E-02
10	13.64	38.64	47.73	4.24	0.053	0.150	0.186	0.389	46.20	36.05	17.74	5.32	1.06E-03	8.24E-04	4.05E-04	2.28E-03
11	25.23	46.73	28.04	20.62	0.477	0.884	0.531	1.892	32.96	40.48	26.56	3.48	4.92E-04	6.04E-04	3.96E-04	1.49E-03
12	0.00	60.87	39.13	2.22	0.000	0.124	0.080	0.203	0.00	27.32	72.68	7.09	0.00E+00	8.31E-04	2.21E-03	3.04E-03
Total	19.65	44.61	35.74	100.00	0.150	0.341	0.273	0.765	63.30	13.53	23.17	100.00	2.26E-03	4.84E-04	8.28E-04	3.58E-03

Table 1: Mangrove Floristic Characteristics

2021

Plot	% Canopy	Tree Numbers				Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	4.08	6	2	16	24	5.10	3.80	7.05	6.29	0.037	0.002	0.099	0.138	6.10E-03	1.14E-03	6.21E-03	5.76E-03
2	40.82	53	1	104	158	4.40	1.40	2.65	3.23	0.325	0.000	0.070	0.395	6.13E-03	1.54E-04	6.74E-04	2.50E-03
3	20.41	34	52	4	90	4.75	1.94	3.13	3.05	0.084	0.044	0.004	0.133	2.47E-03	8.55E-04	1.01E-03	1.47E-03
4	71.43	4	182	14	200	2.30	2.82	2.60	2.80	0.002	0.222	0.009	0.233	4.90E-04	1.22E-03	6.59E-04	1.16E-03
5	44.90	21	42	20	83	7.60	1.81	3.78	3.75	0.155	0.013	0.046	0.215	7.39E-03	3.21E-04	2.29E-03	2.59E-03
6	4.08	6	32	15	53	3.82	1.63	2.23	2.05	0.009	0.008	0.008	0.026	1.57E-03	2.41E-04	5.62E-04	4.81E-04
7	18.37	5	2	1	8	25.70	4.13	0.20	15.68	0.325	0.006	0.000	0.331	6.50E-02	3.11E-03	3.14E-06	4.14E-02
8	65.31	7	27	86	120	27.36	6.66	2.70	5.03	0.999	0.119	0.058	1.175	1.43E-01	4.40E-03	6.69E-04	9.80E-03
9	67.35	2	12	31	45	77.85	2.53	5.94	8.23	1.168	0.008	0.562	1.738	5.84E-01	6.96E-04	1.81E-02	3.86E-02
10	63.27	6	17	21	44	15.24	7.84	4.94	7.46	0.118	0.095	0.049	0.263	1.97E-02	5.61E-03	2.36E-03	5.98E-03
11	44.90	55	114	65	234	2.75	1.75	2.68	2.24	0.051	0.070	0.052	0.173	9.22E-04	6.16E-04	8.02E-04	7.40E-04
12	46.94	0	13	9	22	0.00	9.05	17.78	12.62	0.000	0.094	0.252	0.346	0.00E+00	7.26E-03	2.80E-02	1.57E-02
Total		199	496	386	1081	14.74	3.78	4.64	6.04	3.273	0.683	1.210	5.166	1.64E-02	1.38E-03	3.13E-03	4.78E-03

2021

Plot	% Relative Density			Total	Absolute Density (m ²)			Total	% Relative Dominance			Total	Absolute Dominance			
	B	R	W		B	R	W		B	R	W		B	R	W	Total
1	25.00	8.33	66.67	2.22	0.053	0.018	0.141	0.212	26.48	1.65	71.87	2.68	3.24E-04	2.02E-05	8.78E-04	1.22E-03
2	33.54	0.63	65.82	14.62	0.469	0.009	0.920	1.397	82.22	0.04	17.74	7.65	2.87E-03	1.36E-06	6.20E-04	3.49E-03
3	37.78	57.78	4.44	8.33	0.301	0.460	0.035	0.796	63.42	33.53	3.06	2.57	7.44E-04	3.93E-04	3.59E-05	1.17E-03
4	2.00	91.00	7.00	18.50	0.035	1.609	0.124	1.768	0.84	95.20	3.96	4.51	1.73E-05	1.96E-03	8.15E-05	2.06E-03
5	25.30	50.60	24.10	7.68	0.186	0.371	0.177	0.734	72.35	6.28	21.37	4.15	1.37E-03	1.19E-04	4.06E-04	1.90E-03
6	11.32	60.38	28.30	4.90	0.053	0.283	0.133	0.469	36.82	30.17	33.01	0.49	8.31E-05	6.81E-05	7.45E-05	2.26E-04
7	62.50	25.00	12.50	0.74	0.044	0.018	0.009	0.071	98.12	1.88	0.00	6.41	2.87E-03	5.51E-05	2.78E-08	2.93E-03
8	5.83	22.50	71.67	11.10	0.062	0.239	0.760	1.061	85.00	10.11	4.89	22.76	8.83E-03	1.05E-03	5.09E-04	1.04E-02
9	4.44	26.67	68.89	4.16	0.018	0.106	0.274	0.398	67.19	0.48	32.33	33.65	1.03E-02	7.38E-05	4.97E-03	1.54E-02
10	13.64	38.64	47.73	4.07	0.053	0.150	0.186	0.389	44.91	36.27	18.82	5.09	1.04E-03	8.43E-04	4.38E-04	2.33E-03
11	23.50	48.72	27.78	21.65	0.486	1.008	0.575	2.069	29.31	40.57	30.12	3.35	4.49E-04	6.21E-04	4.61E-04	1.53E-03
12	0.00	59.09	40.91	2.04	0.000	0.115	0.080	0.195	0.00	27.27	72.73	6.70	0.00E+00	8.34E-04	2.23E-03	3.06E-03
Total	18.41	45.88	35.71	100.00	0.147	0.365	0.284	0.797	63.36	13.22	23.42	100.00	2.41E-03	5.03E-04	8.91E-04	3.81E-03

Table 1: Mangrove Floristic Characteristics

2022

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	8.16	5	2	14	21	6.52	3.80	8.01	7.26	0.039	0.002	0.103	0.144	7.85E-03	1.14E-03	7.35E-03	6.88E-03
2	34.69	53	1	102	156	4.61	1.40	2.68	3.33	0.398	0.000	0.071	0.469	7.50E-03	1.54E-04	6.97E-04	3.01E-03
3	22.45	35	91	5	131	4.61	1.62	2.78	2.47	0.084	0.057	0.005	0.145	2.40E-03	6.24E-04	9.25E-04	1.11E-03
4	79.59	3	188	14	205	3.13	2.75	3.24	2.79	0.003	0.219	0.014	0.237	9.34E-04	1.17E-03	1.03E-03	1.15E-03
5	55.10	20	43	17	80	7.65	2.39	3.74	3.71	0.149	0.014	0.032	0.195	7.44E-03	3.32E-04	1.87E-03	2.44E-03
6	10.20	6	25	11	42	3.41	1.54	2.11	1.75	0.008	0.006	0.009	0.022	1.25E-03	2.28E-04	8.07E-04	5.26E-04
7	20.41	5	2	2	9	24.60	6.40	0.55	17.09	0.275	0.007	0.000	0.282	5.50E-02	3.31E-03	3.18E-05	3.13E-02
8	73.47	7	29	87	123	27.90	6.36	2.74	5.13	1.019	0.124	0.062	1.205	1.46E-01	4.26E-03	7.16E-04	9.79E-03
9	57.14	2	17	50	69	77.80	1.97	3.87	7.43	1.245	0.008	0.279	1.532	6.23E-01	4.77E-04	5.58E-03	2.22E-02
10	67.35	6	17	21	44	15.30	7.86	5.28	7.64	0.119	0.095	0.057	0.271	1.98E-02	5.61E-03	2.72E-03	6.17E-03
11	32.65	53	117	65	235	2.62	1.87	2.66	2.29	0.046	0.079	0.055	0.180	8.62E-04	6.75E-04	8.52E-04	7.66E-04
12	44.90	0	24	9	33	0.00	5.05	16.88	5.48	0.000	0.095	0.000	0.096	0.00E+00	3.98E-03	7.07E-06	2.89E-03
Total		195	556	397	1148	14.85	3.59	4.55	5.53	3.384	0.707	0.688	4.778	1.74E-02	1.27E-03	1.73E-03	4.16E-03

2022

Plot		% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1		23.81	9.52	66.67	1.83	0.044	0.018	0.124	0.186	27.17	1.58	71.25	3.02	3.47E-04	2.02E-05	9.10E-04	1.28E-03
2		33.97	0.64	65.38	13.59	0.469	0.009	0.902	1.379	84.80	0.03	15.16	9.82	3.52E-03	1.36E-06	6.29E-04	4.15E-03
3		26.72	69.47	3.82	11.41	0.309	0.805	0.044	1.158	57.80	39.02	3.18	3.04	7.43E-04	5.02E-04	4.09E-05	1.29E-03
4		1.46	91.71	6.83	17.86	0.027	1.662	0.124	1.813	1.18	92.71	6.11	4.95	2.48E-05	1.94E-03	1.28E-04	2.09E-03
5		25.00	53.75	21.25	6.97	0.177	0.380	0.150	0.707	76.35	7.32	16.33	4.08	1.32E-03	1.26E-04	2.82E-04	1.72E-03
6		14.29	59.52	26.19	3.66	0.053	0.221	0.097	0.371	34.03	25.80	40.17	0.46	6.65E-05	5.04E-05	7.85E-05	1.95E-04
7		55.56	22.22	22.22	0.78	0.044	0.018	0.018	0.080	97.63	2.35	0.02	5.90	2.43E-03	5.86E-05	5.63E-07	2.49E-03
8		5.69	23.58	70.73	10.71	0.062	0.256	0.769	1.088	84.58	10.26	5.17	25.21	9.01E-03	1.09E-03	5.50E-04	1.07E-02
9		2.90	24.64	72.46	6.01	0.018	0.150	0.442	0.610	81.28	0.53	18.19	32.07	1.10E-02	7.16E-05	2.47E-03	1.35E-02
10		13.64	38.64	47.73	3.83	0.053	0.150	0.186	0.389	43.76	35.17	21.08	5.68	1.05E-03	8.44E-04	5.06E-04	2.40E-03
11		22.55	49.79	27.66	20.47	0.469	1.035	0.575	2.078	25.37	43.86	30.77	3.77	4.04E-04	6.98E-04	4.90E-04	1.59E-03
12		0.00	72.73	27.27	2.87	0.000	0.212	0.080	0.292	0.00	99.93	0.07	2.00	0.00E+00	8.44E-04	5.63E-07	8.45E-04
Total		16.99	48.43	34.58	100.00	0.144	0.410	0.293	0.846	70.82	14.79	14.39	100.00	2.49E-03	5.21E-04	5.07E-04	3.52E-03

Table 1: Mangrove Floristic Characteristics
2023

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	0.00	5	1	9	15	5.86	3.50	8.22	7.12	0.027	0.001	0.073	0.101	5.39E-03	9.62E-04	8.13E-03	6.74E-03
2	28.57	52	1	91	144	4.63	1.50	2.68	3.35	0.357	0.000	0.067	0.423	6.83E-03	1.77E-04	7.24E-04	2.93E-03
3	42.86	37	135	5	177	4.64	1.71	4.00	2.38	0.091	0.077	0.007	0.175	2.46E-03	5.70E-04	1.38E-03	9.88E-04
4	87.76	4	194	14	212	2.50	2.80	3.60	2.85	0.003	0.224	0.018	0.245	7.69E-04	1.15E-03	1.28E-03	1.15E-03
5	26.53	19	46	17	82	7.73	1.80	4.15	3.66	0.141	0.015	0.035	0.191	7.41E-03	3.19E-04	2.06E-03	2.32E-03
6	0.00	6	27	9	42	4.28	1.81	2.92	2.36	0.010	0.008	0.008	0.026	1.73E-03	2.85E-04	8.38E-04	6.10E-04
7	12.24	5	1	1	7	25.44	5.40	0.80	19.06	0.299	0.002	0.000	0.302	5.99E-02	2.29E-03	5.03E-05	4.31E-02
8	67.35	6	30	87	123	32.45	6.43	2.86	5.17	1.026	0.130	0.064	1.220	1.71E-01	4.33E-03	7.34E-04	9.92E-03
9	57.14	2	15	16	33	76.95	2.28	10.68	10.88	1.216	0.009	0.338	1.562	6.08E-01	5.90E-04	2.11E-02	4.73E-02
10	53.06	6	18	18	42	15.32	7.56	5.38	7.73	0.119	0.098	0.050	0.267	1.98E-02	5.43E-03	2.77E-03	6.35E-03
11	36.73	51	124	65	240	2.63	2.03	2.77	2.36	0.039	0.090	0.059	0.188	7.72E-04	7.24E-04	9.10E-04	7.85E-04
12	46.94	0	43	9	52	0.00	2.84	16.53	5.21	0.000	0.083	0.237	0.320	0.00E+00	1.94E-03	2.63E-02	6.16E-03
Total		193	635	341	1169	15.20	3.30	5.38	6.01	3.327	0.736	0.954	5.017	1.72E-02	1.16E-03	2.80E-03	4.29E-03
2023																	
Plot	% Relative Density				Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total	
1	33.33	6.67	60.00	1.29	0.044	0.009	0.080	0.133	26.67	0.95	72.38	2.02	2.38E-04	8.51E-06	6.47E-04	8.94E-04	
2	35.86	0.69	63.45	12.39	0.460	0.009	0.813	1.282	84.23	0.04	15.73	8.44	3.15E-03	1.56E-06	5.89E-04	3.74E-03	
3	20.90	76.27	2.82	15.19	0.327	1.194	0.044	1.565	52.01	44.05	3.95	3.48	8.04E-04	6.81E-04	6.10E-05	1.55E-03	
4	1.90	91.94	6.16	18.11	0.035	1.715	0.115	1.866	1.26	91.42	7.32	4.87	2.72E-05	1.98E-03	1.58E-04	2.16E-03	
5	23.17	56.10	20.73	7.04	0.168	0.407	0.150	0.725	73.92	7.69	18.39	3.80	1.25E-03	1.30E-04	3.10E-04	1.69E-03	
6	15.38	61.54	23.08	3.35	0.053	0.212	0.080	0.345	40.58	30.02	29.41	0.51	9.20E-05	6.80E-05	6.67E-05	2.27E-04	
7	71.43	14.29	14.29	0.60	0.044	0.009	0.009	0.062	99.22	0.76	0.02	6.01	2.65E-03	2.03E-05	4.45E-07	2.67E-03	
8	4.88	24.39	70.73	10.56	0.053	0.265	0.769	1.088	84.12	10.65	5.24	24.32	9.08E-03	1.15E-03	5.65E-04	1.08E-02	
9	6.06	45.45	48.48	2.83	0.018	0.133	0.141	0.292	77.83	0.57	21.61	31.14	1.08E-02	7.83E-05	2.98E-03	1.38E-02	
10	14.29	42.86	42.86	3.61	0.053	0.159	0.159	0.371	44.60	36.66	18.74	5.31	1.05E-03	8.64E-04	4.42E-04	2.36E-03	
11	21.25	51.67	27.08	20.60	0.451	1.096	0.575	2.122	20.90	47.68	31.42	3.75	3.48E-04	7.94E-04	5.23E-04	1.67E-03	
12	0.00	82.69	17.31	4.46	0.000	0.380	0.080	0.460	0.00	25.99	74.01	6.38	0.00E+00	7.36E-04	2.10E-03	2.83E-03	
Total		16.57	54.25	29.18	100.00	0.142	0.466	0.251	0.858	66.32	14.67	19.02	100.00	2.45E-03	5.42E-04	7.03E-04	3.70E-03

Table 1: Mangrove Floristic Characteristics
2024

Plot	% Canopy	Tree Numbers				Average DBH (cm)				Total Basal Area (m ²)				Average Basal Area (m ²)			
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	0.00	1	1	7	9	18.00	3.70	8.24	8.82	0.025	0.001	0.063	0.089	2.55E-02	1.08E-03	8.95E-03	9.91E-03
2	42.86	53	7	88	148	4.80	1.09	2.78	3.41	0.390	0.001	0.067	0.458	7.35E-03	1.12E-04	7.67E-04	3.09E-03
3	61.22	38	165	5	208	4.67	2.06	4.24	2.59	0.096	0.111	0.007	0.214	2.51E-03	6.74E-04	1.50E-03	1.03E-03
4	79.59	4	203	14	221	2.75	2.84	4.18	2.92	0.004	0.243	0.025	0.271	8.81E-04	1.20E-03	1.77E-03	1.23E-03
5	34.69	19	48	17	84	7.46	1.87	3.75	3.51	0.134	0.018	0.032	0.184	7.05E-03	3.85E-04	1.89E-03	2.20E-03
6	8.16	6	25	7	38	4.22	1.68	3.15	2.28	0.010	0.006	0.005	0.021	1.67E-03	2.44E-04	6.88E-04	5.51E-04
7	20.41	5	0	1	6	27.00	0.00	1.70	22.78	0.339	0.000	0.000	0.340	6.79E-02	0.00E+00	2.27E-04	5.66E-02
8	75.51	6	30	86	122	31.93	6.50	3.08	5.34	0.990	0.135	0.075	1.200	1.65E-01	4.51E-03	8.69E-04	9.84E-03
9	67.35	3	17	14	34	53.73	2.22	12.28	10.91	1.295	0.010	0.342	1.647	4.32E-01	5.96E-04	2.44E-02	4.85E-02
10	71.43	6	18	17	41	14.62	7.69	5.62	7.85	0.115	0.100	0.052	0.268	1.92E-02	5.56E-03	3.07E-03	6.53E-03
11	46.94	49	132	66	247	2.56	1.95	2.95	2.34	0.041	0.054	0.068	0.162	8.31E-04	4.07E-04	1.03E-03	6.57E-04
12	36.73	0	75	9	84	0.00	2.06	17.21	3.81	0.000	0.086	0.258	0.344	0.00E+00	1.15E-03	2.86E-02	4.09E-03
Total		190	719	328	1237	14.31	2.81	5.57	6.23	3.439	0.787	0.950	5.176	1.81E-02	1.09E-03	2.90E-03	4.18E-03

Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance				
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	11.11	11.11	77.78	0.73	0.009	0.009	0.062	0.080	28.54	1.21	70.26	1.72	2.25E-04	9.51E-06	5.54E-04	7.89E-04
2	35.81	4.73	59.46	11.94	0.469	0.062	0.778	1.309	85.09	0.17	14.74	8.81	3.44E-03	6.92E-06	5.97E-04	4.05E-03
3	18.27	79.33	2.40	16.76	0.336	1.459	0.044	1.839	44.60	51.90	3.50	4.12	8.45E-04	9.83E-04	6.63E-05	1.89E-03
4	1.81	91.86	6.33	17.81	0.035	1.795	0.124	1.954	1.30	89.56	9.14	5.22	3.11E-05	2.15E-03	2.19E-04	2.40E-03
5	22.62	57.14	20.24	6.77	0.168	0.424	0.150	0.743	72.59	10.02	17.39	3.55	1.18E-03	1.63E-04	2.84E-04	1.63E-03
6	15.79	65.79	18.42	3.06	0.053	0.221	0.062	0.336	47.80	29.17	23.03	0.40	8.84E-05	5.40E-05	4.26E-05	1.85E-04
7	83.33	0.00	16.67	0.49	0.044	0.000	0.009	0.053	99.93	0.00	0.07	6.56	3.00E-03	0.00E+00	2.01E-06	3.00E-03
8	4.92	24.59	70.49	9.86	0.053	0.265	0.760	1.079	82.49	11.28	6.22	23.19	8.75E-03	1.20E-03	6.61E-04	1.06E-02
9	8.82	50.00	41.18	2.75	0.027	0.150	0.124	0.301	78.62	0.62	20.76	31.83	1.15E-02	8.96E-05	3.02E-03	1.46E-02
10	14.63	43.90	41.46	3.31	0.053	0.159	0.150	0.363	43.10	37.40	19.50	5.17	1.02E-03	8.86E-04	4.62E-04	2.37E-03
11	19.84	53.44	26.72	19.89	0.433	1.167	0.584	2.184	25.10	33.13	41.76	3.12	3.60E-04	4.75E-04	5.99E-04	1.43E-03
12	0.00	89.29	10.71	6.79	0.000	0.663	0.080	0.743	0.00	25.03	74.97	6.64	0.00E+00	7.61E-04	2.28E-03	3.04E-03
Total	15.36	58.12	26.52	100.00	0.140	0.530	0.242	0.911	66.44	15.20	18.36	100.00	2.53E-03	5.80E-04	7.00E-04	3.81E-03

