

Biological Opinion and Conference Opinion

Eastern Collier Multi-Species Habitat Conservation Plan

Section 7 Consultation Code: 41420-2010-F-0297

Conservation Planning Activity Code: 41420-2008-FA-0786

Prepared by:

U.S. Fish and Wildlife Service
South Florida Ecological Services Field Office
1339 20th Street
Vero Beach, Florida 32960-3559

[NAME, TITLE]

Date

TABLE OF CONTENTS

CONSULTATION HISTORY.....	i
BIOLOGICAL OPINION and CONFERENCE OPINION.....	1
1 INTRODUCTION.....	1
2 PROPOSED ACTION.....	12
3 TRAFFIC PREDICTIONS AND SOURCES OF CUMULATIVE EFFECTS	40
4 Florida Bonneted Bat.....	44
5 Florida Panther	70
6 Big Cypress Fox Squirrel	159
7 Florida Sandhill Crane.....	167
8 Florida scrub-jay.....	175
9 Florida Burrowing Owl.....	189
10 Red Knot.....	198
11 Little Blue Heron.....	203
12 Tricolored Heron	210
13 Wood Stork.....	217
14 Red-cockaded Woodpecker.....	234
15 Roseate Spoonbill.....	242
16 Audubon's Crested Caracara	249
17 Everglade Snail Kite	273
18 Eastern Diamondback Rattlesnake	283
19 Eastern Indigo Snake.....	292
20 Gopher Tortoise	305
21 INCIDENTAL TAKE STATEMENT.....	314
22 CONSERVATION RECOMMENDATIONS	319
23 REINITIATION NOTICE	323
24 LITERATURE CITED	324

1 **CONSULTATION HISTORY**

2

3 The review of the East Collier Multi-Species Habitat Conservation Plan (HCP) for Incidental
4 Take Permit (ITP) decisions under Endangered Species Act (ESA) §10(a)(1)(B) involved three
5 offices of the U.S. Fish and Wildlife Service (Service):

- 6 • South Florida Ecological Services Field Office (SFESO);
7 • Southeast Regional Office, Ecological Services (RO); and
8 • Program Supervisor for Ecological Services in Florida (Florida State Office, or FSO).

9

10 The SFESO provided technical assistance to the East Collier Property Owners (ECPO, or the
11 Applicants) during the development of their HCP and applications for ITPs. The Deputy
12 Regional Director in the RO has the authority to issue ITPs in the Service's Southeast Region.
13 The RO assigned the role of consulting office for this intra-Service consultation under ESA
14 §7(a)(2) to the FSO, which is responsible for the findings reported in this Biological Opinion and
15 Conference Opinion (BO/CO). Service biologists of the SFESO and the RO contributed to the
16 supporting analyses for the findings documented herein.

17

18 The SFESO holds the record of technical assistance with the Applicants prior to receipt of the
19 final version of the HCP. The FSO holds the record of this consultation, *i.e.*, all data and
20 documents supporting this opinion. The RO holds the record of the pending decisions for the ITP
21 applications, including the record of compliance with the National Environmental Policy Act
22 (NEPA).

23

24 The following chronological list identifies key events in the evolution of the HCP, NEPA
25 compliance, and the formulation of this BO/CO.

26

27 **May 20, 2009** – ECPO informed the Service of its intention to prepare an HCP and seek
28 Incidental Take Permits (ITPs).

29

30 **June 3, 2010** – ECPO members became the Applicants by submitting a draft Habitat
31 Conservation Plan (HCP) summary and ITP Applications.

32

33 **July 5, 2010** – Service acknowledged receipt of the HCP summary and ITP applications,
34 informing the Applicants that:
35 • their applications are considered incomplete until the HCP satisfies all statutory
36 requirements; and
37 • the Service will likely need to prepare an Environmental Impact Statement (EIS).

38

39 **March 15, 2012** – Service and Applicants met to discuss the status of the HCP.

40

41 **April 21, 2015** – Applicants submitted a draft HCP.

42

43 **October 6, 2015** – Service provided preliminary comments on the HCP.

44

45 **March 14–17, 2016** – Service met with the Applicants to visit the Plan Area and to discuss the
46 HCP.

47

48 **March 25, 2016** – Service published in the Federal Register a Notice of Intent (NOI) to prepare
49 an EIS, requesting public comments within 30 days (81 FR 16200).

43 **April 12, 2016** – Service held a public scoping meeting to inform interested parties about the
44 EIS.

45 **April 19, 2016** – Service held an on-line inter-agency scoping meeting to inform interested
46 agencies about the EIS, to which other interested parties from the public could listen.

47 **April 25, 2016** – Comment period for the NOI closed.

48 **May 16, 2016** – Service requested the U.S. Army Corps of Engineers (Corps) participation as a
49 Cooperating Agency in the EIS process.

50 **May 17, 2016** – Service met with the Applicants to discuss EIS public scoping comments and
51 HCP comments.

52 **May 25, 2016** – U.S. Army Corps of Engineers (Corps) agreed to serve as a Cooperating
53 Agency.

54 **April 26, 2017** – Service and Applicants met to discuss the HCP.

55 **April 27, 2017** – Department of the Interior (DOI) issued Secretarial Order (SO) 3355, which
56 directed all bureaus to complete an EIS-supported decision within 1 year of publishing
57 the NOI.

58 **August 11, 2017** – The Service advised ECPO that consultation for the red knot (*Calidris canutus*
59 *rufa*) would be necessary.

60 **August 31, 2017** – DOI provided additional information for implementing SO 3355.

61 **October 24, 2017** – Applicants submitted a revised HCP.

62 **December 11, 2017** – Service met with the Applicant's consultant to discuss deconstruction of
63 the activities described in the HCP.

64 **February 28, 2018** – Service and Applicants met to visit the Plan area.

65 **March 1, 2018** – Service and the Applicants met to discuss the HCP.

66 **April 6, 2018** – Applicants submitted a revised HCP.

67 **April 23, 2018** – Applicants submitted a revised HCP.

68 **May 23, 2018** – Service and Applicants conducted a site visit of the HCP area.

69 **June 13, 2018** – Service provided comments to the Applicants on the draft HCP.

70 **August 2, 2018** – Applicants submitted a revised HCP.

71 **September 14, 2018** – Service briefed DOI officials about the draft EIS and requested
72 permission to publish a Notice of Availability (NOA) in the Federal Register.

73 **September, 2018** – The RO assigned responsibility for the intra-Service BO/CO to the Panama
74 City, FL, Field Office.

75 **October 10, 2018** – Hurricane Michael devastated Panama City and other areas, which
76 precluded the Panama City Field Office from working further on the East Collier HCP
77 BO/CO. The RO subsequently reassigned responsibility for the BO/CO to the FSO.

78 **October 19, 2018** – Service published a NOA for the draft EIS in the Federal Register,
79 requesting public comments within 45 days (83 FR 53078–53080).

80 **December 3, 2018** – Comment period for the NOA closed.

81 **December 22, 2018**—January 25, 2019 – Furlough for all non-essential Service personnel, which
82 suspended all work related to the East Collier ITPs.

83 **March 8, 2019** – Applicants submitted a revised HCP.

84 **March 25, 2019** – Applicants submitted a revised HCP.