Table 1: Mangrove Floristic Characteristics
2025

Plot	% Canopy	Tree Numbers				Average DBH (cm)			Total Basal Area (m ²)				Average Basal Area (m ²)				
		B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total
1	6.12	1	2	7	10	18.00	4.30	8.94	8.92	0.025	0.003	0.060	0.089	2.55E-02	1.47E-03	8.62E-03	8.88E-03
2	44.90	57	9	87	153	5.08	2.11	3.19	3.81	0.357	0.003	0.086	0.446	6.26E-03	3.48E-04	9.89E-04	2.92E-03
3	61.22	38	164	5	207	4.88	2.32	4.44	2.78	0.105	0.125	0.008	0.238	2.76E-03	7.62E-04	1.69E-03	1.15E-03
4	67.35	4	197	15	216	2.63	2.90	3.90	2.97	0.003	0.248	0.023	0.275	8.71E-04	1.26E-03	1.56E-03	1.27E-03
5	38.78	19	49	17	85	7.64	2.03	3.31	3.54	0.135	0.022	0.029	0.187	7.12E-03	4.57E-04	1.73E-03	2.20E-03
6	4.08	4	20	5	29	3.70	1.40	2.28	1.86	0.008	0.006	0.003	0.017	2.06E-03	2.77E-04	6.94E-04	5.95E-04
7	12.24	2	0	0	2	0.74	0.00	1.00	0.62	0.001	0.000	0.000	0.001	2.86E-04	0.00E+00	0.00E+00	3.26E-04
8	67.35	5	30	84	119	29.22	6.57	3.00	5.17	0.965	0.136	0.073	1.174	1.93E-01	4.53E-03	8.65E-04	9.86E-03
9	59.18	3	21	14	38	57.17	2.25	12.35	10.16	1.379	0.015	0.423	1.839	4.60E-01	6.91E-04	3.02E-02	4.84E-02
10	57.14	6	18	17	41	14.50	7.74	5.93	7.98	0.114	0.101	0.057	0.272	1.90E-02	5.63E-03	3.33E-03	6.63E-03
11	51.02	49	131	65	245	2.72	2.02	3.06	2.43	0.040	0.058	0.074	0.171	8.23E-04	4.45E-04	1.13E-03	7.00E-04
12	44.90	0	89	11	100	0.00	2.03	17.20	3.66	0.000	0.087	0.253	0.340	0.00E+00	9.82E-04	2.30E-02	3.40E-03
Total		188	730	327	1245	12.19	2.97	5.72	4.49	3.134	0.805	1.090	5.050	1.67E-02	1.10E-03	3.33E-03	4.06E-03
									2025								
Plot	% Relative Density			Absolute Density (m ²)				% Relative Dominance				Absolute Dominance					
	B	R	W	Total	B	R	W	Total	B	R	W	Total	B	R	W	Total	
1	10.00	20.00	70.00	0.80	0.009	0.018	0.062	0.088	28.68	3.32	68.01	1.76	2.25E-04	2.60E-05	5.34E-04	7.85E-04	
2	37.25	5.88	56.86	12.29	0.504	0.080	0.769	1.353	80.02	0.70	19.28	8.84	3.16E-03	2.77E-05	7.61E-04	3.95E-03	
3	18.36	79.23	2.42	16.63	0.336	1.450	0.044	1.830	44.07	52.40	3.54	4.72	9.29E-04	1.10E-03	7.45E-05	2.11E-03	
4	1.85	91.20	6.94	17.35	0.035	1.742	0.133	1.910	1.26	90.24	8.50	5.45	3.08E-05	2.20E-03	2.07E-04	2.43E-03	
5	22.35	57.65	20.00	6.83	0.168	0.433	0.150	0.752	72.31	11.98	15.71	3.71	1.20E-03	1.98E-04	2.60E-04	1.65E-03	
6	13.79	68.97	17.24	2.33	0.035	0.177	0.044	0.256	47.79	32.09	20.12	0.34	7.29E-05	4.89E-05	3.07E-05	1.53E-04	
7	100.00	0.00	0.00	0.16	0.018	0.000	0.000	0.018	87.94	12.06	0.00	0.01	5.06E-06	0.00E+00	0.00E+00	5.76E-06	
8	4.20	25.21	70.59	9.56	0.044	0.265	0.743	1.052	82.23	11.57	6.19	23.24	8.53E-03	1.20E-03	6.42E-04	1.04E-02	
9	7.89	55.26	36.84	3.05	0.027	0.186	0.124	0.336	75.00	0.79	22.99	36.42	1.22E-02	1.28E-04	3.74E-03	1.63E-02	
10	14.63	43.90	41.46	3.29	0.053	0.159	0.150	0.363	41.95	37.23	20.82	5.39	1.01E-03	8.95E-04	5.01E-04	2.41E-03	
11	20.00	53.47	26.53	19.68	0.433	1.158	0.575	2.166	23.51	34.02	43.00	3.40	3.56E-04	5.16E-04	6.52E-04	1.52E-03	
12	0.00	89.00	11.00	8.03	0.000	0.787	0.097	0.884	0.00	25.71	74.29	6.73	0.00E+00	7.73E-04	2.23E-03	3.01E-03	
Total	15.10	58.63	26.27	100.00	0.139	0.538	0.241	0.917	62.06	15.94	21.58	100.00	2.31E-03	5.93E-04	8.03E-04	3.72E-03	

TABLE 2:TREES BY CONDITION

Plot 1 1999					Plot 1 2000					Plot 1 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	11	0	8	19	Alive	9	0	8	17	Alive	8	1	2	11
Stressed	2	0	0	2	Stressed	3	0	2	5	Stressed	2	0	8	10
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	1	0	0	1	Dead	2	0	0	2
Total	13	0	8	21	Total	13	0	10	23	Total	12	1	10	23
Plot 1 2002					Plot 1 2003					Plot 1 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	10	2	3	15	Alive	10	3	6	19	Alive	10	3	15	28
Stressed	0	0	6	6	Stressed	0	0	5	5	Stressed	0	1	6	7
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	1	1	Dead	0	0	1	1	Dead	0	0	0	0
Total	10	2	10	22	Total	10	3	12	25	Total	10	4	21	35
Plot 1 2005					Plot 1 2006					Plot 1 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	10	3	14	27	Alive	0	3	0	3	Alive	1	5	0	6
Stressed	0	1	11	12	Stressed	5	0	4	9	Stressed	5	0	1	6
Very Stressed	0	0	0	0	Very Stressed	5	0	2	7	Very Stressed	2	0	1	3
Dead	0	1	1	2	Dead	0	1	19	20	Dead	2	1	4	7
Total	10	5	26	41	Total	10	4	25	39	Total	10	6	6	22
Plot 1 2008					Plot 1 2009					Plot 1 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	7	1	8	Alive	1	10	30	41	Alive	0	9	38	47
Stressed	4	0	1	5	Stressed	6	0	2	8	Stressed	6	2	19	27
Very Stressed	3	0	1	4	Very Stressed	0	0	0	0	Very Stressed	1	0	2	3
Dead	1	0	0	1	Dead	0	0	0	0	Dead	0	0	0	0
Total	8	7	3	18	Total	7	10	32	49	Total	7	11	59	77

TABLE 2:TREES BY CONDITION

Plot 1 2011					Plot 1 2012					Plot 1 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	7	46	54	Alive	6	10	49	65	Alive	6	10	44	60
Stressed	6	4	26	36	Stressed	4	5	27	36	Stressed	5	4	27	36
Very Stressed	1	1	1	3	Very Stressed	2	0	4	6	Very Stressed	3	0	5	8
Dead	0	0	2	2	Dead	0	0	1	1	Dead	0	2	5	7
Total	8	12	75	95	Total	12	15	81	108	Total	14	16	81	111
Plot 1 2014					Plot 1 2015					Plot 1 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	8	42	55	Alive	10	5	4	19	Alive	5	2	2	9
Stressed	6	5	22	33	Stressed	7	8	43	58	Stressed	5	6	18	29
Very Stressed	3	0	4	7	Very Stressed	3	0	11	14	Very Stressed	4	1	11	16
Dead	1	1	9	11	Dead	0	0	11	11	Dead	7	4	27	38
Total	15	14	77	106	Total	20	13	69	102	Total	21	13	58	92
Plot 1 2017					Plot 1 2018					Plot 1 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	2	1	8	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	3	5	17	25	Stressed	1	1	3	5	Stressed	3	2	9	14
Very Stressed	1	0	6	7	Very Stressed	5	5	15	25	Very Stressed	3	0	7	10
Dead	5	2	7	14	Dead	3	1	6	10	Dead	0	4	2	6
Total	14	9	31	54	Total	9	7	24	40	Total	6	6	18	30
Plot 1 2020					Plot 1 2021					Plot 1 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	2	1	8	11	Stressed	3	0	7	10	Stressed	3	0	3	6
Very Stressed	4	1	8	13	Very Stressed	3	2	9	14	Very Stressed	2	2	11	15
Dead	0	0	1	1	Dead	0	0	0	0	Dead	1	0	2	3
Total	6	2	17	25	Total	6	2	16	24	Total	6	2	16	24

TABLE 2:TREES BY CONDITION

Plot 1 2023					Plot 1 2024					Plot 1 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	0	0	0	Alive	0	1	0	1
Stressed	0	0	0	0	Stressed	0	0	1	1	Stressed	0	0	4	4
Very Stressed	5	1	9	15	Very Stressed	1	1	6	8	Very Stressed	1	1	3	5
Dead	0	1	5	6	Dead	4	0	2	6	Dead	0	0	0	0
Total	5	2	14	21	Total	5	1	9	15	Total	1	2	7	10

TABLE 2:TREES BY CONDITION

Plot 2 1999					Plot 2 2000					Plot 2 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	6	6	Alive	1	0	0	1	Alive	1	0	0	1
Stressed	1	0	0	1	Stressed	0	0	2	2	Stressed	0	0	2	2
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	6	6	Dead	0	0	0	0
Total	1	0	6	7	Total	1	0	8	9	Total	1	0	2	3
Plot 2 2002					Plot 2 2003					Plot 2 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	0	0	1	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	0	0	0	0	Stressed	1	0	0	1	Stressed	1	0	0	1
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	2	2	Dead	0	0	0	0	Dead	0	0	0	0
Total	1	0	2	3	Total	1	0	0	1	Total	1	0	0	1
Plot 2 2005					Plot 2 2006					Plot 2 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	0	0	4	Alive	15	1	3	19	Alive	38	1	11	50
Stressed	1	0	0	1	Stressed	2	0	0	2	Stressed	2	0	0	2
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	5	0	0	5	Total	17	1	3	21	Total	40	1	11	52
Plot 2 2008					Plot 2 2009					Plot 2 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	52	7	42	101	Alive	61	22	98	181	Alive	65	30	114	209
Stressed	5	0	2	7	Stressed	6	0	2	8	Stressed	6	0	2	8
Very Stressed	1	0	0	1	Very Stressed	0	0	0	0	Very Stressed	0	1	0	1
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	58	7	44	109	Total	67	22	100	189	Total	71	31	116	218

TABLE 2:TREES BY CONDITION

Plot 2 2011					Plot 2 2012					Plot 2 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	65	36	120	221	Alive	64	39	111	214	Alive	64	37	119	220
Stressed	9	2	10	21	Stressed	12	4	23	39	Stressed	14	5	23	42
Very Stressed	0	0	0	0	Very Stressed	1	1	3	5	Very Stressed	1	1	3	5
Dead	0	2	0	2	Dead	1	3	0	4	Dead	0	1	2	3
Total	74	40	130	244	Total	78	47	137	262	Total	79	44	147	270
Plot 2 2014					Plot 2 2015					Plot 2 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	67	38	122	227	Alive	68	42	128	238	Alive	72	31	99	202
Stressed	13	5	23	41	Stressed	13	5	21	39	Stressed	10	6	43	59
Very Stressed	2	0	4	6	Very Stressed	3	0	11	14	Very Stressed	1	2	5	8
Dead	0	4	1	5	Dead	1	0	8	9	Dead	3	9	14	26
Total	82	47	150	279	Total	85	47	168	300	Total	86	48	161	295
Plot 2 2017					Plot 2 2018					Plot 2 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	43	17	24	84	Alive	10	1	5	16	Alive	8	0	2	10
Stressed	29	9	93	131	Stressed	21	2	26	49	Stressed	32	2	73	107
Very Stressed	8	3	30	41	Very Stressed	36	9	87	132	Very Stressed	13	0	34	47
Dead	4	11	4	19	Dead	13	17	29	59	Dead	14	10	9	33
Total	84	40	151	275	Total	80	29	147	256	Total	67	12	118	197
Plot 2 2020					Plot 2 2021					Plot 2 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	0	24	31	Alive	6	0	8	14	Alive	0	0	1	1
Stressed	33	1	64	98	Stressed	36	1	57	94	Stressed	38	1	54	93
Very Stressed	13	1	18	32	Very Stressed	11	0	39	50	Very Stressed	15	0	47	62
Dead	0	0	4	4	Dead	1	1	2	4	Dead	0	0	2	2
Total	53	2	110	165	Total	54	2	106	162	Total	53	1	104	158

TABLE 2:TREES BY CONDITION

Plot 2 2023				
Number	BLACK	RED	WHITE	TOTAL
Alive	8	1	0	8
Stressed	24	0	26	50
Very Stressed	20	0	66	86
Dead	2	0	10	13
Total	54	1	102	157

Plot 2 2024					Plot 2 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	9	7	4	20	Alive	9	7	7	23
Stressed	27	0	37	64	Stressed	30	2	36	68
Very Stressed	17	0	47	64	Very Stressed	18	0	44	62
Dead	1	0	5	6	Dead	0	0	1	1
Total	54	7	93	154	Total	57	9	88	154

TABLE 2:TREES BY CONDITION

Plot 3 1999					Plot 3 2000					Plot 3 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	2	3	5	Alive	0	2	6	8	Alive	0	3	82	85
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	0	2	3	5	Total	0	2	6	8	Total	0	3	82	85
Plot 3 2002					Plot 3 2003					Plot 3 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	3	450	455	Alive	17	5	514	536	Alive	24	6	381	411
Stressed	0	0	19	19	Stressed	0	0	74	74	Stressed	1	0	99	100
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	8	8	Dead	0	0	128	128
Total	2	3	469	474	Total	17	5	596	618	Total	25	6	608	639
Plot 3 2005					Plot 3 2006					Plot 3 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	26	8	227	261	Alive	21	9	99	129	Alive	26	18	119	163
Stressed	1	0	126	127	Stressed	7	0	154	161	Stressed	5	0	90	95
Very Stressed	0	0	24	24	Very Stressed	1	0	51	52	Very Stressed	2	0	42	44
Dead	0	0	105	105	Dead	0	0	75	75	Dead	0	0	55	55
Total	27	8	482	517	Total	29	9	379	417	Total	33	18	306	357
Plot 3 2008					Plot 3 2009					Plot 3 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	29	21	98	148	Alive	39	28	31	98	Alive	36	24	9	69
Stressed	6	0	77	83	Stressed	0	0	103	103	Stressed	6	5	27	38
Very Stressed	2	0	56	58	Very Stressed	2	0	59	61	Very Stressed	2	2	91	95
Dead	0	0	21	21	Dead	0	0	39	39	Dead	0	0	66	66
Total	37	21	252	310	Total	41	28	232	301	Total	44	31	193	268

TABLE 2:TREES BY CONDITION

Plot 3 2011					Plot 3 2012					Plot 3 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	35	29	6	70	Alive	34	42	3	79	Alive	25	45	0	70
Stressed	6	5	30	41	Stressed	13	5	27	45	Stressed	22	6	23	51
Very Stressed	3	2	73	78	Very Stressed	2	2	68	72	Very Stressed	3	4	54	61
Dead	1	1	19	21	Dead	0	1	11	12	Dead	0	2	21	23
Total	45	37	128	210	Total	49	50	109	208	Total	50	57	98	205
Plot 3 2014					Plot 3 2015					Plot 3 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	20	26	1	47	Alive	13	27	0	40	Alive	10	6	0	16
Stressed	24	29	0	53	Stressed	33	29	1	63	Stressed	27	27	1	55
Very Stressed	6	5	41	52	Very Stressed	5	9	23	37	Very Stressed	11	21	7	39
Dead	1	1	36	38	Dead	0	1	19	20	Dead	3	16	16	35
Total	51	61	78	190	Total	51	66	43	160	Total	51	70	24	145
Plot 3 2017					Plot 3 2018					Plot 3 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	0	1	5	Alive	2	0	0	2	Alive	6	1	0	7
Stressed	29	12	0	41	Stressed	17	9	0	26	Stressed	21	15	2	38
Very Stressed	7	32	4	43	Very Stressed	19	28	4	51	Very Stressed	7	17	2	26
Dead	8	11	3	22	Dead	2	7	1	10	Dead	4	6	0	10
Total	48	55	8	111	Total	40	44	5	89	Total	38	39	4	81
Plot 3 2020					Plot 3 2021					Plot 3 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	15	6	0	21	Alive	14	26	0	40	Alive	9	64	1	74
Stressed	14	17	1	32	Stressed	16	19	3	38	Stressed	23	22	2	47
Very Stressed	5	13	3	21	Very Stressed	4	7	1	12	Very Stressed	3	5	2	10
Dead	0	0	0	0	Dead	0	1	0	1	Dead	0	0	0	0
Total	34	36	4	74	Total	34	53	4	91	Total	35	91	5	131

TABLE 2:TREES BY CONDITION

Plot 3 2023					Plot 3 2024					Plot 3 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	11	107	1	119	Alive	12	134	0	146	Alive	4	105	0	109
Stressed	21	22	2	45	Stressed	20	26	3	49	Stressed	22	48	3	73
Very Stressed	5	6	2	13	Very Stressed	6	5	2	13	Very Stressed	12	11	2	25
Dead	1	0	0	1	Dead	1	0	0	1	Dead	0	6	0	6
Total	38	135	5	178	Total	39	165	5	209	Total	38	170	5	213

TABLE 2:TREES BY CONDITION

Plot 4 1999					Plot 4 2000					Plot 4 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	111	0	112	Alive	1	71	0	72	Alive	1	45	0	46
Stressed	0	1	0	1	Stressed	0	36	0	36	Stressed	0	54	0	54
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	5	0	5	Dead	0	8	0	8
Total	1	112	0	113	Total	1	112	0	113	Total	1	107	0	108
Plot 4 2002					Plot 4 2003					Plot 4 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	6	0	6	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	0	54	0	54	Stressed	0	58	0	58	Stressed	0	53	0	53
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	1	39	0	40	Dead	0	2	0	2	Dead	0	5	0	5
Total	1	99	0	100	Total	0	60	0	60	Total	0	58	0	58
Plot 4 2005					Plot 4 2006					Plot 4 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	0	1	1	Alive	0	3	1	4
Stressed	0	51	0	51	Stressed	0	35	0	35	Stressed	0	31	0	31
Very Stressed	0	2	0	2	Very Stressed	0	13	0	13	Very Stressed	0	14	0	14
Dead	0	0	0	0	Dead	0	5	0	5	Dead	0	3	0	3
Total	0	53	0	53	Total	0	53	1	54	Total	0	51	1	52
Plot 4 2008					Plot 4 2009					Plot 4 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	17	2	20	Alive	4	36	6	46	Alive	4	63	8	75
Stressed	0	30	0	30	Stressed	0	39	0	39	Stressed	0	37	0	37
Very Stressed	0	15	0	15	Very Stressed	0	6	0	6	Very Stressed	0	7	0	7
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	1	0	1
Total	1	62	2	65	Total	4	81	6	91	Total	4	108	8	120

TABLE 2:TREES BY CONDITION

Plot 4 2011					Plot 4 2012					Plot 4 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	75	8	87	Alive	4	89	8	101	Alive	4	99	9	112
Stressed	0	38	0	38	Stressed	0	38	1	39	Stressed	0	39	1	40
Very Stressed	0	8	0	8	Very Stressed	0	7	0	7	Very Stressed	0	7	0	7
Dead	0	1	0	1	Dead	0	2	0	2	Dead	0	0	0	0
Total	4	122	8	134	Total	4	136	9	149	Total	4	145	10	159
Plot 4 2014					Plot 4 2015					Plot 4 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	108	9	121	Alive	4	109	9	122	Alive	4	110	9	123
Stressed	0	39	1	40	Stressed	0	42	1	43	Stressed	0	39	1	40
Very Stressed	0	7	1	8	Very Stressed	0	9	1	10	Very Stressed	0	6	1	7
Dead	0	1	0	1	Dead	0	1	0	1	Dead	0	8	0	8
Total	4	155	11	170	Total	4	161	11	176	Total	4	163	11	178
Plot 4 2017					Plot 4 2018					Plot 4 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	132	8	143	Alive	1	54	3	58	Alive	1	92	3	96
Stressed	1	23	2	26	Stressed	1	67	4	72	Stressed	1	45	7	53
Very Stressed	0	1	1	2	Very Stressed	2	37	3	42	Very Stressed	2	21	1	24
Dead	0	3	0	3	Dead	0	3	1	4	Dead	0	3	0	3
Total	4	159	11	174	Total	4	161	11	176	Total	4	161	11	176
Plot 4 2020					Plot 4 2021					Plot 4 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	156	11	168	Alive	0	152	10	162	Alive	0	158	6	164
Stressed	2	11	2	15	Stressed	3	25	3	31	Stressed	3	26	7	36
Very Stressed	1	6	0	7	Very Stressed	1	5	1	7	Very Stressed	0	4	1	5
Dead	0	2	0	2	Dead	0	1	0	1	Dead	1	3	0	4
Total	4	175	13	192	Total	4	183	14	201	Total	4	191	14	209

TABLE 2:TREES BY CONDITION

Plot 4 2023					Plot 4 2024					Plot 4 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	83	2	86	Alive	0	98	2	100	Alive	1	65	5	71
Stressed	3	76	8	86	Stressed	2	82	9	93	Stressed	2	106	8	116
Very Stressed	0	35	4	39	Very Stressed	2	23	3	28	Very Stressed	1	26	2	29
Dead	0	1	0	1	Dead	0	2	0	2	Dead	0	8	0	8
Total	4	195	14	213	Total	4	205	14	223	Total	4	205	15	224

TABLE 2:TREES BY CONDITION

Plot 5 1999					Plot 5 2000					Plot 5 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	14	6	20	40	Alive	12	6	20	38	Alive	7	7	9	23
Stressed	1	0	18	19	Stressed	3	0	19	22	Stressed	9	0	28	37
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	2	2
Total	15	6	38	59	Total	15	6	39	60	Total	16	7	39	62
Plot 5 2002					Plot 5 2003					Plot 5 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	6	7	8	21	Alive	6	7	5	18	Alive	6	9	4	19
Stressed	10	0	30	40	Stressed	10	2	32	44	Stressed	10	2	34	46
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	1	1
Dead	0	0	0	0	Dead	0	0	1	1	Dead	0	0	0	0
Total	16	7	38	61	Total	16	9	38	63	Total	16	11	39	66
Plot 5 2005					Plot 5 2006					Plot 5 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	9	4	18	Alive	9	11	7	27	Alive	9	16	4	29
Stressed	11	2	33	46	Stressed	6	3	27	36	Stressed	7	6	25	38
Very Stressed	0	0	2	2	Very Stressed	1	1	5	7	Very Stressed	1	0	10	11
Dead	0	0	0	0	Dead	1	0	1	2	Dead	0	0	0	0
Total	16	11	39	66	Total	17	15	40	72	Total	17	22	39	78
Plot 5 2008					Plot 5 2009					Plot 5 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	9	21	3	33	Alive	10	21	3	34	Alive	12	30	2	44
Stressed	9	6	16	31	Stressed	9	9	19	37	Stressed	7	5	19	31
Very Stressed	1	0	18	19	Very Stressed	0	0	15	15	Very Stressed	0	0	16	16
Dead	0	0	3	3	Dead	1	0	0	1	Dead	0	0	1	1
Total	19	27	40	86	Total	20	30	37	87	Total	19	35	38	92

TABLE 2:TREES BY CONDITION

Plot 5 2011					Plot 5 2012					Plot 5 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	28	1	37	Alive	8	28	1	37	Alive	7	30	0	37
Stressed	10	7	17	34	Stressed	9	8	16	33	Stressed	10	7	14	31
Very Stressed	1	0	18	19	Very Stressed	1	0	18	19	Very Stressed	1	1	19	21
Dead	1	0	1	2	Dead	1	0	1	2	Dead	0	0	2	2
Total	20	35	37	92	Total	19	36	36	91	Total	18	38	35	91
Plot 5 2014					Plot 5 2015					Plot 5 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	25	1	33	Alive	7	26	2	35	Alive	9	36	2	47
Stressed	9	12	11	32	Stressed	8	12	9	29	Stressed	7	3	9	19
Very Stressed	4	1	21	26	Very Stressed	5	1	24	30	Very Stressed	4	0	24	28
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	20	38	33	91	Total	20	39	35	94	Total	20	39	35	94
Plot 5 2017					Plot 5 2018					Plot 5 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	36	2	46	Alive	7	20	0	27	Alive	5	9	0	14
Stressed	8	5	9	22	Stressed	8	20	6	34	Stressed	11	32	7	50
Very Stressed	4	0	24	28	Very Stressed	5	0	24	29	Very Stressed	4	0	19	23
Dead	0	0	0	0	Dead	0	1	6	7	Dead	0	0	4	4
Total	20	41	35	96	Total	20	41	36	97	Total	20	41	30	91
Plot 5 2020					Plot 5 2021					Plot 5 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	17	1	23	Alive	6	17	1	24	Alive	7	19	1	27
Stressed	10	24	6	40	Stressed	9	25	6	40	Stressed	8	24	7	39
Very Stressed	6	0	15	21	Very Stressed	6	0	13	19	Very Stressed	5	0	9	14
Dead	0	0	4	4	Dead	0	0	2	2	Dead	1	0	3	4
Total	21	41	26	88	Total	21	42	22	85	Total	21	43	20	84

TABLE 2:TREES BY CONDITION

Plot 5 2023					Plot 5 2024					Plot 5 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	23	0	30	Alive	8	28	0	36	Alive	10	31	0	41
Stressed	9	23	6	38	Stressed	9	20	7	36	Stressed	6	18	5	29
Very Stressed	3	0	11	14	Very Stressed	2	0	10	12	Very Stressed	3	0	12	15
Dead	1	0	0	1	Dead	0	0	0	0	Dead	0	0	0	0
Total	20	46	17	83	Total	19	48	17	84	Total	19	49	17	85

TABLE 2:TREES BY CONDITION

Plot 6 1999					Plot 6 2000					Plot 6 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	0	2	10	Alive	9	0	3	12	Alive	10	0	3	13
Stressed	0	2	1	3	Stressed	0	2	1	3	Stressed	2	2	3	7
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	1	0	0	1	Dead	1	0	0	1
Total	8	2	3	13	Total	10	2	4	16	Total	13	2	6	21
Plot 6 2002					Plot 6 2003					Plot 6 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	10	0	2	12	Alive	8	1	10	19	Alive	13	1	17	31
Stressed	2	2	6	10	Stressed	5	1	6	12	Stressed	2	1	5	8
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	1	0	1	Dead	0	0	1	1
Total	12	2	8	22	Total	13	3	16	32	Total	15	2	23	40
Plot 6 2005					Plot 6 2006					Plot 6 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	12	2	16	30	Alive	14	3	13	30	Alive	14	4	18	36
Stressed	3	1	7	11	Stressed	2	1	15	18	Stressed	3	0	11	14
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	1	1	Dead	0	1	4	5
Total	15	3	23	41	Total	16	4	29	49	Total	17	5	33	55
Plot 6 2008					Plot 6 2009					Plot 6 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	15	9	13	37	Alive	20	11	15	46	Alive	18	11	14	43
Stressed	3	0	11	14	Stressed	2	0	13	15	Stressed	2	0	13	15
Very Stressed	0	0	3	3	Very Stressed	1	1	4	6	Very Stressed	2	1	4	7
Dead	0	0	3	3	Dead	0	0	3	3	Dead	1	0	2	3
Total	18	9	30	57	Total	23	12	35	70	Total	23	12	33	68

TABLE 2:TREES BY CONDITION

Plot 6 2011					Plot 6 2012					Plot 6 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	17	10	8	35	Alive	17	10	7	34	Alive	17	10	6	33
Stressed	4	2	14	20	Stressed	5	4	15	24	Stressed	5	5	15	25
Very Stressed	2	0	8	10	Very Stressed	1	1	8	10	Very Stressed	0	1	8	9
Dead	0	1	1	2	Dead	0	0	1	1	Dead	1	0	1	2
Total	23	13	31	67	Total	23	15	31	69	Total	23	16	30	69
Plot 6 2014					Plot 6 2015					Plot 6 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	13	13	4	30	Alive	12	17	4	33	Alive	15	26	6	47
Stressed	5	10	10	25	Stressed	6	13	14	33	Stressed	2	10	17	29
Very Stressed	3	2	16	21	Very Stressed	1	2	12	15	Very Stressed	1	2	7	10
Dead	1	0	2	3	Dead	2	0	4	6	Dead	1	0	1	2
Total	22	25	32	79	Total	21	32	34	87	Total	19	38	31	88
Plot 6 2017					Plot 6 2018					Plot 6 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	13	24	7	44	Alive	12	24	1	37	Alive	7	22	2	31
Stressed	2	8	13	23	Stressed	4	13	13	30	Stressed	6	15	7	28
Very Stressed	1	0	5	6	Very Stressed	0	0	11	11	Very Stressed	3	1	15	19
Dead	5	7	7	19	Dead	1	1	0	2	Dead	0	2	2	4
Total	21	39	32	92	Total	17	38	25	80	Total	16	40	26	82
Plot 6 2020					Plot 6 2021					Plot 6 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	34	2	40	Alive	3	26	1	30	Alive	4	15	1	20
Stressed	7	2	9	18	Stressed	2	6	5	13	Stressed	1	10	2	13
Very Stressed	1	0	7	8	Very Stressed	1	0	9	10	Very Stressed	1	0	8	9
Dead	4	3	6	13	Dead	6	6	3	15	Dead	0	7	4	11
Total	16	39	24	79	Total	12	38	18	68	Total	6	32	15	53

TABLE 2:TREES BY CONDITION

Plot 6 2023					Plot 6 2024					Plot 6 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	8	1	12	Alive	2	5	0	7	Alive	1	4	0	5
Stressed	1	13	0	14	Stressed	3	15	4	22	Stressed	3	11	4	18
Very Stressed	2	6	8	16	Very Stressed	1	5	3	9	Very Stressed	0	5	1	6
Dead	0	1	3	4	Dead	0	2	2	4	Dead	2	5	2	9
Total	6	28	12	46	Total	6	27	9	42	Total	6	25	7	38

TABLE 2:TREES BY CONDITION

Plot 7 1999					Plot 7 2000					Plot 7 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	8	2	18	Alive	8	10	2	20	Alive	8	10	2	20
Stressed	0	2	0	2	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	1	0	1	Dead	0	0	0	0
Total	8	10	2	20	Total	8	11	2	21	Total	8	10	2	20
Plot 7 2002					Plot 7 2003					Plot 7 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	10	2	20	Alive	8	13	2	23	Alive	8	16	2	26
Stressed	0	0	0	0	Stressed	0	1	0	1	Stressed	0	1	0	1
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	8	10	2	20	Total	8	14	2	24	Total	8	17	2	27
Plot 7 2005					Plot 7 2006					Plot 7 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	17	2	27	Alive	8	17	2	27	Alive	7	20	2	29
Stressed	0	1	0	1	Stressed	0	1	0	1	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	1	0	1
Dead	0	0	0	0	Dead	0	0	0	0	Dead	1	0	0	1
Total	8	18	2	28	Total	8	18	2	28	Total	8	21	2	31
Plot 7 2008					Plot 7 2009					Plot 7 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	20	2	29	Alive	7	24	2	33	Alive	6	26	2	34
Stressed	0	1	0	1	Stressed	0	0	0	0	Stressed	1	0	0	1
Very Stressed	0	1	0	1	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	7	22	2	31	Total	7	24	2	33	Total	7	26	2	35

TABLE 2:TREES BY CONDITION

Plot 7 2011					Plot 7 2012					Plot 7 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	6	28	2	36	Alive	6	27	3	36	Alive	6	27	2	35
Stressed	1	0	1	2	Stressed	1	4	1	6	Stressed	1	3	2	6
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	1	0	1
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	7	28	3	38	Total	7	31	4	42	Total	7	31	4	42
Plot 7 2014					Plot 7 2015					Plot 7 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	30	1	35	Alive	2	26	0	28	Alive	1	6	0	7
Stressed	3	5	1	9	Stressed	4	9	2	15	Stressed	4	20	3	27
Very Stressed	0	1	2	3	Very Stressed	1	2	2	5	Very Stressed	2	4	0	6
Dead	0	2	0	2	Dead	0	0	0	0	Dead	0	9	1	10
Total	7	38	4	49	Total	7	37	4	48	Total	7	39	4	50
Plot 7 2017					Plot 7 2018					Plot 7 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	6	0	7	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	4	17	3	24	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	2	2	0	4	Very Stressed	7	7	0	14	Very Stressed	5	5	0	10
Dead	0	5	0	5	Dead	0	18	3	21	Dead	2	2	0	4
Total	7	30	3	40	Total	7	25	3	35	Total	7	7	0	14
Plot 7 2020					Plot 7 2021					Plot 7 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	0	1	1	Alive	0	0	1	1
Stressed	2	0	0	2	Stressed	2	0	0	2	Stressed	1	0	0	1
Very Stressed	3	3	0	6	Very Stressed	3	2	0	5	Very Stressed	4	2	1	7
Dead	0	2	0	2	Dead	0	1	0	1	Dead	0	0	0	0
Total	5	5	0	10	Total	5	3	1	9	Total	5	2	2	9

TABLE 2:TREES BY CONDITION

Plot 7 2023					Plot 7 2024					Plot 7 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	1	1	Alive	1	0	0	1	Alive	0	0	0	0
Stressed	1	0	0	1	Stressed	1	0	1	2	Stressed	0	0	0	0
Very Stressed	4	1	0	5	Very Stressed	3	0	0	3	Very Stressed	2	0	0	2
Dead	0	1	1	2	Dead	0	1	0	1	Dead	3	0	1	4
Total	5	2	2	9	Total	5	1	1	7	Total	5	0	1	6

TABLE 2:TREES BY CONDITION

Plot 8 1999					Plot 8 2000					Plot 8 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	5	0	9	Alive	4	15	0	19	Alive	4	9	0	13
Stressed	0	26	0	26	Stressed	0	15	0	15	Stressed	0	19	0	19
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	1	0	1	Dead	0	2	0	2
Total	4	31	0	35	Total	4	31	0	35	Total	4	30	0	34
Plot 8 2002					Plot 8 2003					Plot 8 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	11	0	15	Alive	4	5	0	9	Alive	4	5	0	9
Stressed	0	16	0	16	Stressed	0	22	0	22	Stressed	0	21	0	21
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	1	0	1	Dead	0	0	0	0	Dead	0	1	0	1
Total	4	28	0	32	Total	4	27	0	31	Total	4	27	0	31
Plot 8 2005					Plot 8 2006					Plot 8 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	5	0	9	Alive	3	10	0	13	Alive	3	18	2	23
Stressed	0	21	0	21	Stressed	1	12	0	13	Stressed	1	10	0	11
Very Stressed	0	0	0	0	Very Stressed	0	4	0	4	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	4	26	0	30	Total	4	26	0	30	Total	4	28	2	34
Plot 8 2008					Plot 8 2009					Plot 8 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	18	9	30	Alive	4	19	20	43	Alive	4	20	36	60
Stressed	1	10	0	11	Stressed	0	8	0	8	Stressed	0	4	0	4
Very Stressed	0	0	0	0	Very Stressed	0	1	0	1	Very Stressed	0	2	0	2
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	2	0	2
Total	4	28	9	41	Total	4	28	20	52	Total	4	28	36	68

TABLE 2:TREES BY CONDITION

Plot 8 2011					Plot 8 2012					Plot 8 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	17	55	77	Alive	5	18	74	97	Alive	5	19	91	115
Stressed	0	5	1	6	Stressed	0	5	2	7	Stressed	0	5	6	11
Very Stressed	0	3	0	3	Very Stressed	0	3	0	3	Very Stressed	0	3	0	3
Dead	0	1	0	1	Dead	0	0	0	0	Dead	0	0	0	0
Total	5	26	56	87	Total	5	26	76	107	Total	5	27	97	129
Plot 8 2014					Plot 8 2015					Plot 8 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	20	101	126	Alive	5	25	79	109	Alive	5	24	80	109
Stressed	0	4	7	11	Stressed	0	3	33	36	Stressed	0	4	27	31
Very Stressed	0	3	0	3	Very Stressed	0	2	2	4	Very Stressed	0	2	7	9
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	3	3
Total	5	27	108	140	Total	5	30	114	149	Total	5	30	117	152
Plot 8 2017					Plot 8 2018					Plot 8 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	24	39	68	Alive	0	5	1	6	Alive	0	13	30	43
Stressed	0	5	58	63	Stressed	1	12	34	47	Stressed	3	6	41	50
Very Stressed	0	2	19	21	Very Stressed	4	10	63	77	Very Stressed	3	6	17	26
Dead	0	0	0	0	Dead	0	5	18	23	Dead	0	2	11	13
Total	5	31	116	152	Total	5	32	116	153	Total	6	27	99	132
Plot 8 2020					Plot 8 2021					Plot 8 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	20	38	59	Alive	1	19	36	56	Alive	1	20	34	55
Stressed	5	3	38	46	Stressed	6	4	41	51	Stressed	5	5	50	60
Very Stressed	1	4	11	16	Very Stressed	0	4	9	13	Very Stressed	1	4	3	8
Dead	0	0	3	3	Dead	0	0	1	1	Dead	0	0	0	0
Total	7	27	90	124	Total	7	27	87	121	Total	7	29	87	123

TABLE 2:TREES BY CONDITION

Plot 8 2023					Plot 8 2024					Plot 8 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	21	24	47	Alive	1	23	34	58	Alive	1	20	25	46
Stressed	3	5	42	50	Stressed	3	5	39	47	Stressed	4	9	31	44
Very Stressed	1	4	21	26	Very Stressed	2	2	13	17	Very Stressed	0	1	28	29
Dead	1	0	1	2	Dead	0	2	1	3	Dead	1	0	2	3
Total	7	30	88	125	Total	6	32	87	125	Total	6	30	86	122

TABLE 2:TREES BY CONDITION

Plot 9 1999					Plot 9 2000					Plot 9 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	12	6	20	Alive	2	8	5	15	Alive	2	6	2	10
Stressed	0	12	2	14	Stressed	0	9	2	11	Stressed	0	8	5	13
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	7	1	8	Dead	0	3	0	3
Total	2	24	8	34	Total	2	24	8	34	Total	2	17	7	26
Plot 9 2002					Plot 9 2003					Plot 9 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	6	2	10	Alive	2	6	2	10	Alive	2	6	2	10
Stressed	0	5	5	10	Stressed	0	3	4	7	Stressed	0	2	4	6
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	3	0	3	Dead	0	2	1	3	Dead	0	1	0	1
Total	2	14	7	23	Total	2	11	7	20	Total	2	9	6	17
Plot 9 2005					Plot 9 2006					Plot 9 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	6	2	10	Alive	1	1	1	3	Alive	1	1	14	16
Stressed	0	2	4	6	Stressed	1	4	3	8	Stressed	1	2	3	6
Very Stressed	0	0	0	0	Very Stressed	0	0	2	2	Very Stressed	0	0	2	2
Dead	0	0	0	0	Dead	0	3	0	3	Dead	0	2	0	2
Total	2	8	6	16	Total	2	8	6	16	Total	2	5	19	26
Plot 9 2008					Plot 9 2009					Plot 9 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	59	60	Alive	1	2	114	117	Alive	1	14	122	137
Stressed	2	2	6	10	Stressed	1	2	5	8	Stressed	1	2	13	16
Very Stressed	0	0	3	3	Very Stressed	0	0	1	1	Very Stressed	0	0	2	2
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	2	3	68	73	Total	2	4	120	126	Total	2	16	137	155

TABLE 2:TREES BY CONDITION

Plot 9 2011					Plot 9 2012					Plot 9 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	15	114	130	Alive	1	17	84	102	Alive	1	17	72	90
Stressed	1	2	33	36	Stressed	1	2	63	66	Stressed	1	3	59	63
Very Stressed	0	0	2	2	Very Stressed	0	0	8	8	Very Stressed	0	0	8	8
Dead	0	0	0	0	Dead	0	0	1	1	Dead	0	0	18	18
Total	2	17	149	168	Total	2	19	156	177	Total	2	20	157	179
Plot 9 2014					Plot 9 2015					Plot 9 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	16	53	70	Alive	1	10	23	34	Alive	1	5	8	14
Stressed	1	5	49	55	Stressed	1	9	40	50	Stressed	1	10	13	24
Very Stressed	0	0	4	4	Very Stressed	0	2	14	16	Very Stressed	0	1	6	7
Dead	0	2	33	35	Dead	0	2	29	31	Dead	0	5	50	55
Total	2	23	139	164	Total	2	23	106	131	Total	2	21	77	100
Plot 9 2017					Plot 9 2018					Plot 9 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	5	2	8	Alive	0	1	0	1	Alive	0	1	0	1
Stressed	1	6	11	18	Stressed	1	5	2	8	Stressed	2	5	6	13
Very Stressed	0	1	8	9	Very Stressed	1	5	13	19	Very Stressed	0	3	7	10
Dead	0	4	7	11	Dead	0	1	6	7	Dead	0	2	2	4
Total	2	16	28	46	Total	2	12	21	35	Total	2	11	15	28
Plot 9 2020					Plot 9 2021					Plot 9 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	6	4	10	Alive	0	4	20	24	Alive	0	9	21	30
Stressed	2	3	8	13	Stressed	2	5	10	17	Stressed	2	6	25	33
Very Stressed	0	3	3	6	Very Stressed	0	3	1	4	Very Stressed	0	2	4	6
Dead	0	0	0	0	Dead	0	0	2	2	Dead	0	0	1	1
Total	2	12	15	29	Total	2	12	33	47	Total	2	17	51	70

TABLE 2:TREES BY CONDITION

Plot 9 2023					Plot 9 2024					Plot 9 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	2	0	2	Alive	1	11	2	14	Alive	0	10	2	12
Stressed	2	10	6	18	Stressed	2	5	8	15	Stressed	3	6	8	17
Very Stressed	0	3	10	13	Very Stressed	0	1	4	5	Very Stressed	0	5	4	9
Dead	0	2	35	37	Dead	0	1	3	4	Dead	0	1	1	2
Total	2	17	51	70	Total	3	18	17	38	Total	3	22	15	40

TABLE 2: TREES BY CONDITION

Plot 10 1999					Plot 10 2000					Plot 10 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	9	15	2	26	Alive	8	16	2	26	Alive	8	17	0	25
Stressed	0	4	0	4	Stressed	1	3	0	4	Stressed	1	3	2	6
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	9	19	2	30	Total	9	19	2	30	Total	9	20	2	31
Plot 10 2002					Plot 10 2003					Plot 10 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	15	0	23	Alive	9	6	0	15	Alive	8	8	0	16
Stressed	1	5	2	8	Stressed	0	14	2	16	Stressed	1	13	2	16
Very Stressed	0	0	0	0	Very Stressed	0	1	0	1	Very Stressed	0	2	0	2
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	9	20	2	31	Total	9	21	2	32	Total	9	23	2	34
Plot 10 2005					Plot 10 2006					Plot 10 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	9	0	17	Alive	4	10	1	15	Alive	5	15	17	37
Stressed	1	13	2	16	Stressed	3	9	2	14	Stressed	1	7	2	10
Very Stressed	0	0	0	0	Very Stressed	2	3	0	5	Very Stressed	2	2	0	4
Dead	0	2	0	2	Dead	0	1	0	1	Dead	1	0	0	1
Total	9	24	2	35	Total	9	23	3	35	Total	9	24	19	52
Plot 10 2008					Plot 10 2009					Plot 10 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	16	23	44	Alive	7	24	44	75	Alive	7	22	54	83
Stressed	1	7	3	11	Stressed	1	7	0	8	Stressed	1	9	2	12
Very Stressed	2	2	0	4	Very Stressed	0	1	0	1	Very Stressed	0	1	0	1
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	8	25	26	59	Total	8	32	44	84	Total	8	32	56	96

TABLE 2:TREES BY CONDITION

Plot 10 2011					Plot 10 2012					Plot 10 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	6	23	68	97	Alive	6	23	70	99	Alive	5	26	69	100
Stressed	2	9	7	18	Stressed	2	9	13	24	Stressed	2	10	12	24
Very Stressed	0	1	1	2	Very Stressed	0	3	5	8	Very Stressed	0	3	6	9
Dead	0	0	0	0	Dead	0	0	0	0	Dead	1	0	3	4
Total	8	33	76	117	Total	8	35	88	131	Total	8	39	90	137
Plot 10 2014					Plot 10 2015					Plot 10 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	27	40	72	Alive	4	26	9	39	Alive	1	9	1	11
Stressed	1	6	16	23	Stressed	1	9	20	30	Stressed	1	8	12	21
Very Stressed	1	7	20	28	Very Stressed	2	5	33	40	Very Stressed	5	11	22	38
Dead	0	0	13	13	Dead	0	0	14	14	Dead	0	13	27	40
Total	7	40	89	136	Total	7	40	76	123	Total	7	41	62	110
Plot 10 2017					Plot 10 2018					Plot 10 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	8	2	11	Alive	0	1	0	1	Alive	0	2	0	2
Stressed	1	9	13	23	Stressed	0	9	10	19	Stressed	3	8	17	28
Very Stressed	5	6	13	24	Very Stressed	7	8	13	28	Very Stressed	4	8	6	18
Dead	0	5	7	12	Dead	0	5	6	11	Dead	0	0	0	0
Total	7	28	35	70	Total	7	23	29	59	Total	7	18	23	48
Plot 10 2020					Plot 10 2021					Plot 10 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	5	7	12	Alive	0	6	10	16	Alive	0	7	4	11
Stressed	1	8	12	21	Stressed	1	8	9	18	Stressed	2	8	15	25
Very Stressed	5	4	2	11	Very Stressed	5	3	2	10	Very Stressed	4	2	2	8
Dead	1	1	2	4	Dead	0	0	0	0	Dead	0	0	0	0
Total	7	18	23	48	Total	6	17	21	44	Total	6	17	21	44

TABLE 2:TREES BY CONDITION

Plot 10 2023					Plot 10 2024					Plot 10 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	12	2	14	Alive	0	9	3	12	Alive	0	3	3	6
Stressed	0	3	7	10	Stressed	0	6	12	18	Stressed	0	9	6	15
Very Stressed	6	3	9	18	Very Stressed	6	3	2	11	Very Stressed	6	6	8	20
Dead	0	0	3	3	Dead	0	0	2	2	Dead	0	0	0	0
Total	6	18	21	45	Total	6	18	19	43	Total	6	18	17	41