85 **April 1, 2019** – DOI granted the Service a 60-day extension of the SO 3355 deadline for
86 reaching a decision on the ITPs.

87 **June 5, 2019** – Service placed the project on pause with respect to the SO 3355 deadline for
88 reaching a decision on the ITPs to allow ECPO to review and comment on the BO/CO
89 traffic analyses.

90 **August 27, 2019** – Service published revised section 7 regulations.

91 **September 10, 2019** – The RO received a complete application from the 12th Applicant
92 (Gargiulo, Inc. Application # TE54442D-0).

93 **December 10, 2019** – The Service completed an update of the BO/CO to reflect the revised
94 section 7 regulations.

95 **January 23, 2020** – Service published a NOA for the draft EIS in the Federal Register to inform
96 the public about the addition of the 12th Applicant and requested comments within 30
97 days (85 FR 3941-3943).

98 **January 28, 2020** – ECPO sent a new Plan Area map after changing some development acreages
99 to preserve acreages to expand the northern corridor.

100 **February 21, 2020** – Comment period for the NOA closed.

101 **May 11, 2020** – BO/CO circulated for internal Service review.

102 **May 21, 2020** – Service ended the pause on the SO 3355 deadline for reaching a decision on the
103 ITPs.

104 **June 10, 2020** – Proposed critical habitat for the Florida bonneted bat was noticed in the Federal
105 Register for a 60-day comment period.

106 **June 26, 2020** – An analysis of effects of the HCP on Florida bonneted bat proposed critical
107 habitat was incorporated into the BO/CO.

108 **June 26, 2020** – Service sent BO/CO to Regional Solicitor’s Office for review.

109 **July 27, 2020** – Regional Solicitor’s Office provided comments on the BO/CO.

110

111 **BIOLOGICAL OPINION and CONFERENCE OPINION**

112 **1 INTRODUCTION**

113 A biological opinion (BO) is the document that states the opinion of the U.S. Fish and Wildlife
114 Service (Service) under section 7 of the Endangered Species Act of 1973, as amended (ESA), as
115 to whether a Federal action is likely to:

- 116 • jeopardize the continued existence of species classified as endangered or threatened; or
- 117 • result in the destruction or adverse modification of designated critical habitat.

118 The proposed Federal action addressed in this BO is the Service’s issuance of Incidental Take
119 Permits (ITPs) to the proponents (Applicants) of the Eastern Collier Multiple Species Habitat
120 Conservation Plan (HCP) (the Action). This document is also a conference opinion (CO) that
121 applies the analytical framework of a BO to the review of Action effects on species covered in
122 the HCP that are not classified at present as endangered or threatened and to proposed critical
123 habitat.

124 The HCP describes “Covered Activities” for which the proponents seek incidental take
125 authorization on lands located in the northeast corner of Collier County (Figure 1-1) (note: with
126 some exceptions, tables and figures in this BO/CO appear in a separate section that follows the
127 major section in which we reference them). These activities may occur on designated portions of
128 a 159,489-acre area owned mostly by the Applicants, but also by other parties (collectively, the
129 Plan Area). We more fully describe the Plan Area and the Action Area (all areas to be affected
130 by the Covered Activities) for this consultation in section 2.1 (the Glossary in the
131 Appendix A explains these and other terms used throughout this document).

132 The Service evaluated the likely effects to the natural, physical, and human environments
133 resulting from the issuance of ITPs for the Covered Activities in a Draft Environmental Impact
134 Statement (EIS) (USFWS 2018) released October 19, 2018 (notice of availability 83 FR 53078-
135 53080). The EIS discloses the environmental impacts of no action, the proposed action, and
136 reasonable alternatives to the proposed action. The Service will consider the EIS and public
137 comments in making its decision whether to issue ITPs for the proposed HCP. This BO/CO
138 evaluates only the proposed action (issuance of ITPs for the HCP as proposed) for compliance
139 with ESA §7(a)(2), which is a permit issuance criterion among several. The Service received
140 several iterations of the HCP from the Applicants during the course of its development (see
141 Consultation History), most recently on January 28, 2020. This latest version of the HCP
142 provides the description of the Covered Activities that prompt the Federal Action we evaluate in
143 this BO/CO.

144 The Applicants for this Federal Action are the following twelve landowners, collectively known
145 as the Eastern Collier Property Owners, LLC (ECPO):

<u>Owner</u>	<u>Application #</u>
Alico Land Development, Inc.	TE05647D-0
Barron Collier Companies	TE04440D-0
Collier Enterprises Management, Inc.	TE04443D-0

157	Consolidated Citrus Limited Partnership	TE04471D-0
158	English Brothers Partnership	TE04152D-0
159	Gargiulo, Inc.	TE54442D-0
160	Half Circle L Ranch, LLP	TE05238D-0
161	Heller Bros. Packing Corp.	TE05668D-0
162	JB Ranch I, LLC (formerly John E. Price, Jr. Trust)	TE04473D-0
163	Owl Hammock Immokalee LLC	TE06114D-0
164	Pacific Land, Ltd.	TE05665D-0
165	Sunniland Family Limited Partnership	TE04472D-0

166
167 The Service will disclose its decision under ESA §10(a)(1)(B) whether to issue the requested
168 ITPs in a separate findings memorandum that will rely, in part, on the findings of this BO/CO,
169 including its estimation of the amount or extent of anticipated incidental take for each species
170 and whether proposed critical habitat is adversely modified.

171
172 The Applicants prepared the HCP with technical assistance from the Service's South Florida
173 Ecological Services Office (SFESO). An HCP must describe:

- 174 • the impacts of the proposed activities that require take authorization;
- 175 • the measures proposed to minimize and mitigate such impacts;
- 176 • the funding available to implement such measures;
- 177 • alternatives considered to the activities that require take authorization and the reasons for
178 not adopting such alternatives; and
- 179 • other measures that the Service may require as necessary or appropriate for purposes of
180 the plan.

181
182 An ITP authorizes the take caused by Covered Activities described in an HCP, not the Covered
183 Activities themselves. This BO/CO analyzes the likely effects of the Covered Activities on the
184 Covered Species, which we identify in the following section. The Deputy Regional Director of
185 Service's Southeast Regional Office (RO) is the official responsible for deciding whether to
186 issue ITPs for the proposed HCP. The RO requested the Florida State Supervisor for Ecological
187 Services in Florida (Florida State Office, or FSO), who oversees the SFESO and two other Field
188 Offices, to independently review the Action for compliance with ESA §7(a)(2), which is a permit
189 issuance criterion. For this intra-Service consultation and conference, the RO is proposing the
190 Federal Action, and the Florida State Office is providing the opinion for the Action.

191
192 **1.1 Covered Species**

193
194 ESA §9(a)(1) and regulations issued under §4(d) prohibit the take of endangered and threatened
195 fish and wildlife species without special exemption. The term "take" in the ESA means "to
196 harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in
197 any such conduct" (ESA §3). The Applicants request that the Service authorize take of 8 ESA-
198 protected species, and prospectively address take of 11 species that are not presently protected
199 under the ESA, that is incidental to (not the purpose of) activities proposed under the HCP. Table
200 1-1 identifies these species.

202
203
204

Table 1-1. Species assessed in the proposed HCP.