TABLE 2:TREES BY CONDITION

Plot 11 1999					Plot 11 2000					Plot 11 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	0	1	Alive	0	1	6	7	Alive	0	1	85	86
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	1	1
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	0	1	0	1	Total	0	1	6	7	Total	0	1	86	87
Plot 11 2002					Plot 11 2003					Plot 11 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	188	189	Alive	0	2	230	232	Alive	0	3	247	250
Stressed	0	0	3	3	Stressed	0	0	10	10	Stressed	0	0	13	13
Very Stressed	0	0	0	0	Very Stressed	0	0	1	1	Very Stressed	0	0	0	0
Dead	0	0	1	1	Dead	0	0	0	0	Dead	0	0	1	1
Total	0	1	192	193	Total	0	2	241	243	Total	0	3	261	264
Plot 11 2005					Plot 11 2006					Plot 11 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	4	225	229	Alive	1	4	145	150	Alive	2	6	102	110
Stressed	0	0	35	35	Stressed	0	0	83	83	Stressed	0	0	63	63
Very Stressed	0	0	2	2	Very Stressed	0	0	13	13	Very Stressed	0	0	30	30
Dead	0	0	7	7	Dead	0	0	26	26	Dead	0	0	46	46
Total	0	4	269	273	Total	1	4	267	272	Total	2	6	241	249
Plot 11 2008					Plot 11 2009					Plot 11 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	8	13	29	Alive	25	10	1	36	Alive	27	10	0	37
Stressed	0	0	90	90	Stressed	0	2	21	23	Stressed	0	2	12	14
Very Stressed	0	0	46	46	Very Stressed	0	0	67	67	Very Stressed	0	0	27	27
Dead	0	0	46	46	Dead	0	0	62	62	Dead	0	1	50	51
Total	8	8	195	211	Total	25	12	151	188	Total	27	13	89	129

TABLE 2:TREES BY CONDITION

Plot 11 2011					Plot 11 2012					Plot 11 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	29	13	2	44	Alive	30	22	7	59	Alive	26	26	8	60
Stressed	2	2	15	19	Stressed	7	2	13	22	Stressed	14	10	13	37
Very Stressed	0	1	23	24	Very Stressed	1	1	19	21	Very Stressed	1	1	20	22
Dead	0	0	2	2	Dead	0	0	9	9	Dead	0	1	2	3
Total	31	16	42	89	Total	38	25	48	111	Total	41	38	43	122
Plot 11 2014					Plot 11 2015					Plot 11 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	33	45	12	90	Alive	29	57	16	102	Alive	31	68	20	119
Stressed	10	10	13	33	Stressed	17	14	15	46	Stressed	17	14	22	53
Very Stressed	1	1	21	23	Very Stressed	3	0	19	22	Very Stressed	3	2	11	16
Dead	0	0	1	1	Dead	0	1	1	2	Dead	0	4	2	6
Total	44	56	47	147	Total	49	72	51	172	Total	51	88	55	194
Plot 11 2017					Plot 11 2018					Plot 11 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	31	70	23	124	Alive	15	68	15	98	Alive	19	69	9	97
Stressed	19	15	20	54	Stressed	21	21	25	67	Stressed	23	22	39	84
Very Stressed	3	2	13	18	Very Stressed	19	3	17	39	Very Stressed	13	4	9	26
Dead	0	3	2	5	Dead	0	1	3	4	Dead	0	4	3	7
Total	53	90	58	201	Total	55	93	60	208	Total	55	99	60	214
Plot 11 2020					Plot 11 2021					Plot 11 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	13	98	19	130	Alive	10	109	26	145	Alive	4	105	17	126
Stressed	25	1	34	60	Stressed	30	4	35	69	Stressed	31	10	40	81
Very Stressed	16	1	7	24	Very Stressed	15	1	4	20	Very Stressed	18	2	8	28
Dead	1	0	1	2	Dead	0	0	0	0	Dead	3	1	1	5
Total	55	100	61	216	Total	55	114	65	234	Total	56	118	66	240

TABLE 2:TREES BY CONDITION

Plot 11 2023					Plot 11 2024					Plot 11 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	75	9	86	Alive	5	77	11	93	Alive	6	70	7	83
Stressed	15	27	28	70	Stressed	18	53	38	109	Stressed	15	56	38	109
Very Stressed	34	22	28	84	Very Stressed	26	2	17	45	Very Stressed	28	5	20	53
Dead	2	0	2	4	Dead	3	0	0	3	Dead	0	4	1	5
Total	53	124	67	244	Total	52	132	66	250	Total	49	135	66	250

TABLE 2:TREES BY CONDITION

Plot 12 1999					Plot 12 2000					Plot 12 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	27	15	42	Alive	0	19	15	34	Alive	0	8	14	22
Stressed	1	17	1	19	Stressed	0	24	1	25	Stressed	0	35	2	37
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	1	1	0	2	Dead	0	0	0	0
Total	1	44	16	61	Total	1	44	16	61	Total	0	43	16	59
Plot 12 2002					Plot 12 2003					Plot 12 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	4	12	16	Alive	0	1	7	8	Alive	0	2	9	11
Stressed	0	39	4	43	Stressed	0	42	9	51	Stressed	0	38	7	45
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	1	0	1
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	2	0	2
Total	0	43	16	59	Total	0	43	16	59	Total	0	43	16	59
Plot 12 2005					Plot 12 2006					Plot 12 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	2	9	11	Alive	0	2	3	5	Alive	0	1	6	7
Stressed	0	35	7	42	Stressed	0	15	9	24	Stressed	0	16	6	22
Very Stressed	0	1	0	1	Very Stressed	0	16	3	19	Very Stressed	0	15	3	18
Dead	0	3	0	3	Dead	0	5	1	6	Dead	0	1	0	1
Total	0	41	16	57	Total	0	38	16	54	Total	0	33	15	48
Plot 12 2008					Plot 12 2009					Plot 12 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	6	7	Alive	0	2	4	6	Alive	0	5	4	9
Stressed	0	13	6	19	Stressed	0	16	7	23	Stressed	0	14	3	17
Very Stressed	0	18	3	21	Very Stressed	0	13	4	17	Very Stressed	0	12	7	19
Dead	0	0	0	0	Dead	0	2	0	2	Dead	0	0	1	1
Total	0	32	15	47	Total	0	33	15	48	Total	0	31	15	46

TABLE 2:TREES BY CONDITION

Plot 12 2011					Plot 12 2012					Plot 12 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	3	4	7	Alive	0	2	1	3	Alive	0	2	1	3
Stressed	0	14	3	17	Stressed	0	11	5	16	Stressed	0	11	5	16
Very Stressed	0	12	6	18	Very Stressed	0	16	6	22	Very Stressed	0	14	6	20
Dead	0	2	1	3	Dead	0	0	1	1	Dead	0	2	0	2
Total	0	31	14	45	Total	0	29	13	42	Total	0	29	12	41
Plot 12 2014					Plot 12 2015					Plot 12 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	1	2	Alive	0	0	1	1	Alive	0	0	1	1
Stressed	0	11	5	16	Stressed	0	13	6	19	Stressed	0	13	6	19
Very Stressed	0	13	5	18	Very Stressed	0	8	4	12	Very Stressed	0	6	4	10
Dead	0	2	1	3	Dead	0	4	0	4	Dead	0	2	0	2
Total	0	27	12	39	Total	0	25	11	36	Total	0	21	11	32
Plot 12 2017					Plot 12 2018					Plot 12 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	4	0	4	Alive	0	0	0	0	Alive	0	1	0	1
Stressed	0	10	7	17	Stressed	0	6	2	8	Stressed	0	6	5	11
Very Stressed	0	2	3	5	Very Stressed	0	10	7	17	Very Stressed	0	8	4	12
Dead	0	3	1	4	Dead	0	0	1	1	Dead	0	1	0	1
Total	0	19	11	30	Total	0	16	10	26	Total	0	16	9	25
Plot 12 2020					Plot 12 2021					Plot 12 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	4	1	5	Alive	0	2	0	2	Alive	0	14	0	14
Stressed	0	4	7	11	Stressed	0	7	7	14	Stressed	0	7	6	13
Very Stressed	0	6	1	7	Very Stressed	0	4	2	6	Very Stressed	0	3	3	6
Dead	0	1	0	1	Dead	0	1	0	1	Dead	0	0	1	1
Total	0	15	9	24	Total	0	14	9	23	Total	0	24	10	34

TABLE 2:TREES BY CONDITION

Plot 12 2011					Plot 12 2012					Plot 12 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	27	0	27	Alive	0	55	0	55	Alive	0	73	2	75
Stressed	0	10	3	13	Stressed	0	12	5	17	Stressed	0	9	3	12
Very Stressed	0	6	6	12	Very Stressed	0	8	4	12	Very Stressed	0	7	6	13
Dead	0	1	0	1	Dead	0	0	0	0	Dead	0	2	0	2
Total	0	44	9	53	Total	0	75	9	84	Total	0	91	11	102

TABLE 2:TREES BY CONDITION

All Plots 1999					All Plots 2000					All Plots 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	57	187	64	308	Alive	54	148	67	269	Alive	49	107	199	355
Stressed	5	64	22	91	Stressed	7	89	27	123	Stressed	14	121	51	186
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	3	15	7	25	Dead	3	13	2	18
Total	62	251	86	399	Total	64	252	101	417	Total	66	241	252	559
All Plots 2002					All Plots 2003					All Plots 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	51	65	667	783	Alive	64	49	776	889	Alive	75	59	677	811
Stressed	13	121	75	209	Stressed	16	143	142	301	Stressed	15	132	170	317
Very Stressed	0	0	0	0	Very Stressed	0	1	1	2	Very Stressed	0	3	1	4
Dead	1	43	4	48	Dead	0	5	11	16	Dead	0	9	130	139
Total	65	229	746	1040	Total	80	198	930	1208	Total	90	203	978	1271
All Plots 2005					All Plots 2006					All Plots 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	79	65	499	643	Alive	76	71	275	422	Alive	106	108	296	510
Stressed	17	127	225	369	Stressed	27	80	297	404	Stressed	25	72	201	298
Very Stressed	0	3	28	31	Very Stressed	9	37	76	122	Very Stressed	7	32	88	127
Dead	0	6	113	119	Dead	1	15	123	139	Dead	4	8	109	121
Total	96	201	865	1162	Total	113	203	771	1087	Total	142	220	694	1056
All Plots 2008					All Plots 2009					All Plots 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	129	146	271	546	Alive	179	209	368	756	Alive	180	264	403	847
Stressed	31	69	212	312	Stressed	25	83	172	280	Stressed	30	80	110	220
Very Stressed	9	36	130	175	Very Stressed	3	22	150	175	Very Stressed	5	26	149	180
Dead	1	0	73	74	Dead	1	2	104	107	Dead	1	4	120	125
Total	170	251	686	1107	Total	208	316	794	1318	Total	216	374	782	1372

TABLE 2:TREES BY CONDITION

All Plots 2011					All Plots 2012					All Plots 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	177	284	434	895	Alive	181	327	418	926	Alive	166	348	421	935
Stressed	41	90	157	288	Stressed	54	97	206	357	Stressed	74	108	200	382
Very Stressed	7	28	132	167	Very Stressed	8	34	139	181	Very Stressed	9	36	129	174
Dead	2	8	26	36	Dead	2	6	25	33	Dead	2	8	54	64
Total	227	410	749	1386	Total	245	464	788	1497	Total	251	500	804	1555
All Plots 2014					All Plots 2015					All Plots 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	164	357	387	908	Alive	155	370	275	800	Alive	154	323	228	705
Stressed	72	141	158	371	Stressed	90	166	205	461	Stressed	74	160	172	406
Very Stressed	20	40	139	199	Very Stressed	23	40	156	219	Very Stressed	31	58	105	194
Dead	3	13	96	112	Dead	3	9	86	98	Dead	14	70	141	225
Total	259	551	780	1590	Total	271	585	722	1578	Total	273	611	646	1530
All Plots 2017					All Plots 2018					All Plots 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	115	328	109	552	Alive	47	174	25	246	Alive	46	210	46	302
Stressed	97	124	246	467	Stressed	75	165	125	365	Stressed	105	158	213	476
Very Stressed	31	51	126	208	Very Stressed	105	122	257	484	Very Stressed	57	73	121	251
Dead	22	54	38	114	Dead	19	60	80	159	Dead	20	36	33	89
Total	265	557	519	1341	Total	246	521	487	1254	Total	228	477	413	1118
All Plots 2020					All Plots 2021					All Plots 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	46	346	107	499	Alive	40	361	113	514	Alive	25	411	87	523
Stressed	103	75	189	367	Stressed	110	104	183	397	Stressed	117	119	211	447
Very Stressed	55	42	75	172	Very Stressed	49	31	90	170	Very Stressed	53	26	99	178
Dead	6	9	21	36	Dead	7	11	10	28	Dead	6	11	14	31
Total	210	472	392	1074	Total	206	507	396	1109	Total	201	567	411	1179

TABLE 2:TREES BY CONDITION

All Plots 2023					All Plots 2024					All Plots 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	34	359	40	433	Alive	39	447	56	542	Alive	32	389	51	472
Stressed	79	189	128	396	Stressed	85	224	164	473	Stressed	85	274	146	505
Very Stressed	80	87	174	341	Very Stressed	66	50	111	227	Very Stressed	71	67	130	268
Dead	7	7	60	74	Dead	9	8	15	32	Dead	6	26	8	40
Total	200	642	402	1244	Total	199	729	346	1274	Total	194	756	335	1285

TABLE 3: PROPAGULES BY CONDITION

Plot 1 1999					Plot 1 2000					Plot 1 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	8	3	11	Alive	0	4	1	5	Alive	0	12	4	16
Stressed	0	0	0	0	Stressed	0	3	1	4	Stressed	0	4	2	6
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	1	0	1	Dead	0	0	0	0
Total	0	8	3	11	Total	0	8	2	10	Total	0	16	6	22
Plot 1 2002					Plot 1 2003					Plot 1 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	7	7	14	Alive	0	33	9	42	Alive	0	31	2	33
Stressed	0	11	10	21	Stressed	0	4	7	11	Stressed	0	7	6	13
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	2	7	9	Dead	0	1	1	2	Dead	0	3	0	3
Total	0	20	24	44	Total	0	38	17	55	Total	0	41	8	49
Plot 1 2005					Plot 1 2006					Plot 1 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	28	0	28	Alive	0	28	0	28	Alive	0	15	1	16
Stressed	0	9	4	13	Stressed	0	2	1	3	Stressed	0	2	0	2
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	2	0	2
Dead	0	6	1	7	Dead	0	12	3	15	Dead	0	8	1	9
Total	0	43	5	48	Total	0	42	4	46	Total	0	27	2	29
Plot 1 2008					Plot 1 2009					Plot 1 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	6	14	42	62	Alive	32	13	41	86	Alive	46	7	22	75
Stressed	0	1	2	3	Stressed	0	1	5	6	Stressed	4	1	7	12
Very Stressed	0	2	0	2	Very Stressed	0	1	1	2	Very Stressed	1	2	1	4
Dead	0	2	0	2	Dead	3	0	1	4	Dead	8	4	2	14
Total	6	19	44	69	Total	35	15	48	98	Total	59	14	32	105

TABLE 3: PROPAGULES BY CONDITION

Plot 1 2011					Plot 1 2012					Plot 1 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	49	12	9	70	Alive	57	10	7	74	Alive	50	11	9	70
Stressed	7	2	3	12	Stressed	10	2	5	17	Stressed	9	1	4	14
Very Stressed	0	0	1	1	Very Stressed	1	0	0	1	Very Stressed	3	0	0	3
Dead	2	1	3	6	Dead	9	0	2	11	Dead	13	1	3	17
Total	58	15	16	89	Total	77	12	14	103	Total	75	13	16	104
Plot 1 2014					Plot 1 2015					Plot 1 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	42	7	1	50	Alive	47	11	1	59	Alive	5	0	0	5
Stressed	18	6	1	25	Stressed	28	6	0	34	Stressed	13	0	0	13
Very Stressed	8	0	2	10	Very Stressed	8	0	1	9	Very Stressed	2	0	0	2
Dead	2	0	8	10	Dead	5	3	2	10	Dead	62	17	2	81
Total	70	13	12	95	Total	88	20	4	112	Total	82	17	2	101
Plot 1 2017					Plot 1 2018					Plot 1 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	2	0	6	Alive	3	1	0	4	Alive	2	6	0	8
Stressed	10	0	0	10	Stressed	9	1	0	10	Stressed	10	0	1	11
Very Stressed	7	0	0	7	Very Stressed	3	0	0	3	Very Stressed	2	0	0	2
Dead	2	0	0	2	Dead	7	1	0	8	Dead	1	1	0	2
Total	23	2	0	25	Total	22	3	0	25	Total	15	7	1	23
Plot 1 2020					Plot 1 2021					Plot 1 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	4	0	5	Alive	2	1	0	3	Alive	1	1	0	2
Stressed	8	1	0	9	Stressed	5	0	0	5	Stressed	6	0	0	6
Very Stressed	5	0	0	5	Very Stressed	2	1	0	3	Very Stressed	2	1	0	3
Dead	0	2	0	2	Dead	5	3	0	8	Dead	0	0	0	0
Total	14	7	0	21	Total	14	5	0	19	Total	9	2	0	11

TABLE 3: PROPAGULES BY CONDITION

Plot 1 2023					Plot 1 2024					Plot 1 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	0	1	Alive	0	1	1	2	Alive	0	2	1	3
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	6	0	0	6	Very Stressed	0	1	0	1	Very Stressed	0	0	0	0
Dead	3	1	0	4	Dead	6	0	0	6	Dead	0	0	0	0
Total	9	2	0	11	Total	6	2	1	9	Total	0	2	1	3

TABLE 3: PROPAGULES BY CONDITION

Plot 2 1999					Plot 2 2000					Plot 2 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	23	139	162	Alive	0	1	0	1	Alive	0	0	0	0
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	1	0	0	1
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	94	145	239	Dead	0	1	0	1
Total	0	23	139	162	Total	0	95	145	240	Total	1	1	0	2
Plot 2 2002					Plot 2 2003					Plot 2 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	21	3	3	27	Alive	37	5	3	45	Alive	47	5	4	56
Stressed	4	0	1	5	Stressed	11	0	1	12	Stressed	24	0	2	26
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	22	0	2	24	Dead	6	1	1	8
Total	25	3	4	32	Total	70	5	6	81	Total	77	6	7	90
Plot 2 2005					Plot 2 2006					Plot 2 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	75	28	7	110	Alive	113	61	57	231	Alive	106	85	114	305
Stressed	25	0	3	28	Stressed	1	0	1	2	Stressed	1	0	3	4
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	3	0	0	3	Dead	4	1	0	5	Dead	0	2	1	3
Total	103	28	10	141	Total	118	62	58	238	Total	107	87	118	312
Plot 2 2008					Plot 2 2009					Plot 2 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	84	78	96	258	Alive	67	61	44	172	Alive	63	48	32	143
Stressed	10	4	7	21	Stressed	13	3	2	18	Stressed	13	3	4	20
Very Stressed	0	0	0	0	Very Stressed	6	0	1	7	Very Stressed	6	0	1	7
Dead	7	5	1	13	Dead	7	6	5	18	Dead	7	10	1	18
Total	101	87	104	292	Total	93	70	52	215	Total	89	61	38	188

TABLE 3: PROPAGULES BY CONDITION

Plot 2 2011					Plot 2 2012					Plot 2 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	41	32	15	88	Alive	29	27	10	66	Alive	36	44	9	89
Stressed	25	5	6	36	Stressed	26	4	6	36	Stressed	24	6	3	33
Very Stressed	10	0	2	12	Very Stressed	13	1	4	18	Very Stressed	8	2	1	11
Dead	8	9	1	18	Dead	9	6	4	19	Dead	8	4	4	16

Total	84	46	24	154	Total	77	38	24	139	Total	76	56	17	149
Plot 2 2014														
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	13	62	2	77	Alive	11	81	1	93	Alive	6	63	1	70
Stressed	33	7	2	42	Stressed	33	16	1	50	Stressed	23	10	1	34
Very Stressed	18	2	6	26	Very Stressed	21	2	4	27	Very Stressed	7	4	4	15
Dead	8	5	1	14	Dead	5	9	4	18	Dead	29	46	1	76
Total	72	76	11	159	Total	70	108	10	188	Total	65	123	7	195
Plot 2 2017														
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	96	0	101	Alive	2	39	0	41	Alive	5	49	0	54
Stressed	15	9	0	24	Stressed	10	14	0	24	Stressed	9	9	0	18
Very Stressed	8	3	2	13	Very Stressed	2	1	1	4	Very Stressed	1	0	1	2
Dead	8	24	4	36	Dead	14	72	1	87	Dead	2	20	0	22
Total	36	132	6	174	Total	28	126	2	156	Total	17	78	1	96
Plot 2 2020														
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	42	1	47	Alive	5	81	2	88	Alive	5	113	2	120
Stressed	11	9	0	20	Stressed	9	3	0	12	Stressed	8	7	0	15
Very Stressed	1	1	1	3	Very Stressed	2	0	1	3	Very Stressed	0	1	1	2
Dead	0	16	0	16	Dead	0	7	0	7	Dead	4	5	0	9
Total	16	68	2	86	Total	16	91	3	110	Total	17	126	3	146
Plot 2 2021														
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	81	2	88	Alive	5	113	2	120	Alive	5	113	2	120
Stressed	9	3	0	12	Stressed	8	7	0	15	Stressed	8	7	0	15
Very Stressed	2	0	1	3	Very Stressed	0	1	1	2	Very Stressed	0	1	1	2
Dead	0	7	0	7	Dead	4	5	0	9	Dead	4	5	0	9
Total	16	91	3	110	Total	17	126	3	146	Total	17	126	3	146
Plot 2 2022														

TABLE 3: PROPAGULES BY CONDITION

Number	Plot 2 2023				Number	Plot 2 2024				Number	Plot 2 2025			
	BLACK	RED	WHITE	TOTAL		BLACK	RED	WHITE	TOTAL		BLACK	RED	WHITE	TOTAL
Alive	6	98	0	104	Alive	8	173	1	182	Alive	4	104	1	109
Stressed	6	25	0	31	Stressed	2	4	0	6	Stressed	3	26	2	31
Very Stressed	0	1	0	1	Very Stressed	0	0	0	0	Very Stressed	0	3	0	3
Dead	1	36	3	40	Dead	0	11	0	11	Dead	0	66	0	66
Total	13	160	3	176	Total	10	188	1	199	Total	7	199	3	209

TABLE 3: PROPAGULES BY CONDITION

Plot 3 1999					Plot 3 2000					Plot 3 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	5	6	Alive	0	1	16	17	Alive	29	38	2093	2160
Stressed	4	1	2	7	Stressed	0	1	10	11	Stressed	1	2	371	374
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	4	2	1	7	Dead	0	1	49	50
Total	4	2	7	13	Total	4	4	27	35	Total	30	41	2513	2584
Plot 3 2002					Plot 3 2003					Plot 3 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	19	54	396	469	Alive	4	69	81	154	Alive	12	69	26	107
Stressed	6	6	708	720	Stressed	7	7	364	378	Stressed	4	10	104	118
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	16	16
Dead	7	2	1081	1090	Dead	1	6	535	542	Dead	1	18	291	310
Total	32	62	2185	2279	Total	12	82	980	1074	Total	17	97	437	551
Plot 3 2005					Plot 3 2006					Plot 3 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	12	74	6	92	Alive	16	114	5	135	Alive	48	127	4	179
Stressed	3	14	42	59	Stressed	5	11	23	39	Stressed	4	11	9	24
Very Stressed	0	0	2	2	Very Stressed	0	1	1	2	Very Stressed	0	3	8	11
Dead	2	8	95	105	Dead	0	9	21	30	Dead	1	11	8	20
Total	17	96	145	258	Total	21	135	50	206	Total	53	152	29	234
Plot 3 2008					Plot 3 2009					Plot 3 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	59	125	3	187	Alive	67	133	2	202	Alive	48	121	1	170
Stressed	4	10	8	22	Stressed	3	6	7	16	Stressed	16	15	8	39
Very Stressed	0	5	8	13	Very Stressed	0	1	2	3	Very Stressed	0	1	1	2
Dead	1	6	2	9	Dead	8	8	7	23	Dead	9	9	2	20
Total	64	146	21	231	Total	78	148	18	244	Total	73	146	12	231

TABLE 3: PROPAGULES BY CONDITION

Plot 3 1999					Plot 3 2000					Plot 3 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	5	6	Alive	0	1	16	17	Alive	29	38	2093	2160
Stressed	4	1	2	7	Stressed	0	1	10	11	Stressed	1	2	371	374
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	4	2	1	7	Dead	0	1	49	50
Total	4	2	7	13	Total	4	4	27	35	Total	30	41	2513	2584
Plot 3 2002					Plot 3 2003					Plot 3 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	19	54	396	469	Alive	4	69	81	154	Alive	12	69	26	107
Stressed	6	6	708	720	Stressed	7	7	364	378	Stressed	4	10	104	118
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	16	16
Dead	7	2	1081	1090	Dead	1	6	535	542	Dead	1	18	291	310
Total	32	62	2185	2279	Total	12	82	980	1074	Total	17	97	437	551
Plot 3 2005					Plot 3 2006					Plot 3 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	12	74	6	92	Alive	16	114	5	135	Alive	48	127	4	179
Stressed	3	14	42	59	Stressed	5	11	23	39	Stressed	4	11	9	24
Very Stressed	0	0	2	2	Very Stressed	0	1	1	2	Very Stressed	0	3	8	11
Dead	2	8	95	105	Dead	0	9	21	30	Dead	1	11	8	20
Total	17	96	145	258	Total	21	135	50	206	Total	53	152	29	234
Plot 3 2008					Plot 3 2009					Plot 3 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	59	125	3	187	Alive	67	133	2	202	Alive	48	121	1	170
Stressed	4	10	8	22	Stressed	3	6	7	16	Stressed	16	15	8	39
Very Stressed	0	5	8	13	Very Stressed	0	1	2	3	Very Stressed	0	1	1	2
Dead	1	6	2	9	Dead	8	8	7	23	Dead	9	9	2	20
Total	64	146	21	231	Total	78	148	18	244	Total	73	146	12	231

TABLE 3: PROPAGULES BY CONDITION

Plot 3 2023					Plot 3 2024					Plot 3 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	286	3	292	Alive	0	348	5	353	Alive	0	61	4	65
Stressed	5	41	0	46	Stressed	7	42	0	49	Stressed	3	38	0	41
Very Stressed	8	0	1	9	Very Stressed	4	3	0	7	Very Stressed	1	5	0	6
Dead	2	18	0	20	Dead	3	19	1	23	Dead	7	298	1	306
Total	18	345	4	367	Total	14	412	6	432	Total	11	402	5	418

TABLE 3: PROPAGULES BY CONDITION

Plot 4 1999					Plot 4 2000					Plot 4 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	348	0	350	Alive	4	267	1	272	Alive	5	389	0	394
Stressed	0	0	0	0	Stressed	0	5	0	5	Stressed	1	108	1	110
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	152	0	152	Dead	1	166	0	167
Total	2	348	0	350	Total	4	424	1	429	Total	7	663	1	671
Plot 4 2002					Plot 4 2003					Plot 4 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	349	0	356	Alive	5	334	1	340	Alive	5	365	7	377
Stressed	0	108	1	109	Stressed	4	149	0	153	Stressed	4	163	2	169
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	1	110	0	111	Dead	0	99	0	99	Dead	0	102	0	102
Total	8	567	1	576	Total	9	582	1	592	Total	9	630	9	648
Plot 4 2005					Plot 4 2006					Plot 4 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	359	7	371	Alive	10	494	9	513	Alive	9	625	9	643
Stressed	5	175	3	183	Stressed	1	41	0	42	Stressed	1	38	0	39
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	63	1	64	Dead	1	56	0	57	Dead	1	8	0	9
Total	10	597	11	618	Total	12	591	9	612	Total	11	671	9	691
Plot 4 2008					Plot 4 2009					Plot 4 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	609	8	625	Alive	5	670	8	683	Alive	5	749	5	759
Stressed	0	43	0	43	Stressed	0	42	0	42	Stressed	0	43	0	43
Very Stressed	1	4	0	5	Very Stressed	1	1	0	2	Very Stressed	1	6	0	7
Dead	1	22	0	23	Dead	0	59	1	60	Dead	0	46	1	47
Total	10	678	8	696	Total	6	772	9	787	Total	6	844	6	856

TABLE 3: PROPAGULES BY CONDITION

Plot 4 2011					Plot 4 2012					Plot 4 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	716	7	727	Alive	4	760	8	772	Alive	2	756	3	761
Stressed	1	61	1	63	Stressed	0	74	0	74	Stressed	1	89	2	92
Very Stressed	2	2	0	4	Very Stressed	2	17	0	19	Very Stressed	1	13	1	15
Dead	0	79	0	79	Dead	2	53	0	55	Dead	2	63	1	66
Total	7	858	8	873	Total	8	904	8	920	Total	6	921	7	934
Plot 4 2014					Plot 4 2015					Plot 4 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	735	4	742	Alive	3	511	3	517	Alive	3	396	3	402
Stressed	0	164	2	166	Stressed	0	247	3	250	Stressed	3	212	4	219
Very Stressed	1	40	1	42	Very Stressed	1	52	0	53	Very Stressed	0	40	1	41
Dead	1	99	0	100	Dead	0	177	1	178	Dead	0	212	0	212
Total	5	1038	7	1050	Total	4	987	7	998	Total	6	860	8	874
Plot 4 2017					Plot 4 2018					Plot 4 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	419	3	426	Alive	1	391	4	396	Alive	1	550	2	553
Stressed	3	153	2	158	Stressed	1	144	2	147	Stressed	2	130	4	136
Very Stressed	0	33	2	35	Very Stressed	3	33	2	38	Very Stressed	2	20	1	23
Dead	0	143	2	145	Dead	2	131	0	133	Dead	0	34	1	35
Total	7	748	9	764	Total	7	699	8	714	Total	5	734	8	747
Plot 4 2020					Plot 4 2021					Plot 4 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	5	641	2	648	Alive	4	778	3	785	Alive	3	622	2	627
Stressed	0	93	3	96	Stressed	1	134	3	138	Stressed	2	154	2	158
Very Stressed	0	10	1	11	Very Stressed	0	28	1	29	Very Stressed	0	21	1	22
Dead	0	86	0	86	Dead	0	128	1	129	Dead	0	223	2	225
Total	5	830	6	841	Total	5	1068	8	1081	Total	5	1020	7	1032

TABLE 3: PROPAGULES BY CONDITION

Plot 4 2023					Plot 4 2024					Plot 4 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	619	2	624	Alive	1	633	1	635	Alive	0	361	0	361
Stressed	1	154	0	155	Stressed	2	166	1	169	Stressed	2	142	1	145
Very Stressed	1	17	1	19	Very Stressed	0	28	0	28	Very Stressed	0	26	0	26
Dead	0	219	2	221	Dead	2	175	1	178	Dead	1	380	0	381
Total	5	1009	5	1019	Total	5	1002	3	1010	Total	3	909	1	913

TABLE 3: PROPAGULES BY CONDITION

Plot 5 1999					Plot 5 2000					Plot 5 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	19	7	33	Alive	11	16	2	29	Alive	12	36	4	52
Stressed	0	0	0	0	Stressed	1	8	11	20	Stressed	9	20	14	43
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	4	2	6	Dead	0	2	2	4
Total	7	19	7	33	Total	12	28	15	55	Total	21	58	20	99
Plot 5 2002					Plot 5 2003					Plot 5 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	11	29	6	46	Alive	9	25	6	40	Alive	10	28	7	45
Stressed	12	30	12	54	Stressed	13	33	11	57	Stressed	11	29	9	49
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	2	2	2	6	Dead	1	1	2	4	Dead	2	1	1	4
Total	25	61	20	106	Total	23	59	19	101	Total	23	58	17	98
Plot 5 2005					Plot 5 2006					Plot 5 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	10	25	6	41	Alive	13	46	10	69	Alive	9	39	6	54
Stressed	6	30	8	44	Stressed	3	8	5	16	Stressed	5	8	8	21
Very Stressed	0	0	0	0	Very Stressed	0	0	1	1	Very Stressed	1	1	1	3
Dead	5	2	3	10	Dead	0	2	0	2	Dead	1	2	2	5
Total	21	57	17	95	Total	16	56	16	88	Total	16	50	17	83
Plot 5 2008					Plot 5 2009					Plot 5 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	10	33	3	46	Alive	11	38	3	52	Alive	12	54	5	71
Stressed	5	8	9	22	Stressed	2	3	9	14	Stressed	2	3	8	13
Very Stressed	1	0	0	1	Very Stressed	1	1	1	3	Very Stressed	1	2	2	5
Dead	0	3	2	5	Dead	3	1	0	4	Dead	0	0	1	1
Total	16	44	14	74	Total	17	43	13	73	Total	15	59	16	90

TABLE 3: PROPAGULES BY CONDITION

Plot 5 2011					Plot 5 2012					Plot 5 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	12	49	5	66	Alive	10	40	3	53	Alive	8	44	3	55
Stressed	2	5	6	13	Stressed	4	12	8	24	Stressed	4	13	8	25
Very Stressed	1	2	2	5	Very Stressed	2	1	1	4	Very Stressed	2	0	1	3
Dead	1	4	2	7	Dead	0	3	1	4	Dead	3	2	1	6
Total	16	60	15	91	Total	16	56	13	85	Total	17	59	13	89
Plot 5 2014					Plot 5 2015					Plot 5 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	6	70	1	77	Alive	11	120	1	132	Alive	9	122	3	134
Stressed	6	14	6	26	Stressed	5	15	4	24	Stressed	5	13	3	21
Very Stressed	1	1	5	7	Very Stressed	1	2	7	10	Very Stressed	3	2	5	10
Dead	1	1	0	2	Dead	1	1	1	3	Dead	0	9	1	10
Total	14	86	12	112	Total	18	138	13	169	Total	17	146	12	175
Plot 5 2017					Plot 5 2018					Plot 5 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	6	136	1	143	Alive	7	134	1	142	Alive	6	125	3	134
Stressed	6	12	1	19	Stressed	6	20	3	29	Stressed	7	36	1	44
Very Stressed	2	1	8	11	Very Stressed	1	2	5	8	Very Stressed	3	4	4	11
Dead	3	7	2	12	Dead	1	11	2	14	Dead	0	3	2	5
Total	17	156	12	185	Total	15	167	11	193	Total	16	168	10	194
Plot 5 2020					Plot 5 2021					Plot 5 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	137	1	145	Alive	7	143	1	151	Alive	3	132	0	135
Stressed	4	24	2	30	Stressed	1	25	2	28	Stressed	3	29	2	34
Very Stressed	2	1	5	8	Very Stressed	1	0	3	4	Very Stressed	3	2	2	7
Dead	2	5	0	7	Dead	4	5	2	11	Dead	0	8	2	10
Total	15	167	8	190	Total	13	173	8	194	Total	9	171	6	186

TABLE 3: PROPAGULES BY CONDITION

Plot 5 2023					Plot 5 2024					Plot 5 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	115	0	117	Alive	3	115	0	118	Alive	1	114	2	117
Stressed	4	35	2	41	Stressed	3	32	1	36	Stressed	5	29	2	36
Very Stressed	1	2	2	5	Very Stressed	1	2	2	5	Very Stressed	1	2	1	4
Dead	2	12	1	15	Dead	0	5	1	6	Dead	0	7	0	7
Total	9	164	5	178	Total	7	154	4	165	Total	7	152	5	164

TABLE 3: PROPAGULES BY CONDITION

Plot 6 1999					Plot 6 2000					Plot 6 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	19	201	38	258	Alive	23	153	22	198	Alive	20	140	17	177
Stressed	0	0	0	0	Stressed	1	27	16	44	Stressed	9	137	50	196
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	1	46	10	57	Dead	1	14	0	15
Total	19	201	38	258	Total	25	226	48	299	Total	30	291	67	388
Plot 6 2002					Plot 6 2003					Plot 6 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	20	135	20	175	Alive	20	115	23	158	Alive	20	148	30	198
Stressed	12	139	50	201	Stressed	13	143	40	196	Stressed	9	100	27	136
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	1	19	4	24	Dead	1	16	6	23	Dead	3	12	1	16
Total	33	293	74	400	Total	34	274	69	377	Total	32	260	58	350
Plot 6 2005					Plot 6 2006					Plot 6 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	27	174	42	243	Alive	30	207	30	267	Alive	28	205	38	271
Stressed	3	63	18	84	Stressed	3	36	25	64	Stressed	3	29	16	48
Very Stressed	0	0	1	1	Very Stressed	0	0	1	1	Very Stressed	0	6	2	8
Dead	3	12	6	21	Dead	0	10	2	12	Dead	2	12	5	19
Total	33	249	67	349	Total	33	253	58	344	Total	33	252	61	346
Plot 6 2008					Plot 6 2009					Plot 6 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	24	170	26	220	Alive	21	103	22	146	Alive	20	108	30	158
Stressed	5	34	17	56	Stressed	4	74	19	97	Stressed	5	71	15	91
Very Stressed	2	14	5	21	Very Stressed	1	33	13	47	Very Stressed	1	29	13	43
Dead	0	20	8	28	Dead	4	19	6	29	Dead	0	22	3	25
Total	31	238	56	325	Total	30	229	60	319	Total	26	230	61	317

TABLE 3: PROPAGULES BY CONDITION

Plot 6 2011					Plot 6 2012					Plot 6 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	14	78	21	113	Alive	16	80	31	127	Alive	11	62	7	80
Stressed	8	91	17	116	Stressed	8	91	20	119	Stressed	10	85	13	108
Very Stressed	2	22	13	37	Very Stressed	3	25	12	40	Very Stressed	3	24	28	55
Dead	2	18	8	28	Dead	1	11	3	15	Dead	3	28	15	46
Total	26	209	59	294	Total	28	207	66	301	Total	27	199	63	289
Plot 6 2014					Plot 6 2015					Plot 6 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	8	50	5	63	Alive	7	47	0	54	Alive	8	87	1	96
Stressed	10	82	14	106	Stressed	7	78	11	96	Stressed	5	31	10	46
Very Stressed	3	24	22	49	Very Stressed	6	24	22	52	Very Stressed	6	16	11	33
Dead	3	13	7	23	Dead	5	15	8	28	Dead	2	14	11	27
Total	24	169	48	241	Total	25	164	41	230	Total	21	148	33	202
Plot 6 2017					Plot 6 2018					Plot 6 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	10	67	1	78	Alive	9	73	0	82	Alive	8	110	0	118
Stressed	8	43	6	57	Stressed	6	35	7	48	Stressed	5	45	4	54
Very Stressed	0	16	10	26	Very Stressed	0	11	5	16	Very Stressed	3	12	5	20
Dead	2	19	6	27	Dead	5	19	5	29	Dead	0	11	4	15
Total	20	145	23	188	Total	20	138	17	175	Total	16	178	13	207
Plot 6 2020					Plot 6 2021					Plot 6 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	105	0	112	Alive	6	71	2	79	Alive	4	45	2	51
Stressed	6	39	4	49	Stressed	6	30	0	36	Stressed	7	30	0	37
Very Stressed	2	7	3	12	Very Stressed	2	17	3	22	Very Stressed	1	9	1	11
Dead	2	45	2	49	Dead	1	53	3	57	Dead	2	45	2	49
Total	17	196	9	222	Total	15	171	8	194	Total	14	129	5	148

TABLE 3: PROPAGULES BY CONDITION

Number	Plot 6 2023				Number	Plot 6 2024				Number	Plot 6 2025			
	BLACK	RED	WHITE	TOTAL		BLACK	RED	WHITE	TOTAL		BLACK	RED	WHITE	TOTAL
Alive	5	17	0	22	Alive	2	47	0	49	Alive	2	38	0	40
Stressed	2	23	0	25	Stressed	2	16	0	18	Stressed	2	14	0	16
Very Stressed	0	10	0	10	Very Stressed	1	2	0	3	Very Stressed	0	3	0	3
Dead	6	39	3	48	Dead	2	20	0	22	Dead	2	33	0	35
Total	13	89	3	105	Total	7	85	0	92	Total	6	88	0	94

TABLE 3: PROPAGULES BY CONDITION

Plot 7 1999					Plot 7 2000					Plot 7 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	67	13	83	Alive	6	67	5	78	Alive	20	71	6	97
Stressed	0	0	0	0	Stressed	1	4	11	16	Stressed	1	4	12	17
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	1	6	0	7	Dead	1	7	3	11
Total	3	67	13	83	Total	8	77	16	101	Total	22	82	21	125
Plot 7 2002					Plot 7 2003					Plot 7 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	26	87	7	120	Alive	21	80	2	103	Alive	21	79	10	110
Stressed	2	8	12	22	Stressed	8	13	15	36	Stressed	5	8	8	21
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	1	4	2	7	Dead	4	8	2	14	Dead	11	13	2	26
Total	29	99	21	149	Total	33	101	19	153	Total	37	100	20	157
Plot 7 2005					Plot 7 2006					Plot 7 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	21	73	5	99	Alive	14	72	8	94	Alive	23	319	9	351
Stressed	7	14	9	30	Stressed	6	11	4	21	Stressed	6	19	5	30
Very Stressed	0	0	0	0	Very Stressed	0	1	0	1	Very Stressed	0	2	1	3
Dead	6	8	4	18	Dead	10	26	3	39	Dead	3	6	0	9
Total	34	95	18	147	Total	30	110	15	155	Total	32	346	15	393
Plot 7 2008					Plot 7 2009					Plot 7 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	27	320	8	355	Alive	29	264	10	303	Alive	29	203	7	239
Stressed	7	25	7	39	Stressed	7	62	6	75	Stressed	10	81	6	97
Very Stressed	0	4	0	4	Very Stressed	1	9	1	11	Very Stressed	4	11	1	16
Dead	2	18	1	21	Dead	6	38	0	44	Dead	0	52	3	55
Total	36	367	16	419	Total	43	373	17	433	Total	43	347	17	407

TABLE 3: PROPAGULES BY CONDITION

Plot 7 2011					Plot 7 2012					Plot 7 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	23	180	7	210	Alive	26	182	6	214	Alive	25	168	6	199
Stressed	10	80	6	96	Stressed	12	76	5	93	Stressed	12	70	2	84
Very Stressed	4	5	1	10	Very Stressed	3	5	0	8	Very Stressed	1	7	2	10
Dead	9	62	2	73	Dead	3	37	3	43	Dead	7	31	2	40
Total	46	327	16	389	Total	44	300	14	358	Total	45	276	12	333
Plot 7 2014					Plot 7 2015					Plot 7 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	15	123	2	140	Alive	20	101	1	122	Alive	3	32	0	35
Stressed	22	91	1	114	Stressed	24	83	2	109	Stressed	9	21	2	32
Very Stressed	2	21	3	26	Very Stressed	3	22	2	27	Very Stressed	5	15	0	20
Dead	1	27	4	32	Dead	5	38	1	44	Dead	31	148	3	182
Total	40	262	10	312	Total	52	244	6	302	Total	48	216	5	269
Plot 7 2017					Plot 7 2018					Plot 7 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	98	0	99	Alive	0	45	0	45	Alive	1	179	1	181
Stressed	10	16	2	28	Stressed	0	11	0	11	Stressed	0	8	0	8
Very Stressed	1	7	0	8	Very Stressed	0	6	0	6	Very Stressed	0	1	0	1
Dead	6	21	0	27	Dead	12	83	2	97	Dead	0	7	0	7
Total	18	142	2	162	Total	12	145	2	159	Total	1	195	1	197
Plot 7 2020					Plot 7 2021					Plot 7 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	75	4	80	Alive	3	99	7	109	Alive	3	129	8	140
Stressed	0	18	0	18	Stressed	0	32	1	33	Stressed	1	29	0	30
Very Stressed	0	2	0	2	Very Stressed	0	8	1	9	Very Stressed	0	6	1	7
Dead	1	102	0	103	Dead	0	15	0	15	Dead	0	22	1	23
Total	2	197	4	203	Total	3	154	9	166	Total	4	186	10	200

TABLE 3: PROPAGULES BY CONDITION

Plot 7 2023					Plot 7 2024					Plot 7 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	28	4	35	Alive	3	36	12	51	Alive	0	0	0	0
Stressed	0	7	1	8	Stressed	0	9	3	12	Stressed	0	0	0	0
Very Stressed	1	7	1	9	Very Stressed	0	1	0	1	Very Stressed	0	0	0	0
Dead	1	130	3	134	Dead	1	15	0	16	Dead	0	0	0	0
Total	5	172	9	186	Total	4	61	15	80	Total	0	0	0	0

TABLE 3: PROPAGULES BY CONDITION

Plot 8 1999					Plot 8 2000					Plot 8 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	10	0	10	Alive	0	10	0	10	Alive	0	8	0	8
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	1	0	1
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	1	0	1	Dead	0	2	0	2
Total	0	10	0	10	Total	0	11	0	11	Total	0	11	0	11
Plot 8 2002					Plot 8 2003					Plot 8 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	10	4	14	Alive	0	14	5	19	Alive	2	16	12	30
Stressed	0	1	0	1	Stressed	0	1	5	6	Stressed	0	1	4	5
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	1	0	1	Dead	0	2	0	2	Dead	0	4	1	5
Total	0	12	4	16	Total	0	17	10	27	Total	2	21	17	40
Plot 8 2005					Plot 8 2006					Plot 8 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	37	10	49	Alive	2	50	22	74	Alive	14	88	35	137
Stressed	0	2	8	10	Stressed	0	4	1	5	Stressed	1	2	4	7
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	1	1	2	Dead	1	3	0	4	Dead	0	3	1	4
Total	2	40	19	61	Total	3	57	23	83	Total	15	93	40	148
Plot 8 2008					Plot 8 2009					Plot 8 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	25	82	43	150	Alive	40	84	78	202	Alive	43	86	77	206
Stressed	0	5	4	9	Stressed	0	6	2	8	Stressed	5	7	9	21
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	2	3	1	6
Dead	1	7	0	8	Dead	1	7	1	9	Dead	0	6	0	6
Total	26	94	47	167	Total	41	97	81	219	Total	50	102	87	239