Common Name	Scientific Name	Status ^a
Mammals		
Florida bonneted bat	<i>Eumops floridanus</i>	F-E
Everglades mink	<i>Neovison vison evergladensis</i>	S-T
Florida panther	<i>Puma concolor coryi</i>	F-E
Big Cypress fox squirrel	<i>Sciurus niger avicennia</i>	S-T
Birds		
Florida sandhill crane	<i>Antigone canadensis pratensis</i>	S-T
Florida scrub jay	<i>Aphelocoma coerulescens</i>	F-T
Florida burrowing owl	<i>Athene cunicularia floridana</i>	S-T
Little blue heron	<i>Egretta caerulea</i>	S-T
Tricolored heron	<i>Egretta tricolor</i>	S-T
Southeastern American kestrel	<i>Falco sparverius paulus</i>	S-T
Wood stork	<i>Mycteria americana</i>	F-T
Red-cockaded woodpecker	<i>Picoides borealis</i>	F-E
Roseate spoonbill	<i>Platalea ajaja</i>	S-T
Audubon's crested caracara	<i>Polyborus plancus</i>	F-T
Everglade snail kite	<i>Rostrhamus sociabilis plumbeus</i>	F-E
Reptiles		
Eastern diamondback rattlesnake	<i>Crotalus adamanteus</i>	F-Under Review
Eastern indigo snake	<i>Drymarchon corais couperi</i>	F-T
Gopher tortoise	<i>Gopherus polyphemus</i>	F-C
Gopher frog	<i>Lithobates capito</i>	F-Under review

205
206
207

^a F = Federal; S = State of Florida; E = endangered; T = threatened; C = candidate

208
209
210
211
212
213
214

The Service has reliable information that an additional ESA-listed species, the red knot (*Calidris canutus rufa*) (threatened), seasonally uses portions of the HCP area that are proposed for development. Although the SFESO advised the Applicants of this information on August 11, 2017, the HCP does not assess effects to this species. The Service may not issue a permit for an action that may affect a listed species without demonstrating compliance with ESA §7(a)(2); therefore, this BO/CO includes an analysis of the effects of the proposed HCP on the red knot.

215
216
217
218
219
220
221

The red knot is not a “Covered Species” for ITP purposes, because the Applicants have not requested incidental take authorization for the red knot. For intra-Service consultation purposes, we include the red knot with the species listed in Table 1-1. Hereafter in this document, unless we indicate otherwise, our use of the term “Covered Species” refers to 20 species collectively: the 19 species listed in Table 1-1 plus the red knot, recognizing that any Service-issued ITPs will not include the red knot.

222 **1.1.1 Species Dismissed from Further Analysis**

223

224 Our analyses of the 20 Covered Species identified in section 1.1 revealed that three are not
225 reasonably certain to occur in the Plan Area, either presently or in the foreseeable future: gopher
226 frog, Southeastern American kestrel, and Everglades mink. Because these three species are not
227 protected under the ESA, its incidental take prohibitions do not apply. When best available data
228 do not support a determination that a species is likely present in the area that an action will
229 affect, all subsequent steps in effects analysis are moot; therefore, we do not address these
230 species further in this BO/CO. Although the Applicants' request prospective incidental take
231 authorization for these species, the amount or extent of take resulting from the Action as
232 proposed that we anticipate is none. The remainder of this section provides the data and
233 reasoning that support our determination that these species are not present in the Plan Area.

234

235 **Gopher Frog**

236

237 Western Collier County is the southwestern limit of the range of the gopher frog (FWC 2013a),
238 which does not include the eastern half of the county (Figure 1-2). Krysko *et al.* (2011) report a
239 single record for gopher frog in Collier County, dated before 1980 and located more than 30
240 miles west of the Plan Area. Humphries and Sisson (2012) report that gopher frogs may travel
241 distances of up to 3 miles for breeding purposes; therefore, dispersal into the Plan Area from
242 more distant occupied areas is unlikely. The Applicants did not conduct surveys designed to
243 detect gopher frogs, and do not report in the HCP any records of the species from the Plan Area.
244 We have no data that suggest the range of the gopher frog is likely to expand to the south or east
245 into the Plan Area during the foreseeable future.

246

247 **Southeastern American Kestrel**

248

249 The Southeastern American kestrel is closely associated with longleaf pine/wiregrass
250 communities, which do not occur in the Plan Area. Although this subspecies of the American
251 kestrel will use other habitat types that are present in the Plan Area, Collier County is outside its
252 current breeding range (FWC 2013b). The nearest known population inhabits the Lake Wales
253 Ridge, outside of the Action Area (Figure 1-3). The nearest confirmed breeding location was
254 recorded along the Caloosahatchee River on the border of Lee and Hendry Counties,
255 approximately 14 miles north of the Plan Area (FWC 2013b). The subspecies does not migrate
256 seasonally and demonstrates limited dispersal ability, typically less than 5 miles (Miller and
257 Smallwood 1997). The Applicants did not conduct surveys designed to detect the Southeastern
258 American kestrel, and do not report in the HCP any records of the subspecies from the Plan
259 Area. We have no data that suggest the range of the Southeastern American kestrel is likely to
260 expand into the Plan Area during the foreseeable future.

261

262 **Everglades Mink**

263

264 The Everglades mink is a south-Florida subspecies of the American mink. The current
265 distribution of the subspecies is poorly understood. FWC (2011) describes its current range and
266 habitat as the shallow freshwater marshes of the Everglades and Big Cypress Swamp regions.
267 The Plan Area is located north of the Everglades mink's estimated distribution (Figure 1-4).

268 Occurrence records during the past 10 years come from Fakahatchee Strand Preserve State Park,
269 which is 12 miles south of the Plan Area, and the Picayune Strand State Forest, which is west of
270 Fakahatchee Strand (M. Owen, FSPSP, and J. Gore, FWC, personal communication). There have
271 been no recent mink sightings in the Florida Panther National Wildlife Refuge, which borders
272 the Plan Area to the south (C. Winchester, FWC, personal communication). The Applicants did
273 not conduct surveys designed to detect the mink, and do not report in the HCP any records of the
274 subspecies from the Plan Area. We have no data that suggest the current or reasonably
275 foreseeable range of the Everglades mink includes the Plan Area.
276

277 **1.2 Biological Opinion and Conference Opinion Framework**

278

279 This BO/CO considers the effects of activities proposed in the Applicants' HCP, for which the
280 Applicants seek take authorization from the Service. The term "take" in the ESA means "to
281 harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in
282 any such conduct" (ESA §3(19)). In regulations at 50 CFR §17.3, the Service further defines:

- 283 • "harass" as "an intentional or negligent act or omission which creates the likelihood of
284 injury to wildlife by annoying it to such an extent as to significantly disrupt normal
285 behavioral patterns which include, but are not limited to, breeding, feeding, or
286 sheltering;"
- 287 • "harm" as "an act which actually kills or injures wildlife. Such act may include
288 significant habitat modification or degradation where it actually kills or injures wildlife
289 by significantly impairing essential behavioral patterns, including breeding, feeding or
290 sheltering;" and
- 291 • "incidental take" as "any taking otherwise prohibited, if such taking is incidental to, and
292 not the purpose of, the carrying out of an otherwise lawful activity."