TABLE 3: PROPAGULES BY CONDITION

Plot 8 2011					Plot 8 2012					Plot 8 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	44	91	71	206	Alive	46	127	63	236	Alive	41	122	35	198
Stressed	9	10	8	27	Stressed	9	13	9	31	Stressed	12	19	10	41
Very Stressed	1	3	2	6	Very Stressed	5	3	3	11	Very Stressed	4	5	7	16
Dead	0	7	0	7	Dead	5	1	2	8	Dead	5	10	2	17
Total	54	111	81	246	Total	65	144	77	286	Total	62	156	54	272
Plot 8 2014					Plot 8 2015					Plot 8 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	48	168	24	240	Alive	29	169	8	206	Alive	25	165	5	195
Stressed	9	23	9	41	Stressed	24	41	15	80	Stressed	30	34	8	72
Very Stressed	9	4	9	22	Very Stressed	12	5	8	25	Very Stressed	6	5	8	19
Dead	0	5	3	8	Dead	1	11	5	17	Dead	6	50	7	63
Total	66	200	45	311	Total	66	226	36	328	Total	67	254	28	349
Plot 8 2017					Plot 8 2018					Plot 8 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	14	166	0	180	Alive	4	107	0	111	Alive	4	122	1	127
Stressed	22	39	3	64	Stressed	13	40	4	57	Stressed	12	36	3	51
Very Stressed	13	4	15	32	Very Stressed	8	4	2	14	Very Stressed	4	1	2	7
Dead	12	34	3	49	Dead	25	89	12	126	Dead	4	22	0	26
Total	61	243	21	325	Total	50	240	18	308	Total	24	181	6	211
Plot 8 2020					Plot 8 2021					Plot 8 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	95	0	99	Alive	3	178	0	181	Alive	1	272	0	273
Stressed	12	10	3	25	Stressed	5	10	3	18	Stressed	6	15	2	23
Very Stressed	0	2	1	3	Very Stressed	3	2	0	5	Very Stressed	1	2	0	3
Dead	3	58	1	62	Dead	5	28	1	34	Dead	3	26	0	29
Total	19	165	5	189	Total	16	218	4	238	Total	11	315	2	328

TABLE 3: PROPAGULES BY CONDITION

Plot 8 2023					Plot 8 2024					Plot 8 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	409	0	413	Alive	1	679	0	680	Alive	0	165	0	165
Stressed	3	22	1	26	Stressed	6	52	1	59	Stressed	3	50	1	54
Very Stressed	1	5	1	7	Very Stressed	0	2	1	3	Very Stressed	2	12	0	14
Dead	1	43	0	44	Dead	1	31	0	32	Dead	2	558	1	561
Total	9	479	2	490	Total	8	764	2	774	Total	7	785	2	794

TABLE 3: PROPAGULES BY CONDITION

Plot 9 1999					Plot 9 2000					Plot 9 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	0	1	Alive	0	1	0	1	Alive	0	0	0	0
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	1	0	1
Total	0	1	0	1	Total	0	1	0	1	Total	0	1	0	1
Plot 9 2002					Plot 9 2003					Plot 9 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	3	0	3	Alive	0	7	0	7	Alive	0	6	0	6
Stressed	0	1	0	1	Stressed	0	2	0	2	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	4	0	4	Dead	0	9	0	9
Total	0	4	0	4	Total	0	13	0	13	Total	0	15	0	15
Plot 9 2005					Plot 9 2006					Plot 9 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	18	7	26	Alive	2	74	27	103	Alive	3	132	175	310
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	5	3	8
Very Stressed	0	0	0	0	Very Stressed	0	1	0	1	Very Stressed	0	1	0	1
Dead	0	1	0	1	Dead	0	0	1	1	Dead	1	0	0	1
Total	1	19	7	27	Total	2	75	28	105	Total	4	138	178	320
Plot 9 2008					Plot 9 2009					Plot 9 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	157	159	319	Alive	3	163	127	293	Alive	3	136	82	221
Stressed	0	5	3	8	Stressed	0	7	7	14	Stressed	0	14	42	56
Very Stressed	0	2	0	2	Very Stressed	0	3	2	5	Very Stressed	0	9	14	23
Dead	0	2	2	4	Dead	0	14	6	20	Dead	1	17	11	29
Total	3	166	164	333	Total	3	187	142	332	Total	4	176	149	329

TABLE 3: PROPAGULES BY CONDITION

Plot 9 2011					Plot 9 2012					Plot 9 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	127	48	177	Alive	2	120	19	141	Alive	2	49	2	53
Stressed	0	21	43	64	Stressed	0	24	30	54	Stressed	0	27	4	31
Very Stressed	1	4	13	18	Very Stressed	0	5	32	37	Very Stressed	0	7	30	37
Dead	0	27	28	55	Dead	1	12	22	35	Dead	0	69	48	117
Total	3	179	132	314	Total	3	161	103	267	Total	2	152	84	238
Plot 9 2014					Plot 9 2015					Plot 9 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	22	0	24	Alive	0	3	0	3	Alive	0	1	0	1
Stressed	0	11	1	12	Stressed	1	19	0	20	Stressed	1	10	0	11
Very Stressed	0	4	15	19	Very Stressed	1	4	5	10	Very Stressed	1	2	0	3
Dead	0	45	21	66	Dead	0	13	11	24	Dead	0	13	5	18
Total	2	82	37	121	Total	2	39	16	57	Total	2	26	5	33
Plot 9 2017					Plot 9 2018					Plot 9 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	12	0	12	Alive	1	42	0	43	Alive	1	89	169	259
Stressed	0	6	0	6	Stressed	0	2	0	2	Stressed	0	4	0	4
Very Stressed	1	3	0	4	Very Stressed	0	0	0	0	Very Stressed	0	1	0	1
Dead	1	2	0	3	Dead	0	9	0	9	Dead	0	2	0	2
Total	2	23	0	25	Total	1	53	0	54	Total	1	96	169	266
Plot 9 2020					Plot 9 2021					Plot 9 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	68	246	314	Alive	0	72	213	285	Alive	0	69	89	158
Stressed	1	5	28	34	Stressed	1	2	45	48	Stressed	1	5	55	61
Very Stressed	0	1	0	1	Very Stressed	0	1	16	17	Very Stressed	0	1	22	23
Dead	0	23	14	37	Dead	0	7	26	33	Dead	0	3	128	131
Total	1	97	288	386	Total	1	82	300	383	Total	1	78	294	373

TABLE 3: PROPAGULES BY CONDITION

Plot 9 2023					Plot 9 2024					Plot 9 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	23	2	25	Alive	8	29	10	47	Alive	1	16	5	22
Stressed	1	19	3	23	Stressed	0	16	4	20	Stressed	2	18	10	30
Very Stressed	0	3	0	3	Stressed	0	1	0	1	Stressed	0	0	0	0
Dead	0	32	161	193	Dead	0	6	0	6	Dead	6	10	0	16
Total	1	77	166	244	Total	8	52	14	74	Total	9	44	15	68

TABLE 3: PROPAGULES BY CONDITION

Plot 10 1999					Plot 10 2000					Plot 10 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	35	6	42	Alive	1	30	2	33	Alive	1	45	2	48
Stressed	0	0	0	0	Stressed	0	4	4	8	Stressed	0	2	7	9
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	6	1	7	Dead	0	6	0	6
Total	1	35	6	42	Total	1	40	7	48	Total	1	53	9	63
Plot 10 2002					Plot 10 2003					Plot 10 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	58	8	67	Alive	1	57	5	63	Alive	2	56	21	79
Stressed	0	5	7	12	Stressed	0	10	20	30	Stressed	0	4	8	12
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	4	0	4	Dead	0	10	1	11	Dead	0	16	1	17
Total	1	67	15	83	Total	1	77	26	104	Total	2	76	30	108
Plot 10 2005					Plot 10 2006					Plot 10 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	69	26	96	Alive	5	98	59	162	Alive	8	160	72	240
Stressed	0	6	7	13	Stressed	1	13	9	23	Stressed	1	12	11	24
Very Stressed	0	0	0	0	Very Stressed	0	0	1	1	Very Stressed	0	0	1	1
Dead	1	8	4	13	Dead	0	4	0	4	Dead	0	11	3	14
Total	2	83	37	122	Total	6	115	69	190	Total	9	183	87	279
Plot 10 2008					Plot 10 2009					Plot 10 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	169	96	272	Alive	7	156	83	246	Alive	7	127	103	237
Stressed	1	10	11	22	Stressed	1	14	23	38	Stressed	2	21	28	51
Very Stressed	0	1	2	3	Very Stressed	0	1	6	7	Very Stressed	0	2	3	5
Dead	2	18	0	20	Dead	1	19	0	20	Dead	0	27	5	32
Total	10	198	109	317	Total	9	190	112	311	Total	9	177	139	325

TABLE 3: PROPAGULES BY CONDITION

Plot 10 2011					Plot 10 2012					Plot 10 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	2	130	84	216	Alive	1	160	63	224	Alive	4	162	39	205
Stressed	3	20	30	53	Stressed	3	19	29	51	Stressed	3	18	17	38
Very Stressed	3	1	12	16	Very Stressed	2	0	12	14	Very Stressed	2	3	16	21
Dead	1	28	3	32	Dead	3	20	19	42	Dead	0	20	30	50
Total	9	179	129	317	Total	9	199	123	331	Total	9	203	102	314
Plot 10 2014					Plot 10 2015					Plot 10 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	217	22	246	Alive	6	223	3	232	Alive	4	48	1	53
Stressed	3	19	8	30	Stressed	4	19	3	26	Stressed	2	12	0	14
Very Stressed	2	3	12	17	Very Stressed	2	5	10	17	Very Stressed	1	1	0	2
Dead	0	23	29	52	Dead	0	39	26	65	Dead	6	202	15	223
Total	12	262	71	345	Total	12	286	42	340	Total	13	263	16	292
Plot 10 2017					Plot 10 2018					Plot 10 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	78	1	83	Alive	2	123	1	126	Alive	4	160	1	165
Stressed	1	7	0	8	Stressed	2	14	0	16	Stressed	1	15	0	16
Very Stressed	1	0	0	1	Very Stressed	1	3	0	4	Very Stressed	2	1	0	3
Dead	2	15	0	17	Dead	1	20	0	21	Dead	0	20	0	20
Total	8	100	1	109	Total	6	160	1	167	Total	7	196	1	204
Plot 10 2020					Plot 10 2021					Plot 10 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	125	0	129	Alive	3	234	0	237	Alive	2	258	1	261
Stressed	2	8	0	10	Stressed	3	11	0	14	Stressed	3	33	0	36
Very Stressed	1	1	1	3	Very Stressed	1	1	0	2	Very Stressed	0	22	0	22
Dead	0	63	0	63	Dead	0	32	1	33	Dead	2	33	0	35
Total	7	197	1	205	Total	7	278	1	286	Total	7	346	1	354

TABLE 3: PROPAGULES BY CONDITION

Plot 10 2023					Plot 10 2024					Plot 10 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	257	1	259	Alive	1	370	0	371	Alive	0	63	0	63
Stressed	2	56	0	58	Stressed	1	56	0	57	Stressed	0	22	0	22
Very Stressed	0	12	0	12	Very Stressed	1	8	0	9	Very Stressed	0	7	0	7
Dead	2	87	0	89	Dead	0	54	0	54	Dead	3	381	0	384
Total	5	412	1	418	Total	3	488	0	491	Total	3	473	0	476

TABLE 3: PROPAGULES BY CONDITION

Plot 11 1999					Plot 11 2000					Plot 11 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	1	9	10	Alive	0	5	21	26	Alive	0	39	547	586
Stressed	0	0	0	0	Stressed	0	0	2	2	Stressed	0	5	84	89
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	1	1	Dead	0	4	1	5
Total	0	1	9	10	Total	0	5	24	29	Total	0	48	632	680
Plot 11 2002					Plot 11 2003					Plot 11 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	1	44	202	247	Alive	1	226	89	316	Alive	2	219	80	301
Stressed	0	11	311	322	Stressed	0	11	229	240	Stressed	0	14	120	134
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	17	73	90	Dead	0	12	153	165	Dead	0	103	112	215
Total	1	72	586	659	Total	1	249	471	721	Total	2	336	312	650
Plot 11 2005					Plot 11 2006					Plot 11 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	4	217	52	273	Alive	8	228	35	271	Alive	32	250	25	307
Stressed	0	16	93	109	Stressed	0	5	51	56	Stressed	0	11	24	35
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	2	15	17
Dead	0	54	46	100	Dead	0	51	57	108	Dead	0	24	22	46
Total	4	287	191	482	Total	8	284	143	435	Total	32	287	86	405
Plot 11 2008					Plot 11 2009					Plot 11 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	41	238	18	297	Alive	40	200	17	257	Alive	34	170	13	217
Stressed	0	10	17	27	Stressed	2	34	15	51	Stressed	7	32	15	54
Very Stressed	0	5	19	24	Very Stressed	0	4	10	14	Very Stressed	0	3	8	11
Dead	0	22	11	33	Dead	0	49	15	64	Dead	5	40	9	54
Total	41	275	65	381	Total	42	287	57	386	Total	46	245	45	336

TABLE 3: PROPAGULES BY CONDITION

Plot 11 2011					Plot 11 2012					Plot 11 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	28	162	13	203	Alive	38	193	11	242	Alive	34	174	12	220
Stressed	12	32	15	59	Stressed	8	30	9	47	Stressed	17	29	6	52
Very Stressed	0	2	6	8	Very Stressed	1	1	9	11	Very Stressed	2	0	9	11
Dead	0	12	1	13	Dead	2	10	2	14	Dead	1	31	2	34
Total	40	208	35	283	Total	49	234	31	314	Total	54	234	29	317
Plot 11 2014					Plot 11 2015					Plot 11 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	47	212	15	274	Alive	47	232	17	296	Alive	37	213	22	272
Stressed	16	23	6	45	Stressed	15	20	3	38	Stressed	11	11	7	29
Very Stressed	3	2	7	12	Very Stressed	4	0	9	13	Very Stressed	4	1	5	10
Dead	1	5	1	7	Dead	0	6	0	6	Dead	20	44	2	66
Total	67	242	29	338	Total	66	258	29	353	Total	72	269	36	377
Plot 11 2017					Plot 11 2018					Plot 11 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	35	272	16	323	Alive	17	301	17	335	Alive	19	299	11	329
Stressed	7	4	13	24	Stressed	12	16	13	41	Stressed	10	26	15	51
Very Stressed	2	2	5	9	Very Stressed	2	5	6	13	Very Stressed	2	0	7	9
Dead	9	15	2	26	Dead	16	34	4	54	Dead	1	33	1	35
Total	53	293	36	382	Total	47	356	40	443	Total	32	358	34	424
Plot 11 2020					Plot 11 2021					Plot 11 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	16	290	6	312	Alive	15	359	10	384	Alive	10	386	7	403
Stressed	9	3	12	24	Stressed	6	12	12	30	Stressed	5	24	14	43
Very Stressed	4	1	8	13	Very Stressed	3	5	5	13	Very Stressed	6	2	6	14
Dead	2	39	3	44	Dead	7	17	2	26	Dead	3	15	2	20
Total	31	333	29	393	Total	31	393	29	453	Total	24	427	29	480

TABLE 3: PROPAGULES BY CONDITION

Plot 11 2023					Plot 11 2024					Plot 11 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	7	362	6	375	Alive	7	423	8	438	Alive	3	110	4	117
Stressed	3	49	6	58	Stressed	5	48	7	60	Stressed	2	101	7	110
Very Stressed	8	6	8	22	Very Stressed	1	6	5	12	Very Stressed	4	17	9	30
Dead	3	38	7	48	Dead	5	42	3	50	Dead	4	281	2	287
Total	21	455	27	503	Total	18	519	23	560	Total	13	509	22	544

TABLE 3: PROPAGULES BY CONDITION

Plot 12 1999					Plot 12 2000					Plot 12 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	0	0	0	0	Stressed	0	1	0	1	Stressed	0	1	0	1
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	0	0	0	0	Total	0	1	0	1	Total	0	1	0	1
Plot 12 2002					Plot 12 2003					Plot 12 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	2	0	2	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	0	1	0	1	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	1	0	1	Dead	0	3	0	3	Dead	0	0	0	0
Total	0	4	0	4	Total	0	3	0	3	Total	0	0	0	0
Plot 12 2005					Plot 12 2006					Plot 12 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	0	0	0	Alive	0	0	0	0
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	0	0	0
Total	0	0	0	0	Total	0	0	0	0	Total	0	0	0	0
Plot 12 2008					Plot 12 2009					Plot 12 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	1	0	1	Alive	0	2	0	2
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	0	1	0	1
Total	0	0	0	0	Total	0	1	0	1	Total	0	3	0	3

TABLE 3: PROPAGULES BY CONDITION

Plot 12 2011					Plot 12 2012					Plot 12 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	0	1	0	1	Alive	0	0	0	0
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	2	0	2	Dead	0	0	0	0	Dead	0	1	0	1
Total	0	2	0	2	Total	0	1	0	1	Total	0	1	0	1
Plot 12 2014					Plot 12 2015					Plot 12 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	0	0	0	Alive	1	0	0	1	Alive	0	11	0	11
Stressed	0	0	0	0	Stressed	0	0	0	0	Stressed	0	0	0	0
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	0	0	0	0	Dead	1	0	0	1
Total	0	0	0	0	Total	1	0	0	1	Total	1	11	0	12
Plot 12 2017					Plot 12 2018					Plot 12 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	0	29	0	29	Alive	1	177	0	178	Alive	0	679	0	679
Stressed	0	2	0	2	Stressed	0	2	0	2	Stressed	1	8	1	10
Very Stressed	0	1	0	1	Very Stressed	0	2	0	2	Very Stressed	0	3	0	3
Dead	0	8	0	8	Dead	0	7	0	7	Dead	0	7	0	7
Total	0	40	0	40	Total	1	188	0	189	Total	1	697	1	699
Plot 12 2020					Plot 12 2021					Plot 12 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	1018	2	1023	Alive	4	1376	6	1386	Alive	2	1551	9	1562
Stressed	0	14	0	14	Stressed	0	59	0	59	Stressed	0	106	1	107
Very Stressed	0	5	0	5	Very Stressed	1	3	0	4	Very Stressed	3	12	0	15
Dead	0	28	0	28	Dead	0	39	0	39	Dead	0	61	0	61
Total	3	1065	2	1070	Total	5	1477	6	1488	Total	5	1730	10	1745

TABLE 3: PROPAGULES BY CONDITION

Plot 12 2023					Plot 12 2024					Plot 12 2024				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	3	1587	21	1611	Alive	4	1658	27	1689	Alive	5	1658	47	1710
Stressed	0	175	1	176	Stressed	0	216	2	218	Stressed	0	259	3	262
Very Stressed	2	43	1	46	Very Stressed	2	29	1	32	Very Stressed	0	35	2	37
Dead	1	106	1	108	Dead	0	99	1	100	Dead	2	143	2	147
Total	6	1911	24	1941	Total	6	2002	31	2039	Total	7	2095	54	2156

TABLE 3: PROPAGULES BY CONDITION ALL PLOTS

All Plots 1999					All Plots 2000					All Plots 2001				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	32	714	220	966	Alive	45	555	70	670	Alive	87	778	2673	3538
Stressed	4	1	2	7	Stressed	3	53	55	111	Stressed	22	284	541	847
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	0	0
Dead	0	0	0	0	Dead	6	312	160	478	Dead	3	204	55	262
Total	36	715	222	973	Total	54	920	285	1259	Total	112	1266	3269	4647
All Plots 2002					All Plots 2003					All Plots 2004				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	106	781	653	1540	Alive	98	965	224	1287	Alive	121	1022	199	1342
Stressed	36	321	1112	1469	Stressed	56	373	692	1121	Stressed	57	336	290	683
Very Stressed	0	0	0	0	Very Stressed	0	0	0	0	Very Stressed	0	0	16	16
Dead	12	162	1169	1343	Dead	29	162	702	893	Dead	23	282	410	715
Total	154	1264	2934	4352	Total	183	1500	1618	3301	Total	201	1640	915	2756
All Plots 2005					All Plots 2006					All Plots 2007				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	158	1102	168	1428	Alive	213	1472	262	1947	Alive	280	2045	488	2813
Stressed	49	329	195	573	Stressed	20	131	120	271	Stressed	22	137	83	242
Very Stressed	0	0	3	3	Very Stressed	0	3	4	7	Very Stressed	1	17	28	46
Dead	20	163	161	344	Dead	16	174	87	277	Dead	9	87	43	139
Total	227	1594	527	2348	Total	249	1780	473	2502	Total	312	2286	642	3240
All Plots 2008					All Plots 2009					All Plots 2010				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	294	1995	502	2791	Alive	322	1886	435	2643	Alive	310	1811	377	2498
Stressed	32	155	85	272	Stressed	32	252	95	379	Stressed	64	291	142	497
Very Stressed	4	37	34	75	Very Stressed	10	54	37	101	Very Stressed	16	68	45	129
Dead	14	125	27	166	Dead	33	220	42	295	Dead	30	234	38	302
Total	344	2312	648	3304	Total	397	2412	609	3418	Total	420	2404	602	3426

TABLE 3: PROPAGULES BY CONDITION

All Plots 2011					All Plots 2012					All Plots 2013				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	259	1716	281	2256	Alive	268	1875	222	2365	Alive	243	1771	125	2139
Stressed	94	333	140	567	Stressed	96	351	124	571	Stressed	114	382	69	565
Very Stressed	26	42	53	121	Very Stressed	35	60	77	172	Very Stressed	31	67	98	196
Dead	32	264	51	347	Dead	38	158	58	254	Dead	43	269	113	425
Total	411	2355	525	3291	Total	437	2444	481	3362	Total	431	2489	405	3325
All Plots 2014					All Plots 2015					All Plots 2016				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	214	1852	76	2142	Alive	203	1677	35	1915	Alive	112	1232	36	1380
Stressed	144	496	50	690	Stressed	165	616	42	823	Stressed	122	408	35	565
Very Stressed	53	115	84	252	Very Stressed	69	144	69	282	Very Stressed	37	117	34	188
Dead	21	235	75	331	Dead	25	325	60	410	Dead	180	880	48	1108
Total	432	2698	285	3415	Total	462	2762	206	3430	Total	451	2637	153	3241
All Plots 2017					All Plots 2018					All Plots 2019				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	96	1477	22	1595	Alive	53	1556	23	1632	Alive	55	2521	189	2765
Stressed	100	345	27	472	Stressed	73	371	29	473	Stressed	71	387	29	487
Very Stressed	37	106	42	185	Very Stressed	29	85	21	135	Very Stressed	28	54	20	102
Dead	47	312	19	378	Dead	88	507	26	621	Dead	10	170	8	188
Total	280	2240	110	2630	Total	243	2519	99	2861	Total	164	3132	246	3542
All Plots 2020					All Plots 2021					All Plots 2022				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	56	2797	263	3116	Alive	55	3635	246	3936	Alive	37	3842	122	4001
Stressed	67	252	52	371	Stressed	51	347	66	464	Stressed	50	460	76	586
Very Stressed	23	33	20	76	Very Stressed	21	66	30	117	Very Stressed	26	80	34	140
Dead	11	490	20	521	Dead	25	348	36	409	Dead	15	450	137	602
Total	157	3572	355	4084	Total	152	4396	378	4926	Total	128	4832	369	5329

TABLE 3: PROPAGULES BY CONDITION

All Plots 2023					All Plots 2024					All Plots 2025				
Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL	Number	BLACK	RED	WHITE	TOTAL
Alive	37	3802	39	3878	Alive	38	4512	65	4615	Alive	16	2692	64	2772
Stressed	27	606	14	647	Stressed	28	657	19	704	Stressed	22	699	26	747
Very Stressed	28	106	15	149	Very Stressed	10	83	9	102	Very Stressed	8	110	12	130
Dead	22	761	181	964	Dead	20	477	7	504	Dead	27	2157	6	2190
Total	114	5275	249	5638	Total	96	5729	100	5925	Total	73	5658	108	5839

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years**Plot 1 Tree Recruitment and Mortality over the Years**

YEAR	Recruitment			YEAR	Mortality				
	B	R	W		Total	B	R	W	
1999	-	-	-	-	-	-	-	-	-
2000	0	0	2	2	2000	1	0	0	1
2001	0	1	0	1	2001	2	0	0	2
2002	0	1	0	1	2002	0	0	1	1
2003	0	1	3	4	2003	0	0	1	1
2004	0	1	10	11	2004	0	0	0	0
2005	0	1	5	6	2005	0	1	1	2
2006	0	0	0	0	2006	0	1	19	20
2007	0	3	0	3	2007	2	1	4	7
2008	0	2	1	3	2008	1	0	0	1
2009	0	3	29	32	2009	0	0	0	0
2010	0	1	27	28	2010	0	0	0	0
2011	1	1	16	18	2011	0	0	2	2
2012	4	3	8	15	2012	0	0	1	1
2013	2	1	1	4	2013	0	2	5	7
2014	1	0	1	2	2014	1	1	9	11
2015	6	0	1	7	2015	0	0	11	11
2016	1	0	0	1	2016	7	4	27	38
2017	0	0	0	0	2017	5	2	7	14
2018	0	0	0	0	2018	3	1	6	10
2019	0	0	0	0	2019	0	4	2	6
2020	0	0	1	1	2020	0	0	1	1
2021	0	0	0	0	2021	0	0	0	0
2022	0	0	0	0	2022	1	0	2	3
2023	0	0	0	0	2023	0	1	5	6
2024	0	0	0	0	2024	4	0	2	6
2025	0	1	0	1	2025	0	0	0	0

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years**Plot 1 Propagule Recruitment and Mortality over the Years**

YEAR	Recruitment			YEAR	Mortality				
	B	R	W		Total	B	R	W	
1999	-	-	-	-	-	-	-	-	-
2000	0	0	1	1	2000	0	1	0	1
2001	0	10	4	14	2001	0	0	0	0
2002	0	5	18	23	2002	0	2	7	9
2003	0	21	3	24	2003	0	1	1	2
2004	0	5	2	7	2004	0	3	0	3
2005	0	6	2	8	2005	0	6	1	7
2006	0	5	0	5	2006	0	12	3	15
2007	0	0	1	1	2007	0	8	1	9
2008	6	2	44	52	2008	0	2	0	2
2009	29	1	32	62	2009	3	0	1	4
2010	27	0	11	38	2010	8	4	2	14
2011	8	6	2	16	2011	2	1	3	6
2012	23	1	6	30	2012	9	0	2	11
2013	9	2	5	16	2013	13	1	3	17
2014	9	1	0	10	2014	2	0	8	10
2015	25	7	0	32	2015	5	3	2	10
2016	0	0	0	0	2016	62	17	2	81
2017	3	2	0	5	2017	2	0	0	2
2018	1	1	0	2	2018	7	1	0	8
2019	0	5	1	6	2019	1	1	0	2
2020	0	1	0	1	2020	0	2	0	2
2021	0	4	21	25	2021	5	3	0	8
2022	0	0	0	0	2022	0	0	0	0
2023	0	0	0	0	2023	3	1	0	4
2024	0	1	1	2	2024	6	0	0	6
2025	0	1	0	1	2025	0	0	0	0

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years**Plot 2 Tree Recruitment and Mortality over the Years**

YEAR	Recruitment			Total	YEAR	Mortality			Total
	B	R	W			B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	2	2	2000	0	0	6	6
2001	0	0	0	0	2001	0	0	0	0
2002	0	0	0	0	2002	0	0	2	2
2003	0	0	0	0	2003	0	0	0	0
2004	0	0	0	0	2004	0	0	0	0
2005	4	0	0	4	2005	0	0	0	0
2006	12	1	3	16	2006	0	0	0	0
2007	23	0	8	31	2007	0	0	0	0
2008	18	6	33	57	2008	0	0	0	0
2009	9	15	56	80	2009	0	0	0	0
2010	4	9	16	29	2010	0	0	0	0
2011	3	9	14	26	2011	0	2	0	2
2012	5	7	8	20	2012	1	3	0	4
2013	1	2	9	12	2013	0	1	2	3
2014	3	4	5	12	2014	0	4	1	5
2015	3	4	19	26	2015	1	0	8	9
2016	2	1	1	4	2016	3	9	14	26
2017	1	1	4	6	2017	4	11	4	19
2018	0	0	0	0	2018	13	17	29	59
2019	0	0	0	0	2019	14	10	9	33
2020	0	0	1	1	2020	0	0	4	4
2021	1	0	0	1	2021	1	1	2	4
2022	0	0	0	0	2022	0	0	2	2
2023	1	0	0	1	2023	2	0	10	12
2024	2	6	1	9	2024	1	0	5	6
2025	4	2	0	6	2025	0	0	1	1

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years**Plot 2 Propagule Recruitment and Mortality over the Years**

YEAR	Recruitment			Total	YEAR	Mortality			Total
	B	R	W			B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	0	72	8	80	2000	0	94	145	239
2001	1	0	0	1	2001	0	1	0	1
2002	24	3	4	31	2002	0	0	0	0
2003	45	2	2	49	2003	22	0	2	24
2004	29	1	3	33	2004	6	1	1	8
2005	35	23	4	62	2005	3	0	0	3
2006	29	35	51	115	2006	4	1	0	5
2007	16	26	68	110	2007	0	2	1	3
2008	10	8	16	34	2008	7	5	1	13
2009	8	3	5	16	2009	7	6	5	18
2010	7	6	7	20	2010	7	10	1	18
2011	5	4	1	10	2011	8	9	1	18
2012	5	7	5	17	2012	9	6	4	19
2013	9	26	3	38	2013	8	4	4	16
2014	7	26	0	33	2014	8	5	1	14
2015	7	40	1	48	2015	5	9	4	18
2016	2	25	1	28	2016	29	46	1	76
2017	0	55	0	55	2017	8	24	4	36
2018	0	18	0	18	2018	14	72	1	87
2019	3	24	0	27	2019	2	20	0	22
2020	1	10	1	12	2020	0	16	0	16
2021	0	39	1	40	2021	0	7	0	7
2022	1	42	0	43	2022	4	5	0	9
2023	0	39	0	39	2023	1	36	3	40
2024	0	70	1	71	2024	0	11	0	11
2025	1	24	2	27	2025	0	66	0	66

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 3 Tree Recruitment and Mortality over the Years

YEAR	Recruitment			Total	YEAR	Mortality			Total
	B	R	W			B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	3	3	2000	0	0	0	0
2001	0	1	76	77	2001	0	0	0	0
2002	2	0	387	389	2002	0	0	0	0
2003	15	2	127	144	2003	0	0	8	8
2004	8	1	20	29	2004	0	0	128	128
2005	2	2	2	6	2005	0	0	105	105
2006	2	1	2	5	2006	0	0	75	75
2007	4	9	2	15	2007	0	0	55	55
2008	4	3	1	8	2008	0	0	21	21
2009	4	7	1	12	2009	0	0	39	39
2010	3	3	0	6	2010	0	0	66	66
2011	1	6	1	8	2011	1	1	19	21
2012	5	14	0	19	2012	0	1	11	12
2013	1	8	0	9	2013	0	2	21	23
2014	1	6	1	8	2014	1	1	36	38
2015	1	6	1	8	2015	0	1	19	20
2016	0	5	0	5	2016	3	16	16	35
2017	0	1	0	1	2017	8	11	3	22
2018	0	0	0	0	2018	2	7	1	10
2019	0	2	0	2	2019	4	6	0	10
2020	0	3	0	3	2020	0	0	0	0
2021	0	17	0	17	2021	0	1	0	1
2022	1	39	1	41	2022	0	0	0	0
2023	3	44	0	47	2023	1	0	0	1
2024	2	30	0	32	2024	1	0	0	1
2025	0	5	0	5	2025	0	6	0	6

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 3 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	2	23	25	2000	4	2	1	7
2001	30	40	2506	2576	2001	0	1	49	50
2002	4	22	99	125	2002	7	2	1081	1090
2003	2	24	3	29	2003	1	6	535	542
2004	11	22	9	42	2004	1	18	291	310
2005	3	19	0	22	2005	2	8	95	105
2006	7	48	0	55	2006	0	9	21	30
2007	34	35	1	70	2007	1	11	8	20
2008	14	8	0	22	2008	1	6	2	9
2009	19	13	0	32	2009	8	8	7	23
2010	6	9	1	16	2010	9	9	2	20
2011	4	30	0	34	2011	9	15	3	27
2012	4	55	1	60	2012	3	5	0	8
2013	1	43	0	44	2013	1	9	5	15
2014	3	62	0	65	2014	4	12	1	17
2015	3	42	0	45	2015	3	13	1	17
2016	2	30	0	32	2016	23	125	1	149
2017	1	38	0	39	2017	2	24	0	26
2018	1	52	0	53	2018	5	31	0	36
2019	0	33	1	34	2019	2	10	0	12
2020	0	19	0	19	2020	1	23	0	24
2021	0	76	1	77	2021	3	14	0	17
2022	0	68	1	69	2022	1	9	0	10
2023	0	97	2	99	2023	2	18	0	20
2024	0	115	2	117	2024	3	19	1	23
2025	0	14	0	14	2025	7	298	1	306

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 4 Tree Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	0	0	2000	0	5	0	5
2001	0	0	0	0	2001	0	8	0	8
2002	0	0	0	0	2002	1	39	0	40
2003	0	0	0	0	2003	0	2	0	2
2004	0	0	0	0	2004	0	5	0	5
2005	0	0	0	0	2005	0	0	0	0
2006	0	0	1	1	2006	0	5	0	5
2007	0	3	0	3	2007	0	3	0	3
2008	1	14	1	16	2008	0	0	0	0
2009	3	19	4	26	2009	0	0	0	0
2010	0	27	2	29	2010	0	1	0	1
2011	0	15	0	15	2011	0	1	0	1
2012	0	15	1	16	2012	0	2	0	2
2013	0	11	1	12	2013	0	0	0	0
2014	0	10	1	11	2014	0	1	0	1
2015	0	7	0	7	2015	0	1	0	1
2016	0	3	0	3	2016	0	8	0	8
2017	0	4	0	4	2017	0	3	0	3
2018	0	5	0	5	2018	0	3	1	4
2019	0	3	1	4	2019	0	3	0	3
2020	0	17	2	19	2020	0	2	0	2
2021	0	10	1	11	2021	0	1	0	1
2022	0	9	0	9	2022	1	3	0	4
2023	1	7	0	8	2023	0	1	0	1
2024	0	11	0	11	2024	0	2	0	2
2025	0	2	1	3	2025	0	8	0	8

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 4 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	2	76	1	79	2000	0	152	0	152
2001	3	391	0	394	2001	1	166	0	167
2002	2	70	0	72	2002	1	110	0	111
2003	2	125	0	127	2003	0	99	0	99
2004	0	147	8	155	2004	0	102	0	102
2005	1	69	2	72	2005	0	63	1	64
2006	2	57	0	59	2006	1	56	0	57
2007	0	139	0	139	2007	1	8	0	9
2008	0	28	0	28	2008	1	22	0	23
2009	0	134	5	139	2009	0	59	1	60
2010	0	158	0	158	2010	0	46	1	47
2011	1	74	3	78	2011	0	79	0	79
2012	1	140	1	142	2012	2	53	0	55
2013	0	81	0	81	2013	2	63	1	66
2014	1	189	1	191	2014	1	99	0	100
2015	0	54	0	54	2015	0	177	1	178
2016	2	52	2	56	2016	0	212	0	212
2017	1	104	1	106	2017	0	143	2	145
2018	0	99	1	100	2018	2	131	0	133
2019	0	169	1	170	2019	0	34	1	35
2020	0	147	1	148	2020	0	86	0	86
2021	0	334	2	336	2021	0	128	1	129
2022	0	89	0	89	2022	0	223	2	225
2023	0	219	0	219	2023	0	219	2	221
2024	0	223	0	223	2024	2	176	1	179
2025	0	84	0	84	2025	1	380	0	381

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 5 Tree Recruitment and Mortality over the Years

YEAR	Recruitment			YEAR	Mortality				
	B	R	W		Total	B	R	W	
1999	-	-	-	-	-	-	-	-	-
2000	0	0	1	1	2000	0	0	0	0
2001	1	1	0	2	2001	0	0	2	2
2002	0	0	1	1	2002	0	0	0	0
2003	0	2	0	2	2003	0	0	1	1
2004	0	2	2	4	2004	0	0	0	0
2005	0	0	0	0	2005	0	0	0	0
2006	1	4	1	6	2006	1	0	1	2
2007	1	7	0	8	2007	0	0	0	0
2008	2	5	1	8	2008	0	0	3	3
2009	1	3	0	4	2009	1	0	0	1
2010	0	5	1	6	2010	0	0	1	1
2011	1	0	0	1	2011	1	0	1	2
2012	0	1	0	1	2012	1	0	1	2
2013	0	2	0	2	2013	0	0	2	2
2014	2	0	0	2	2014	0	0	0	0
2015	0	1	2	3	2015	0	0	0	0
2016	0	0	0	0	2016	0	0	0	0
2017	0	2	0	2	2017	0	0	0	0
2018	0	0	1	1	2018	0	1	6	7
2019	0	1	0	1	2019	0	0	4	4
2020	1	0	0	1	2020	0	0	4	4
2021	0	1	0	1	2021	0	0	2	2
2022	0	1	0	1	2022	1	0	3	4
2023	0	3	0	3	2023	1	0	0	1
2024	0	2	0	2	2024	0	0	0	0
2025	0	1	0	1	2025	0	0	0	0

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 5 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment			Total	YEAR	Mortality			Total
	B	R	W			B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	5	9	8	22	2000	0	4	2	6
2001	10	35	7	52	2001	0	2	2	4
2002	4	5	3	12	2002	2	2	2	6
2003	0	2	1	3	2003	1	1	2	4
2004	1	2	1	4	2004	2	1	1	4
2005	0	0	1	1	2005	5	2	3	10
2006	1	5	3	9	2006	0	2	0	2
2007	1	3	1	5	2007	1	2	2	5
2008	3	1	0	4	2008	0	3	2	5
2009	2	5	1	8	2009	3	1	0	4
2010	1	22	4	27	2010	0	0	1	1
2011	2	1	0	3	2011	1	4	2	7
2012	1	1	0	2	2012	0	3	1	4
2013	1	8	1	10	2013	3	2	1	6
2014	2	29	0	31	2014	1	1	0	2
2015	5	54	1	60	2015	1	1	1	3
2016	0	9	0	9	2016	0	9	1	10
2017	0	19	1	20	2017	3	7	2	12
2018	1	18	1	20	2018	1	11	2	14
2019	2	13	1	16	2019	0	3	2	5
2020	0	2	0	2	2020	2	5	0	7
2021	0	12	0	12	2021	4	5	2	11
2022	0	4	0	4	2022	0	8	2	10
2023	0	4	1	5	2023	2	12	1	15
2024	0	4	0	4	2024	0	5	1	6
2025	0	4	2	6	2025	0	7	0	7

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 6 Tree Recruitment and Mortality over the Years

YEAR	Recruitment			Total	YEAR	Mortality			Total
	B	R	W			B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	2	0	1	3	2000	1	0	0	1
2001	4	0	2	6	2001	1	0	0	1
2002	0	0	2	2	2002	0	0	0	0
2003	1	1	8	10	2003	0	1	0	1
2004	2	0	7	9	2004	0	0	1	1
2005	0	1	1	2	2005	0	0	0	0
2006	1	1	6	8	2006	0	0	1	1
2007	1	1	5	7	2007	0	1	4	5
2008	1	5	1	7	2008	0	0	3	3
2009	5	3	8	16	2009	0	0	3	3
2010	0	0	1	1	2010	1	0	2	3
2011	1	1	0	2	2011	0	1	1	2
2012	0	3	1	4	2012	0	0	1	1
2013	0	1	0	1	2013	1	0	1	2
2014	0	9	3	12	2014	1	0	2	3
2015	0	7	4	11	2015	2	0	4	6
2016	0	6	1	7	2016	1	0	1	2
2017	3	1	2	6	2017	5	7	7	19
2018	1	6	0	7	2018	1	1	0	2
2019	0	3	1	4	2019	0	2	2	4
2020	0	1	0	1	2020	4	3	6	13
2021	0	2	0	2	2021	6	6	3	15
2022	0	0	0	0	2022	0	7	4	11
2023	0	1	3	4	2023	0	1	3	4
2024	0	0	0	0	2024	0	2	2	4
2025	0	0	0	0	2025	2	5	2	9

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 6 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	7	25	11	43	2000	1	46	10	57
2001	10	111	31	152	2001	1	14	0	15
2002	4	16	9	29	2002	1	19	4	24
2003	3	1	7	11	2003	1	16	6	23
2004	1	2	2	5	2004	3	12	1	16
2005	4	2	11	17	2005	3	12	6	21
2006	4	17	1	22	2006	0	10	2	12
2007	1	10	8	19	2007	2	12	5	19
2008	1	3	1	5	2008	0	20	8	28
2009	3	14	15	32	2009	4	19	6	29
2010	0	20	8	28	2010	0	22	3	25
2011	1	2	1	4	2011	2	18	8	28
2012	4	19	15	38	2012	1	11	3	15
2013	0	4	0	4	2013	3	28	15	46
2014	0	7	3	10	2014	3	13	7	23
2015	4	14	1	19	2015	5	15	8	28
2016	1	5	1	7	2016	2	14	11	27
2017	2	11	1	14	2017	2	19	6	27
2018	2	17	0	19	2018	5	19	5	29
2019	1	62	1	64	2019	0	11	4	15
2020	1	30	0	31	2020	2	45	2	49
2021	0	22	1	23	2021	1	53	3	57
2022	0	11	0	11	2022	2	45	2	49
2023	1	6	0	7	2023	6	39	3	48
2024	0	35	0	35	2024	2	20	0	22
2025	1	23	0	24	2025	2	33	0	35

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 7 Tree Recruitment and Mortality over the Years

YEAR	Recruitment			Total	YEAR	Mortality			Total
	B	R	W			B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	0	1	0	1	2000	0	1	0	1
2001	0	0	0	0	2001	0	0	0	0
2002	0	0	0	0	2002	0	0	0	0
2003	0	4	0	4	2003	0	0	0	0
2004	0	3	0	3	2004	0	0	0	0
2005	0	1	0	1	2005	0	0	0	0
2006	0	0	0	0	2006	0	0	0	0
2007	0	3	0	3	2007	1	0	0	1
2008	0	1	0	1	2008	0	0	0	0
2009	0	2	0	2	2009	0	0	0	0
2010	0	2	0	2	2010	0	0	0	0
2011	0	2	1	3	2011	0	0	0	0
2012	0	3	1	4	2012	0	0	0	0
2013	0	0	0	0	2013	0	0	0	0
2014	0	7	0	7	2014	0	2	0	2
2015	0	1	0	1	2015	0	0	0	0
2016	0	2	0	2	2016	0	9	1	10
2017	0	0	0	0	2017	0	5	0	5
2018	0	0	0	0	2018	0	18	3	21
2019	0	0	0	0	2019	2	2	0	4
2020	0	0	0	0	2020	0	2	0	2
2021	0	0	1	1	2021	0	1	0	1
2022	0	0	1	1	2022	0	0	0	0
2023	0	0	0	0	2023	0	1	1	2
2024	0	0	0	0	2024	0	1	0	1
2025	0	0	0	0	2025	3	0	1	4

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 7 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	5	10	3	18	2000	1	6	0	7
2001	15	11	5	31	2001	1	7	3	11
2002	8	24	3	35	2002	1	4	2	7
2003	5	10	0	15	2003	4	8	2	14
2004	8	10	3	21	2004	11	13	2	26
2005	8	9	0	17	2005	6	8	4	18
2006	2	23	1	26	2006	10	26	3	39
2007	12	265	3	280	2007	3	6	0	9
2008	7	28	1	36	2008	2	18	1	21
2009	9	26	2	37	2009	6	38	0	44
2010	6	14	0	20	2010	0	52	3	55
2011	3	34	3	40	2011	9	62	2	73
2012	7	38	1	46	2012	3	37	3	43
2013	4	13	1	18	2013	7	31	2	40
2014	2	23	0	25	2014	1	27	4	32
2015	13	10	0	23	2015	5	38	1	44
2016	1	11	0	12	2016	31	148	3	182
2017	1	74	0	75	2017	6	21	0	27
2018	0	24	0	24	2018	12	83	2	97
2019	1	133	1	135	2019	0	7	0	7
2020	1	9	3	13	2020	1	102	0	103
2021	2	59	6	67	2021	0	15	0	15
2022	1	47	2	50	2022	0	22	1	23
2023	1	8	0	9	2023	1	130	3	134
2024	0	19	9	28	2024	1	15	0	16
2025	0	0	0	0	2025	3	46	15	64

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 8 Tree Recruitment and Mortality over the Years