293 By memorandum dated April 26, 2018, the Service's Principal Deputy Director issued guidance
294 about the "trigger for an incidental take permit" under ESA §10(a)(1)(B)

295 (<https://www.fws.gov/endangered/esa-library/pdf/Guidance-on-When-to-Seek-an-Incidental-Take-Permit.pdf>). The requirement for an ITP applies when ESA-prohibited take of wildlife is
296 reasonably certain to occur incidental to, and not the purpose of, otherwise lawful non-Federal
297 activities. The guidance memo clarified that harass is not a form of incidental take permitted
298 under §10(a)(1)(B), because the definition of harass applies to intentional or negligent acts or
299 omissions. Disturbance (e.g., noise, odors, vibrations) that is incidental to an otherwise lawful
300 activity may constitute significant habitat modification under the definition of harm, but is
301 inconsistent with the definition of harass. Our analyses in this BO/CO identify the reasonably
302 certain consequences for the Covered Species caused by activities included in the proposed
303 Action, and by other activities that would not occur but for the proposed Action, and we estimate
304 the amount or extent of take that is incidental to these activities.

305 The take prohibitions of ESA §9 apply to four species named in Table 1-1 that are classified as
306 endangered. Take prohibitions adopted by regulation under ESA §4(d) apply to another four
307 species named in Table 1-1 that are classified as threatened, plus the red knot. At this time, the
308 protections of the ESA do not extend to the remaining 11 non-listed Covered Species; therefore,
309 a permit that authorizes incidental take of these species is not required under the ESA. However,
310 an applicant's HCP may request the Service to include non-listed species in an ITP for take
311
312
313

314 authorization later during the permit's effective period when the Service may classify such
315 species as endangered or threatened. The Applicants have requested a 50-year permit duration.
316

317 The Service may grant prospective take authorization for non-listed species, provided the
318 proposed HCP satisfies the same ITP issuance criteria that apply to listed species. These criteria
319 include a finding that the activities proposed under the HCP are not likely to jeopardize the
320 continued existence of a covered species. This document provides BOs for 9 listed species, and
321 COs for 11 non-listed species, to address this issuance criterion.
322

323 "*Jeopardize the continued existence* means to engage in an action that reasonably would be
324 expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and
325 recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of
326 that species" (50 CFR §402.02). The Service determines in a BO/CO whether we expect an
327 action to satisfy this definition using the best available relevant data in the following analytical
328 framework (see 50 CFR §402.02 for the regulatory definitions of *action*, *action area*,
329 *environmental baseline*, *effects of the action*, and *cumulative effects*).
330

- a. *Proposed Action.* Review the proposed Federal action and describe the environmental
331 changes its implementation would cause, which defines the action area.
332 b. *Status of the Species.* Review and describe the current range-wide status of the species.
333 c. *Environmental Baseline.* Describe the condition of the listed species in the action area,
334 without the consequences to the listed species caused by the proposed action. The
335 environmental baseline includes the past and present impacts of all Federal, State, or
336 private actions and other human activities in the action area, the anticipated impacts of all
337 proposed Federal projects in the action area that have already undergone formal or early
338 section 7 consultation, and the impacts of State or private actions which are
339 contemporaneous with the consultation.
340 d. *Effects of the Action.* Predict all consequences to listed species that are caused by the
341 proposed action, including the consequences of other activities that are caused by the
342 proposed action. A consequence is caused by the proposed action if it would not occur
343 but for the proposed action and it is reasonably certain to occur. Effects of the action may
344 occur later in time and may include consequences occurring outside the immediate area
345 involved in the action.
346 e. *Cumulative Effects.* Predict all consequences to listed species that are caused by future
347 State or private activities, not involving Federal activities, which are reasonably certain to
348 occur within the action area.
349 f. *Conclusion.* Add the effects of the action and cumulative effects to the environmental
350 baseline and in light of the status of the species, formulate the Service's opinion as to
351 whether the action is likely to jeopardize the continued existence of listed species.
352

353 We accomplish step "a" above in section 2 of this BO/CO. In section 3, we provide data about
354 sources of cumulative effects and other information that are common to multiple species-specific
355 analyses. We provide the remaining basis of our opinion for each species identified in section 1.1
356 (steps "b-f" above) in a separate level-1 section thereafter that addresses the species' status,
357 environmental baseline, effects of the Action, cumulative effects, and conclusion.
358

359 ESA §10(a)(1)(B) does not apply to designated CH. However, a Federal action that is likely to
360 destroy or adversely modify designated CH is not lawful; therefore, our CO also evaluates the
361 effects of the Action to proposed CH. Within the areas that are included in the HCP, the Service
362 has proposed CH for the Florida bonneted bat.

363

364 “*Destruction or adverse modification*” means a direct or indirect alteration that appreciably
365 diminishes the value of designated CH for the conservation of a listed species. Such alterations
366 may include, but are not limited to, those that alter the physical or biological features (PBFs)
367 essential to the conservation of a species or that preclude or significantly delay development of
368 such features (50 CFR §402.02).

369

370 A Service opinion that concludes a proposed Federal action is *not* likely to jeopardize species
371 and is *not* likely to destroy or adversely modify critical habitat fulfills the action agency’s
372 responsibilities under ESA §7(a)(2).

373

374 **1.3 Future Federal Actions Related to the Proposed Action**

375

376 Future Federal actions unrelated to the proposed action are not considered in this BO/CO
377 because they require separate consultation pursuant to section 7 of the Act. Future Federal
378 actions may include activities proposed by landowners of Eligible Lands that choose not to be
379 included in the HCP.

380

381 Some of the Applicants’ Covered Activities may involve the discharge of dredged or fill material
382 into waters of the United States. Such discharges require a permit from the Corps of Engineers
383 under section 404 of the Clean Water Act of 1977, as amended, (“CWA”), 33 U.S.C. § 1344
384 (“404 permit”). If the discharge may affect Federally listed species, the Corps must consult with
385 the Service under section 7 of the ESA prior to issuing the permit. The Corps cannot issue a 404
386 permit if the proposed activity would jeopardize the continued existence of a Federally listed
387 species or result in the adverse modification of a species’ designated critical habitat.

388

389 Through our review of the HCP, preparation of this BO/CO, and issuance of any ITPs, the
390 Service has analyzed the anticipated impacts on the Covered Species of ITP issuance for the
391 Covered Activities described in the HCP. We expect many of the Covered Activities would
392 require 404 permits in order to lawfully continue, even if we determine that they would not result
393 in jeopardy or adverse modification. Because of the HCP’s programmatic approach, we do not
394 know specific plans or locations of the covered activities, so the Corps cannot review wetland
395 impacts at this time.