YEAR	Recruitment			YEAR	Mortality				
	B	R	W		Total	B	R	W	
1999	-	-	-	-	-	-	-	-	-
2000	0	0	0	0	0	0	1	0	1
2001	0	0	0	0	0	0	2	0	2
2002	0	0	0	0	0	0	1	0	1
2003	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	1	0	1
2005	0	0	0	0	0	0	0	0	0
2006	0	0	0	0	0	0	0	0	0
2007	0	2	2	4	0	0	0	0	0
2008	0	0	7	7	0	0	0	0	0
2009	0	0	11	11	0	0	0	0	0
2010	0	0	16	16	0	0	2	0	2
2011	1	0	20	21	0	0	1	0	1
2012	0	1	20	21	0	0	0	0	0
2013	0	1	21	22	0	0	0	0	0
2014	0	0	11	11	0	0	0	0	0
2015	0	3	6	9	0	0	0	0	0
2016	0	0	3	3	0	0	0	3	3
2017	0	1	2	3	0	0	0	0	0
2018	0	1	0	1	0	0	5	18	23
2019	1	0	1	2	0	0	2	11	13
2020	1	2	2	5	0	0	0	3	3
2021	0	0	0	0	0	0	0	1	1
2022	0	2	1	3	0	0	0	0	0
2023	0	1	1	2	1	0	0	1	2
2024	0	2	0	2	0	0	2	1	3
2025	0	0	0	0	1	0	0	2	3

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 8 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment			YEAR	Mortality				
	B	R	W		Total	B	R	W	
1999	-	-	-	-	-	-	-	-	-
2000	0	1	0	1	2000	0	1	0	1
2001	0	1	0	1	2001	0	2	0	2
2002	0	3	4	7	2002	0	1	0	1
2003	0	6	6	12	2003	0	2	0	2
2004	2	6	7	15	2004	0	4	1	5
2005	0	23	3	26	2005	0	1	1	2
2006	1	18	5	24	2006	1	3	0	4
2007	13	41	19	73	2007	0	3	1	4
2008	11	4	15	30	2008	1	7	0	8
2009	16	10	43	69	2009	1	7	1	9
2010	10	12	23	45	2010	0	6	0	6
2011	5	15	14	34	2011	0	7	0	7
2012	11	41	14	66	2012	5	1	2	8
2013	2	14	0	16	2013	5	10	2	17
2014	9	54	3	66	2014	0	5	3	8
2015	0	34	0	34	2015	1	11	5	17
2016	2	39	0	41	2016	6	50	7	63
2017	0	40	0	40	2017	12	34	3	49
2018	1	32	0	33	2018	25	89	12	126
2019	0	30	1	31	2019	4	22	0	26
2020	0	8	1	9	2020	3	58	1	62
2021	0	111	0	111	2021	5	28	1	34
2022	0	127	0	127	2022	3	26	0	29
2023	1	191	0	192	2023	1	43	0	44
2024	0	330	0	330	2024	1	31	0	32
2025	0	52	0	52	2025	2	558	1	561

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 9 Tree Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	0	0	2000	0	7	1	8
2001	0	0	0	0	2001	0	3	0	3
2002	0	0	0	0	2002	0	3	0	3
2003	0	0	0	0	2003	0	2	1	3
2004	0	0	0	0	2004	0	1	0	1
2005	0	0	0	0	2005	0	0	0	0
2006	0	0	0	0	2006	0	3	0	3
2007	0	0	13	13	2007	0	2	0	2
2008	0	0	49	49	2008	0	0	0	0
2009	0	1	52	53	2009	0	0	0	0
2010	0	12	17	29	2010	0	0	0	0
2011	0	1	12	13	2011	0	0	0	0
2012	0	2	7	9	2012	0	0	1	1
2013	0	1	2	3	2013	0	0	18	18
2014	0	3	0	3	2014	0	2	33	35
2015	0	2	0	2	2015	0	2	29	31
2016	0	0	0	0	2016	0	5	50	55
2017	0	0	1	1	2017	0	4	7	11
2018	0	0	0	0	2018	0	1	6	7
2019	0	0	0	0	2019	0	2	2	4
2020	0	3	2	5	2020	0	0	0	0
2021	0	0	18	18	2021	0	0	2	2
2022	0	5	20	25	2022	0	0	1	1
2023	0	0	1	1	2023	0	2	35	37
2024	1	3	1	5	2024	0	1	3	4
2025	0	5	1	6	2025	0	1	1	2

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 9 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	0	0	2000	0	0	0	0
2001	0	0	0	0	2001	0	1	0	1
2002	0	4	0	4	2002	0	0	0	0
2003	0	9	0	9	2003	0	4	0	4
2004	0	6	0	6	2004	0	9	0	9
2005	1	13	7	21	2005	0	1	0	1
2006	1	57	21	79	2006	0	0	1	1
2007	2	63	162	227	2007	1	0	0	1
2008	0	28	35	63	2008	0	2	2	4
2009	0	24	32	56	2009	0	14	6	20
2010	1	15	29	45	2010	1	17	11	29
2011	0	21	5	26	2011	0	27	28	55
2012	0	11	1	12	2012	1	12	22	35
2013	0	4	3	7	2013	0	69	48	117
2014	0	2	1	3	2014	0	45	21	66
2015	0	3	0	3	2015	0	13	11	24
2016	0	0	0	0	2016	0	13	5	18
2017	0	10	0	10	2017	1	2	0	3
2018	0	32	0	32	2018	0	9	0	9
2019	0	52	169	221	2019	0	2	0	2
2020	0	6	120	126	2020	0	23	14	37
2021	0	8	44	52	2021	0	7	26	33
2022	0	8	39	47	2022	0	3	128	131
2023	0	2	0	2	2023	0	32	161	193
2024	8	10	10	28	2024	0	6	0	6
2025	1	3	2	6	2025	6	10	0	16

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 10 Tree Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	0	0	2000	0	0	0	0
2001	0	1	0	1	2001	0	0	0	0
2002	0	0	0	0	2002	0	0	0	0
2003	0	1	0	1	2003	0	0	0	0
2004	0	2	0	2	2004	0	0	0	0
2005	0	1	0	1	2005	0	2	0	2
2006	0	1	1	2	2006	0	1	0	1
2007	0	2	16	18	2007	1	0	0	1
2008	0	1	7	8	2008	0	0	0	0
2009	0	7	18	25	2009	0	0	0	0
2010	0	0	12	12	2010	0	0	0	0
2011	0	1	20	21	2011	0	0	0	0
2012	0	2	11	13	2012	0	0	0	0
2013	0	4	2	6	2013	1	0	3	4
2014	0	1	2	3	2014	0	0	13	13
2015	0	0	0	0	2015	0	0	14	14
2016	0	1	0	1	2016	0	13	27	40
2017	0	0	0	0	2017	0	5	7	12
2018	0	0	1	1	2018	0	5	6	11
2019	0	0	0	0	2019	0	0	0	0
2020	0	0	0	0	2020	1	1	2	4
2021	0	0	0	0	2021	0	0	0	0
2022	0	0	0	0	2022	0	0	0	0
2023	0	1	0	1	2023	0	0	3	3
2024	0	0	1	1	2024	0	0	2	2
2025	0	0	0	0	2025	0	0	0	0

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 10 Propagule Recruitment and Mortality over the Years

YEAR	B	Recruitment			YEAR	Mortality			Total
		R	W	Total		B	R	W	
1999	-	-	-	-	1999	-	-	-	-
2000	0	5	1	6	2000	0	6	1	7
2001	0	20	3	23	2001	0	6	0	6
2002	0	20	6	26	2002	0	4	0	4
2003	0	15	11	26	2003	0	10	1	11
2004	1	11	5	17	2004	0	16	1	17
2005	0	24	8	32	2005	1	8	4	13
2006	5	41	37	83	2006	0	4	0	4
2007	3	74	34	111	2007	0	11	3	14
2008	1	27	31	59	2008	2	18	0	20
2009	1	17	21	39	2009	1	19	0	20
2010	1	6	38	45	2010	0	27	5	32
2011	0	30	15	45	2011	1	28	3	32
2012	1	50	9	60	2012	3	20	19	42
2013	3	27	0	30	2013	0	20	30	50
2014	3	80	1	84	2014	0	23	29	52
2015	0	47	0	47	2015	0	39	26	65
2016	1	17	0	18	2016	6	202	15	223
2017	1	39	0	40	2017	2	15	0	17
2018	0	75	0	75	2018	1	20	0	21
2019	2	56	0	58	2019	0	20	0	20
2020	0	21	0	21	2020	0	63	0	63
2021	0	144	0	144	2021	0	32	1	33
2022	0	100	1	101	2022	2	33	0	35
2023	0	100	0	100	2023	2	87	0	89
2024	0	163	0	163	2024	0	54	0	54
2025	0	39	0	39	2025	3	381	0	384

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 11 Tree Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	6	6	2000	0	0	0	0
2001	0	0	80	80	2001	0	0	0	0
2002	0	0	106	106	2002	0	0	1	1
2003	0	1	50	51	2003	0	0	0	0
2004	0	1	20	21	2004	0	0	1	1
2005	0	1	9	10	2005	0	0	7	7
2006	1	0	5	6	2006	0	0	26	26
2007	1	2	0	3	2007	0	0	46	46
2008	6	2	0	8	2008	0	0	46	46
2009	17	4	2	23	2009	0	0	62	62
2010	2	1	0	3	2010	0	1	50	51
2011	4	4	3	11	2011	0	0	2	2
2012	7	9	8	24	2012	0	0	9	9
2013	3	13	4	20	2013	0	1	2	3
2014	3	19	6	28	2014	0	0	1	1
2015	5	16	5	26	2015	0	1	1	2
2016	2	17	5	24	2016	0	4	2	6
2017	2	6	5	13	2017	0	3	2	5
2018	2	6	4	12	2018	0	1	3	4
2019	0	7	3	10	2019	0	4	3	7
2020	0	5	4	9	2020	1	0	1	2
2021	1	14	5	20	2021	0	0	0	0
2022	1	4	1	6	2022	3	1	1	5
2023	0	7	2	9	2023	2	0	2	4
2024	1	8	1	10	2024	3	0	0	3
2025	0	3	0	3	2025	0	4	1	5

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 11 Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	4	21	25	2000	0	0	1	1
2001	0	43	628	671	2001	0	4	1	5
2002	1	28	60	89	2002	0	17	73	90
2003	0	195	8	203	2003	0	12	153	165
2004	1	100	14	115	2004	0	103	112	215
2005	2	55	0	57	2005	0	54	46	100
2006	5	51	1	57	2006	0	51	57	108
2007	25	56	0	81	2007	0	24	22	46
2008	13	14	1	28	2008	0	22	11	33
2009	15	38	4	57	2009	0	49	15	64
2010	6	8	3	17	2010	5	40	9	54
2011	3	7	2	12	2011	0	12	1	13
2012	15	47	5	67	2012	2	10	2	14
2013	10	23	4	37	2013	1	31	2	34
2014	17	57	8	82	2014	1	5	1	7
2015	5	37	5	47	2015	0	6	0	6
2016	8	31	11	50	2016	20	44	2	66
2017	2	73	5	80	2017	9	15	2	26
2018	4	84	9	97	2018	16	34	4	54
2019	1	41	1	43	2019	1	33	1	35
2020	0	13	0	13	2020	2	39	3	44
2021	2	109	3	114	2021	7	17	2	26
2022	0	55	3	58	2022	3	15	2	20
2023	0	50	2	52	2023	3	38	7	48
2024	1	110	3	114	2024	5	42	3	50
2025	0	35	2	37	2025	4	281	2	287

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
Plot 12 Tree Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	0	0	0	0	2000	1	1	0	2
2001	0	0	0	0	2001	0	0	0	0
2002	0	0	0	0	2002	0	0	0	0
2003	0	0	0	0	2003	0	0	0	0
2004	0	0	0	0	2004	0	2	0	2
2005	0	0	0	0	2005	0	3	0	3
2006	0	0	0	0	2006	0	5	1	6
2007	0	0	0	0	2007	0	1	0	1
2008	0	0	0	0	2008	0	0	0	0
2009	0	1	0	1	2009	0	2	0	2
2010	0	0	0	0	2010	0	0	1	1
2011	0	0	0	0	2011	0	2	1	3
2012	0	0	0	0	2012	0	0	1	1
2013	0	0	0	0	2013	0	2	0	2
2014	0	0	0	0	2014	0	2	1	3
2015	0	0	0	0	2015	0	4	0	4
2016	0	0	0	0	2016	0	2	0	2
2017	0	0	0	0	2017	0	3	1	4
2018	0	0	0	0	2018	0	0	1	1
2019	0	0	0	0	2019	0	1	0	1
2020	0	0	0	0	2020	0	1	0	1
2021	0	0	0	0	2021	0	1	0	1
2022	0	11	1	12	2022	0	0	1	1
2023	0	20	0	20	2023	0	1	0	1
2024	0	32	0	32	2024	0	0	0	0
2025	0	16	2	18	2025	0	2	0	2

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years**Plot 12 Propagule Recruitment and Mortality over the Years**

YEAR	Recruitment			YEAR	Mortality				
	B	R	W		Total	B	R	W	
1999	-	-	-	-	-	-	-	-	-
2000	0	1	0	1	2000	0	0	0	0
2001	0	0	0	0	2001	0	0	0	0
2002	0	3	0	3	2002	0	1	0	1
2003	0	0	0	0	2003	0	3	0	3
2004	0	0	0	0	2004	0	0	0	0
2005	0	0	0	0	2005	0	0	0	0
2006	0	0	0	0	2006	0	0	0	0
2007	0	0	0	0	2007	0	0	0	0
2008	0	0	0	0	2008	0	0	0	0
2009	0	1	0	1	2009	0	0	0	0
2010	0	2	0	2	2010	0	1	0	1
2011	0	0	0	0	2011	0	2	0	2
2012	0	1	0	1	2012	0	0	0	0
2013	0	0	0	0	2013	0	1	0	1
2014	0	0	0	0	2014	0	0	0	0
2015	1	0	0	1	2015	0	0	0	0
2016	0	11	0	11	2016	1	0	0	1
2017	0	29	0	29	2017	0	8	0	8
2018	1	156	0	157	2018	0	7	0	7
2019	0	516	1	517	2019	0	7	0	7
2020	2	375	1	378	2020	0	28	0	28
2021	2	440	4	446	2021	0	38	0	38
2022	0	303	5	308	2022	0	61	0	61
2023	1	261	14	276	2023	1	106	1	108
2024	1	229	8	238	2024	0	107	1	108
2025	1	207	27	235	2025	2	143	2	147

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
ALL PLOTS Tree Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	-	-	-	-	1999	-	-	-	-
2000	2	1	15	18	2000	3	15	7	25
2001	5	4	158	167	2001	3	13	2	18
2002	2	1	496	499	2002	1	43	4	48
2003	16	12	188	216	2003	0	5	11	16
2004	10	10	59	79	2004	0	9	130	139
2005	6	7	17	30	2005	0	6	113	119
2006	17	8	19	44	2006	1	15	123	139
2007	30	32	46	108	2007	4	8	109	121
2008	32	39	101	172	2008	1	0	73	74
2009	39	65	181	285	2009	1	2	104	107
2010	9	60	92	161	2010	1	4	120	125
2011	12	40	87	139	2011	2	8	26	36
2012	21	60	65	146	2012	2	6	25	33
2013	7	44	40	91	2013	2	8	54	64
2014	10	59	30	99	2014	3	13	96	112
2015	15	47	38	100	2015	3	9	86	98
2016	5	35	10	50	2016	14	70	141	225
2017	6	16	14	36	2017	22	54	38	114
2018	3	18	6	27	2018	19	60	80	159
2019	1	16	6	23	2019	20	36	33	89
2020	2	31	12	45	2020	6	9	21	36
2021	2	44	25	71	2021	7	11	10	28
2022	3	72	28	103	2022	6	11	14	31
2023	5	84	7	96	2023	7	7	60	74
2024	6	94	4	104	2024	9	8	15	32
2025	4	35	4	43	2025	6	26	8	40

Table 4: Mangrove Tree And Propagule Recruitment And Mortality Over The Years
ALL PLOTS Propagule Recruitment and Mortality over the Years

YEAR	Recruitment				YEAR	Mortality			
	B	R	W	Total		B	R	W	Total
1999	0	0	0	0	1999	0	0	0	0
2000	19	205	77	301	2000	6	312	160	478
2001	69	662	3184	3915	2001	3	204	55	262
2002	47	203	206	456	2002	12	162	1169	1343
2003	57	410	41	508	2003	29	162	702	893
2004	54	312	54	420	2004	23	282	410	715
2005	54	243	38	335	2005	20	163	161	344
2006	57	357	120	534	2006	16	174	87	277
2007	107	712	297	1116	2007	9	87	43	139
2008	66	151	144	361	2008	14	125	27	166
2009	102	286	160	548	2009	33	220	42	295
2010	65	272	124	461	2010	30	234	38	302
2011	32	224	46	302	2011	32	264	51	347
2012	72	411	58	541	2012	38	158	58	254
2013	39	245	17	301	2013	43	269	113	425
2014	53	530	17	600	2014	21	235	75	331
2015	63	342	8	413	2015	25	325	60	410
2016	19	230	15	264	2016	180	880	48	1108
2017	11	494	8	513	2017	47	312	19	378
2018	11	608	11	630	2018	88	507	26	621
2019	10	1134	178	1322	2019	10	170	8	188
2020	5	641	127	773	2020	11	490	20	521
2021	6	1358	83	1447	2021	25	347	36	408
2022	2	854	51	907	2022	15	450	137	602
2023	4	977	19	1000	2023	22	761	181	964
2024	10	1309	34	1353	2024	20	486	7	513
2025	4	486	35	525	2025	30	2203	21	2254

Table 5: Leaf Area Index (LAI) and Productivity (PAR) 2025

Plot	Longitude	Latitude	Altitude	Leaf Area Index	Mean Leaf Angle	Transmission Coefficient	Sunflecks	PAR
1					Technical Issues			
2	-8149	2614	0.14	1.11	56.75	0.41	0.00	73.45
3	-8147.98	2614.01	0.00	2.43	29.99	0.14	0.00	59.50
4	-8149	2613.01	0.00	1.38	12.19	0.26	0.00	47.40
5	-8149	2613	0.12	0.55	52.54	0.59	4.17	627.75
6					Technical Issues			
7	-8149	2613.01	-0.02	0.14	85.91	0.89	4.17	1525.43
8	-8149	2614.01	0.00	1.84	38.83	0.20	0.00	0.00
9	-8149	2614.02	0.00	2.55	36.09	0.12	0.00	68.89
10	-8149	2614.01	0.93	1.75	34.03	0.21	0.00	76.03
11	-8149	2614.01	0.00	1.51	31.32	0.23	4.17	820.43
12	-8147.98	2614	0.01	0.58	64.46	0.57	4.17	645.21
Minimum				0.14	12.19	0.12	0.00	0.00
Mean				1.38	44.21	0.36	1.67	394.41
Max				2.55	85.91	0.89	4.17	1525.43

Table 6: Mortality 2025

Tree Mortality Factor(s)	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 8	Plot 9	Plot 10	Plot 11	Plot 12	Total
Hurricane Ian	0	0	0	0	0	1	0	0	1	0	0	0	2
Hurricane(s) - Delayed Mortality & Infestation	0	0	0	3	0	0	0	0	1	0	1	0	5
Hurricane(s) - Delayed Mortality	0	0	0	2	0	0	0	0	0	0	0	0	2
Hurricane & Competition	0	0	0	0	0	0	0	0	0	0	0	0	0
Hurricane & Inundation	0	1	0	1	0	1	0	3	0	0	1	0	7
Hurricane & <i>Cytospora</i>	0	0	0	0	0	0	0	0	0	0	0	0	0
Hurricane & Erosion	0	0	0	0	0	0	0	0	0	0	0	0	0
Hurricane & Inundation & Erosion	0	0	0	0	0	0	0	0	0	0	0	0	0
Hurricane & Inundation & Competition	0	0	0	0	0	0	0	0	0	0	0	0	0
Hurricane & Inundation & Sand Accretion from Storms	0	0	0	0	0	0	4	0	0	0	0	0	4
<i>Cytospora rhizophorae</i>	0	0	0	0	0	0	0	0	0	0	2	0	2
Inundation	0	0	0	0	0	0	0	0	0	0	0	0	0
Inundation & Competition	0	0	0	0	0	0	0	0	0	0	0	0	0
Competition	0	0	3	0	0	0	0	0	0	0	1	0	4
Anthropogenic Bank Erosion	0	0	0	0	0	7	0	0	0	0	0	0	7
Anthropogenic Contractors	0	0	0	0	0	0	0	0	0	0	0	0	0
Infestation	0	0	2	2	0	0	0	0	0	0	0	0	4
Competition & Infestation	0	0	1	0	0	0	0	0	0	0	0	2	3
Natural or Unknown	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural exacerbated by Hurricane(s)	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural exacerbated by Hurricanes and lack of tidal influence	0	0	0	0	0	0	0	0	0	0	0	0	0
Inundation & Competition & Anthropogenic	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	1	6	8	0	9	4	3	2	0	5	2	40

ACKNOWLEDGEMENTS

For over a decade, the BOWEN FOUNDATION and the BOWEN FAMILY have continued to support this and other mangrove projects. Without this generosity this project would not have been possible. It is so important to perform long-term monitoring of mangrove forests to understand their resilience and the effects of cumulative stressors overtime. The Bowen's support has, and continues, to enable us to further the science to better understand these critical forests. Their support has also allowed the training of many interns early in their careers (many of whom are listed below). The more we can continue to learn more about our estuaries, the

better able we are able to protect them for future generations and the better able they can protect us from our mistakes. There are no words that can express our gratitude. We are forever grateful to the BOWEN FOUNDATION and the Bowen Family!

This work would also not be possible without the following people who spent many days in the field with me over the years including: Gary Thomas, Markus Hennig, Jessica Servens, Ian Bartoszek, Melinda Schuman, Vanessa Booher, Leif Johnson, Glen Buckner, Joshua Gates, Sarah Muffelman, Brian Kelly, Kristen Kuehl, Jamie Fisher, Bailey Rankin, David Shindle, Lindsey Addison, Eliza Davis, Sara Funck, Tiffany Payton, Taryn Lourie, Cailyn Ervin, Sara Bolds, Michelle Bassis, Kelsey Mack, Justin Roberts, Madeline McDonald, Madison Ohl, Julia Galente, Mary Parse, and Val Williams. Additionally, I would like to thank Dr. Thomas J. Smith III, Dr. Daniel Childers, Dr. Stephen Bortone, and David Addison for their guidance.

We are also grateful to the following organizations and foundations, which have helped fund or assisted in this long-term endeavor: Pelican Bay's Maintenance Team, the Upton Foundation, Pelican Bay Foundation, Bay Colony, Mangrove Action Group, NOAA NERRGRF, and WCI