396

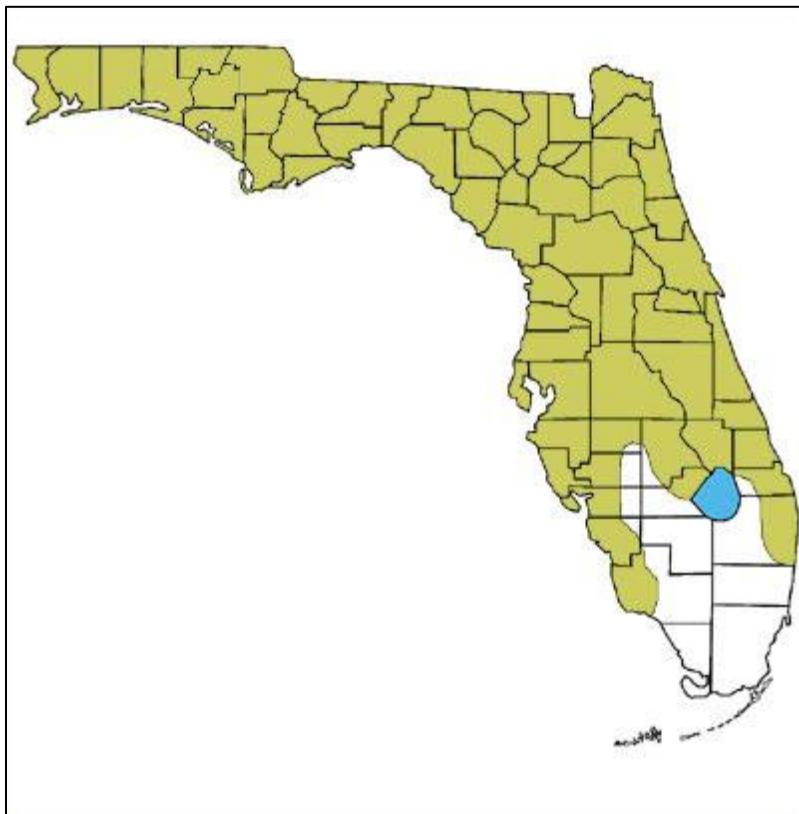
397 As the applicants prepare specific project proposals under the HCP, they would apply to the
398 Corps for wetland review and a 404 permit as required by Corps procedures. The Corps would
399 then consult with the Service under section 7 of the ESA. A covered activity, however, would
400 have already received incidental take authority via an ITP. This would negate the need for the
401 Corps to receive exemption for incidental take, but would not excuse the Corps from consulting
402 with the Service, under ESA section 7, for any 404 permit they issue.

403

404 In order to avoid duplicative section 7 consultations, the Service and the Corps have prepared a
405 Memorandum of Understanding (MOU) to establish procedures to expedite and streamline future
406 section 7 interagency consultations between the Service and Corps on Applicants' applications for
407 404 permits associated with the Covered Activities of the HCP. The MOU would be executed
408 after the Service concludes its review of the HCP and only if the Service decides to issue ITPs.

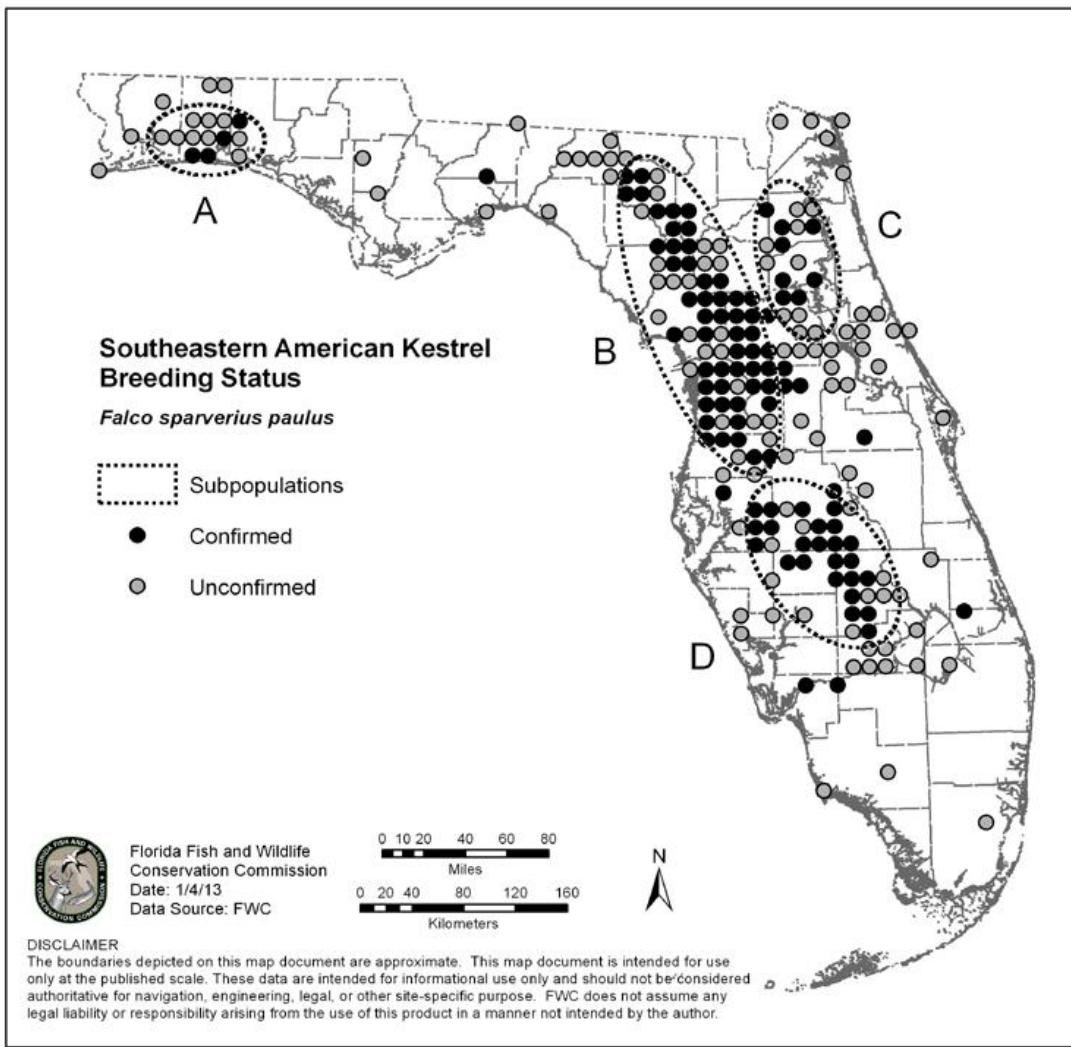
409 The MOU relies on project-specific coordination between the Service and an Applicant that would
410 be required for any project to be conducted under the HCP. If the Service concurs with an
411 Applicant that a proposed project is consistent with the HCP, it would provide the Applicant
412 written concurrence to that effect.

413 Under the terms of the MOU, the Service would affirm to the Corps that a concurrence letter issued
414 to an Applicant/Permittee would certify that the proposed project is consistent with the Covered
415 Activities analyzed in this BO/CO and that the Corps may rely on such certification in satisfying
416 its ESA section 7 obligations associated with processing Applicant's 404 permit application.

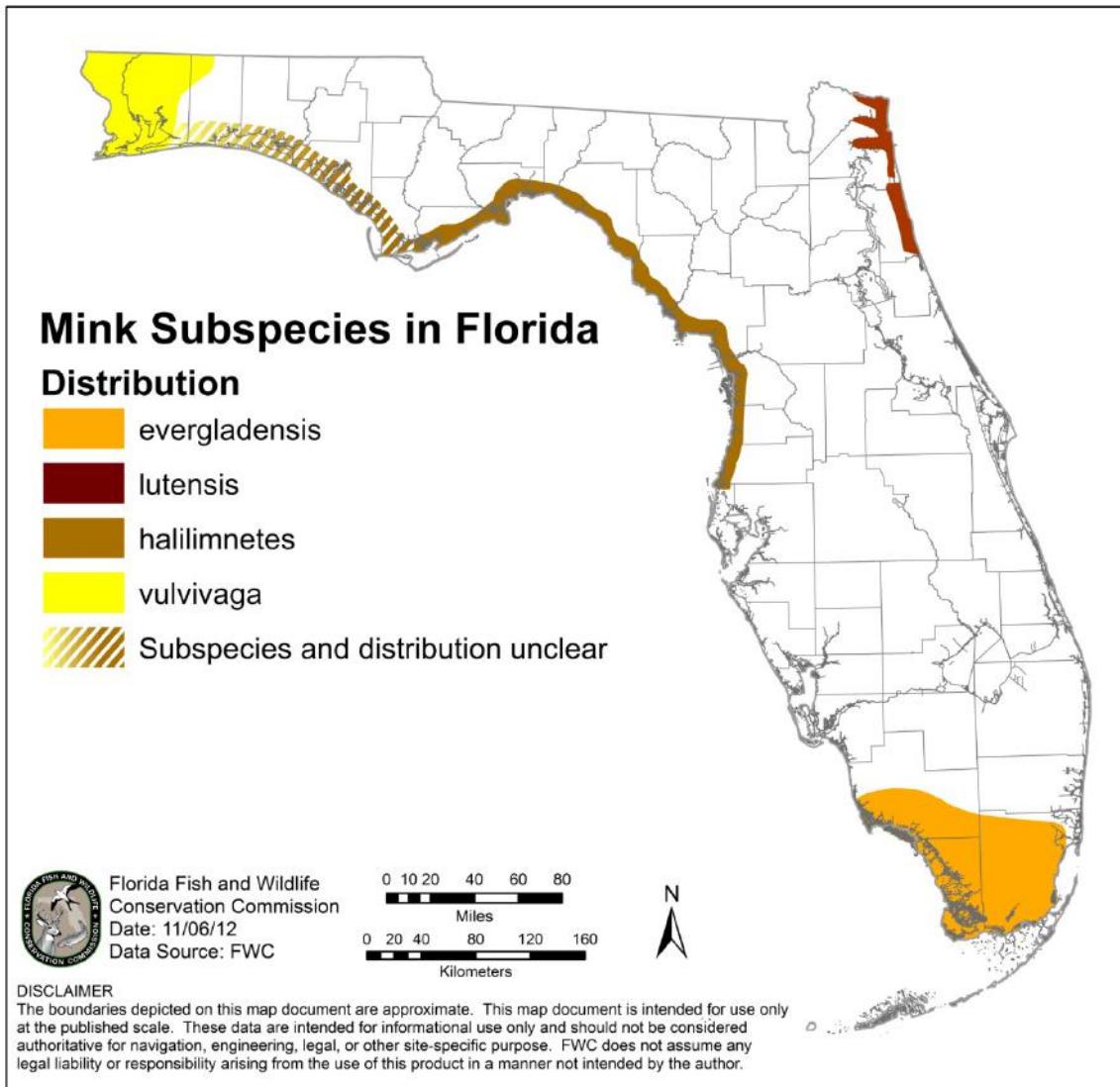

417

418 1.4 Tables and Figures
419

Figure 1-1. Location of the proposed Eastern Collier Multiple Species Habitat Conservation Plan.


426

427


428

429 **Figure 1-2.** Range of the gopher frog in Florida based on historical records and the location of
430 suitable habitat (map credit: Monica McGarrity, University of Florida).
431

432
 433
 434
 435
 436
 437
 438
 439
 440

Figure 1-3. Distribution of the Southeastern American kestrel. The four largest regional subpopulations are: (A) Western Panhandle; (B) Brooksville Ridge and vicinity; (C) Trail Ridge and vicinity; and (D) Lake Wales Ridge and vicinity. Points represent locations where breeding activity was recorded during Florida's Breeding Bird Atlas (FWC 2003) (map source: FWC 2013b).

441
442 **Figure 1-4.** Geographic distribution of mink subspecies in Florida (source: FWC 2013c).
443
444

445 **2 PROPOSED ACTION**

446
447 Twelve landowners in Collier County, Florida, (East Collier Property Owners [ECPO], or the
448 Applicants) have applied to the Service for 50-year ITPs (see application numbers listed in
449 section 1) covering activities described in the Eastern Collier Multiple Species HCP (ECPO
450 2019; hereafter cited in this document as the “HCP”). The proposed Federal action addressed in
451 this BO/CO is the Service’s issuance of ITPs in response to these applications in accordance with
452 50 CFR 17.22 and 17.32 (the Action). The Applicants request incidental take authorization for he
453 19 species of wildlife identified in Table 1-1. As we noted in section 1.1, we add a twentieth
454 species, the red knot, to the Covered Species for purposes of this BO/CO only. Otherwise, our
455 description of the Action throughout section 2 of this BO/CO is based on the HCP.
456
457

458 The HCP proposes a program that addresses both development and conservation in a large
459 portion (159,489 acres) of Collier County (the Plan Area). The Applicants propose an acreage
460 cap (39,973 acres) on the extent of development (development cap) within designated areas and
461 an assured reservation of natural areas and agricultural lands in which further development is
462 precluded by permanent easements. These easements, executed as lands are developed, would
463 cover about 56% of the Plan Area upon reaching the development cap. This collaboration among
464 12 landowners seeks to integrate ESA regulatory requirements with the County's Rural Lands
465 Stewardship Area (RLSA) program, under which landowners exchange conservation debits and
466 credits for actions on particular properties. Presently, ESA section 7 consultations with the U.S.
467 Army Corps of Engineers (Corps) on wetlands permits associated with individual development
468 projects provide the mechanism for ESA compliance, and often provide us with an opportunity
469 to request minimization and compensation. Landowners can choose not to participate in the
470 RLSA because it is a voluntary program. If landowners choose not to participate, much of the
471 Preserve Area could be developed, to some degree. The programmatic approach of the HCP
472 establishes a framework via ESA section 10 for development and preservation at the scale of the
473 Plan Area, instead of project-by-project.
474

475 The HCP describes residential and commercial development (section 2.3 of the HCP), earth
476 mining (section 2.3 of the HCP), oil and gas exploration (section 2.2 of the HCP), ongoing
477 agricultural land uses (section 2.2 of the HCP), land management (sections 2.2 and 2.3 of the
478 HCP), very low density development (section 2.2 of the HCP), wildlife habitat preservation and
479 enhancement (section 2.2 of the HCP), and existing recreational land uses (section 2.2 of the
480 HCP) (collectively, the "Covered Activities") on 139,442 acres of northeastern Collier County
481 owned by the Applicants. The larger Plan Area for the HCP includes also an additional 20,047
482 acres of lands "Eligible for Inclusion" in the HCP, which the Applicants do not own. The
483 provisions of the HCP would apply to Eligible lands only when owners of such lands elect to
484 participate in the HCP and receive ITPs. The HCP does not specify the timing, location, and
485 other details of particular developments or projects. Instead, the Applicants propose to carry out
486 the Covered Activities within identified portions of the Plan Area over the requested 50-year
487 permit period according to applicable provisions of the HCP (*i.e.*, Best Management Practices
488 [BMPs], species-specific conservation measures, conservation easements, *etc.*).
489

490 This BO/CO predicts the reasonably certain consequences to Covered Species caused by the
491 Action, including the consequences of other activities caused by the Action (effects of the
492 action), and the reasonably certain consequences caused by future non-Federal activities in the
493 Action Area (cumulative effects). Following an identification and description of the Action Area
494 in section 2.1, we organize our description of the Action and our analysis of effects to the
495 Covered Species according to the broad classes of land use designation under the HCP:

- 496 • Development and Mining (section 2.2);
497 • Preservation (section 2.3);
498 • Base Zoning (section 2.4);
499 • Very Low Density Development (section 2.5); and
500 • Eligible for Inclusion (section 2.6).

501
502 The HCP's description of land use that may occur in the Base Zoning Area includes
503 contingencies for low- or high-density development, preservation, or some combination thereof.

504 For reasons we explain in section 2.4, our effects analyses in sections 4 through 20 of this
505 BO/CO include the Base Zoning Area among the lands designated for up to 39,973 acres of
506 residential and commercial/ development under the Development and Mining designated use. In
507 a similar manner, we include the 20,047 acres of the lands Eligible for Inclusion as potentially
508 contributing to the development cap (see section 2.6). In section 2.8, we consider whether other
509 activities would not occur but for the proposed Federal Action, and if so, identify them for
510 analysis in this BO/CO.

511
512 Throughout this BO/CO, we cite and summarize aspects of the Applicants' HCP document that
513 are relevant to formulating the Service's BO/CO for the Action. If necessary for clarity in this
514 document, we repeat data reported in the HCP. We evaluate only the Applicants' preferred
515 alternative among the five described in the HCP, which is the proposal the Service is considering
516 for permits issuance. Please refer to the HCP for additional details about the East Collier
517 proposal.

518
519 **2.1.1 Action Area**

520
521 The regulations at 50 CFR §402.02 define "action," "action area," and "*effects of the action*" as
522 follows:

523
524 "Action means all activities or programs of any kind authorized, funded, or carried out, in whole
525 or in part, by Federal agencies in the United States or upon the high seas. Examples include, but
526 are not limited to:

- 527 (a) actions intended to conserve listed species or their habitat;
- 528 (b) the promulgation of regulations;
- 529 (c) the granting of licenses, contracts, leases, easements, rights-of-way, permits, or grants-in-
530 aid; or
- 531 (d) actions directly or indirectly causing modifications to the land, water, or air."

532
533 "Action area means all areas to be affected directly or indirectly by the Federal action and not
534 merely the immediate area involved in the action."

535
536 Defining the action area is necessary to determine whether listed species or designated critical
537 habitats may occur in that area, which necessarily precedes any subsequent analyses of the
538 effects of the action to particular species or critical habitats. It is practical and consistent with the
539 regulatory language cited above to treat the action area for a proposed federal action as the
540 spatial extent of its direct and indirect modifications to the land, water, or air. Under the
541 regulatory definition of "effects of the action," such changes include those caused by activities
542 that would not occur but for the action under consultation.

543
544 The action area establishes the bounds for an analysis of a species' exposure to action-caused
545 changes, but the subsequent consequences of such exposure are not limited to the action area.
546 For example, habitat modifications may reduce food resources (an action-caused change to land),
547 which causes reduced fitness of individuals wintering in the action area, which then causes
548 reduced reproductive success in a nesting area far removed from the action area. When each link
549 in a predicted causal chain between a change in the action area (that would not occur but for the

550 action) and a predicted consequence of that change is reasonably certain to occur, we determine
551 that the action would cause the consequence. Similarly, habitat modifications may displace
552 individuals from an action area into other areas where essential feeding, breeding, and sheltering
553 behaviors are impaired. We rely upon best available data to identify any consequences of an
554 action to listed species that are reasonably certain to occur later in time outside of the action area,
555 but such effects do not alter the bounds of the action area. The action area does not expand to
556 include a distant breeding area or an area receiving displaced animals. Finally, the action area
557 establishes the bounds for an analysis of cumulative effects, *i.e.*, consequences caused by future
558 non-federal actions that are reasonably certain to occur in the action area.

559
560 *“Effects of the action* are all consequences to listed species or critical habitat that are caused by
561 the proposed action, including the consequences of other activities that are caused by the
562 proposed action. A consequence is caused by the proposed action if it would not occur but for the
563 proposed action and it is reasonably certain to occur. Effects of the action may occur later in time
564 and may include consequences occurring outside the immediate area involved in the action. (See
565 § 402.17).”

566
567 The regulations at 50 CFR §402.17 define “activities that are reasonably certain to occur” and
568 “consequences caused by the proposed action” as follows:

569
570 *“Activities that are reasonably certain to occur.* A conclusion of reasonably certain to occur
571 must be based on clear and substantial information, using the best scientific and commercial data
572 available. Factors to consider when evaluating whether activities caused by the proposed action
573 (but not part of the proposed action) or activities reviewed under cumulative effects are
574 reasonably certain to occur include, but are not limited to:

575 (1) Past experiences with activities that have resulted from actions that are similar in scope,
576 nature, and magnitude to the proposed action;
577 (2) Existing plans for the activity; and
578 (3) Any remaining economic, administrative, and legal requirements necessary for the activity to
579 go forward.”

580
581 *“Consequences caused by the proposed action.* To be considered an effect of a proposed action,
582 a consequence must be caused by the proposed action (*i.e.*, the consequence would not occur but
583 for the proposed action and is reasonably certain to occur). A conclusion of reasonably certain to
584 occur must be based on clear and substantial information, using the best scientific and
585 commercial data available. Considerations for determining that a consequence to the species or
586 critical habitat is not caused by the proposed action include, but are not limited to:

587 (1) The consequence is so remote in time from the action under consultation that it is not
588 reasonably certain to occur; or
589 (2) The consequence is so geographically remote from the immediate area involved in the action
590 that it is not reasonably certain to occur; or
591 (3) The consequence is only reached through a lengthy causal chain that involves so many steps
592 as to make the consequence not reasonably certain to occur.”

593
594 **2.1.1.1 Immediate Area Involved in the Action**
595

596 The immediate area involved in this Action is the 159,489-acre Plan Area located in the
597 northeast corner of Collier County, Florida (Figure 2-1). The Plan Area is comprised of 139,442
598 acres owned by the ECPO Applicants, and another 20,047 acres owned by others that the
599 Applicants designate in the HCP as lands Eligible for Inclusion. The Covered Activities of the
600 HCP would affect the Plan Area by:

- 601 • converting existing land cover to residential, commercial, and earth mining uses on up to
602 39,973 acres in the areas designated as Development and Mining (and possibly in the
603 Base Zoning and Eligible for Inclusion areas);
- 604 • converting existing land cover to accommodate low-density occupancy (1 unit per 50
605 acres) in the Very Low Density use areas;
- 606 • converting existing land cover to accommodate residential development at a density of 1
607 unit per 5 acres in the Base Zoning area; and
- 608 • implementing various conservation practices while continuing existing land uses on the
609 designated Preservation areas and on the remaining undeveloped acreage of the
610 Development, Very Low Density, and Base Zoning areas.

611
612 The Eligible lands are not included in these proposals at this time; however, the Applicants
613 describe in section 2.4 of the HCP how owners of these lands may elect to participate in the plan.
614 We describe in section 2.6 how the enrollment of Eligible lands could contribute to the 39,973-
615 acre development cap or supplement the designated Preservation lands. Although some or all of
616 the Eligible lands may or may not participate in the HCP, we include these lands in the Plan Area
617 as parts of the immediate area involved in this Action.

618
619 The Plan Area lies entirely within the boundaries of Collier County's "Rural Land Stewardship
620 Area" (RLSA), which is comprised of about 195,000 acres surrounding, but not including, the
621 unincorporated Town of Immokalee. The Plan Area covers more than three quarters of the
622 RLSA. As depicted in Figure 2-1, portions of the RLSA that are *not* included in the Plan Area
623 are either:

- 624 (a) presently designated/managed for conservation purposes;
- 625 (b) addressed in prior Federal permits (three tracts); or
- 626 (c) County and State roads.

627
628 The three tracts addressed in prior Federal permits ("b" in the list above) are the Hogan Island
629 Quarry, Immokalee Sand Mine, and Town of Ave Maria. These lands are under the Applicants'
630 ownership, but are not included in the Plan Area. The ESA §7 consultation associated with
631 Federal permits for these mining and development actions are concluded. The wetland mitigation
632 associated with these projects was removed from the HCP Preservation lands.

633
634 The Applicants adopted a 45,000-acre development cap during the development of the HCP that
635 included the 5,027-acre Town of Ave Maria, which is located south of Immokalee near the
636 center of the RLSA. Because permitting for Ave Maria was completed before the HCP, it is now
637 removed from the Plan Area of the HCP that we consider in this BO/CO. The removal of Ave
638 Maria:

- 639 • reduces the development cap of 45,000 acres by 5,027 acres to 39,973 acres; and
- 640 • reduces the extent of HCP Preservation lands that would receive conservation easements
641 by 6,779 acres, because these commitments are already completed.

642
643 Nothing proposed in the HCP controls future actions within Ave Maria; therefore, Ave Maria is
644 outside the immediate area involved in the Action. Our use of the term “Plan Area” in this
645 BO/CO refers collectively to the 159,489.0 acres comprised of the following HCP land
646 designations:

- 647 • Development and Mining (43,767.2 acres);
648 • Preservation (90,576.3 acres);
649 • Very Low Density (2,667.4 acres);
650 • Base Zoning (2,431.1 acres); and
651 • Eligible for Inclusion (20,0470. acres).

652
653 These acreages are presented here and in Tables 2.1 and 2.2 to the first decimal place to
654 demonstrate that they add up to 159,489.0 acres. From this point forward, the acreages in the
655 text will be presented as whole numbers.

656
657 The Plan Area is adjacent to several large tracts of public lands that are managed for
658 conservation purposes. Figure 2-2 shows these tracts, which include the Corkscrew Regional
659 Ecosystem Watershed to the west, Okaloachoochee Slough State Forest to the north, and Big
660 Cypress National Preserve and Florida Panther National Wildlife Refuge to the south.

661 662 **2.1.1.2 Other Areas Affected by the Action**

663
664 Whether the action area for a consultation extends beyond the immediate area involved in the
665 action depends on the nature and context of changes to land, water, and air caused by the action,
666 including those caused by other actions that would not occur but for the action under
667 consultation. When we can meaningfully predict changes beyond the immediate area involved in
668 the action, we expand the action area accordingly.

669
670 Changes that may reach beyond the Plan Area include:

- 671 (a) noise, odors, and runoff emanating from construction and mining sites;
- 672 (b) smoke from burning piles of cleared vegetation and prescribed fires;
- 673 (c) altered surface- and ground-water flows and levels; and
- 674 (d) altered patterns or volume of human activity (e.g., vehicular traffic to/from the action
675 footprint).

676
677 We do not expect noise and odors from construction and mining activity (“a” above) to extend
678 more than 300 meters from a project site, which would extend beyond the Plan Area only when a
679 project is located along the Plan Area perimeter. These changes are temporary, and limited in
680 scope to the location of particular projects. The HCP does not specify the location or timing of
681 projects; therefore, we cannot reasonably extend the action area to account for noise and odors.
682 We do not expect significant amounts of construction runoff outside the Plan Area, because a
683 purpose of project-level permitting under other Federal, State, and local authorities is to ensure
684 that such runoff is captured onsite.

685
686 Similarly, smoke from burning cleared vegetation and prescribed fires (“b” above) is temporary
687 and limited in scope to the location of particular construction projects or burn areas. The HCP

688 does not specify the location or timing of construction projects or prescribed fires; therefore, we
689 cannot reasonably extend the action area to account for smoke. A purpose of permits under State
690 and local authorities for burning cleared vegetation or conducting prescribed fires is to ensure
691 that the risk of severe off-site modifications to land and air is limited to safe levels.

692
693 Plan Area development may alter surface- and ground-water flows and levels (“c” above) by
694 increasing the extent of impervious surfaces. However, we have no information about the extent
695 or location of new impervious surfaces that may occur on 39,973 acres within a 66,245-acre
696 potential development envelope. We are unable to predict with reasonable certainty specific
697 hydrologic modifications that would extend beyond the Plan Area resulting from this land
698 modification within the Plan Area.

699
700 An increase in vehicular traffic on roads that connect with the Plan Area (“d” above), which
701 would follow new residential and commercial development on 39,973 acres, is a physical change
702 that would extend beyond the bounds of the Plan Area. Traffic volume is a measurable,
703 predictable, and long-term change causally linked to the construction of homes and businesses
704 that serve as the origins or destinations of vehicle trips. Traffic is relevant to several of the
705 Covered Species, especially the Florida panther, for which collisions with vehicles is a
706 substantial cause of annual mortality. In section 3 of this BO/CO, we explain the methods and
707 report the results of our analyses for estimating the volume of traffic on the existing road
708 network that would not occur but for the developments within the HCP and is reasonably certain
709 to occur. Based on these analyses, we include in the Action Area of this BO/CO various road
710 segments that cross the Plan Area and extend beyond the Plan Area. On these road segments we
711 estimate also the volume of traffic from other sources for our analyses of cumulative effects.
712 Thus, the Action Area for this analysis consists of the Plan Area (159,489 acres) plus 5,072
713 discrete road segments totaling 1,825 miles (Figure 2-2). The Appendix B lists all of the road
714 segments included in the Action Area.

715
716 **2.1.1.3 Habitat Types**

717
718 In this section, we report the acreage of habitat types in the Plan Area. These data come from an
719 overlay of the land use designations of the HCP (a geographic data file we obtained from the
720 Applicants) and the Cooperative Land Cover (CLC) classes of the Florida Fish and Wildlife
721 Conservation Commission (FWC) and Florida Natural Areas Inventory (FNAI) (2016). This
722 overlay provides the spatial extent of habitat changes to which the Covered Species may be
723 exposed for our analyses in sections 4–20 of the BO/CO. Chapter 3 of the HCP provides
724 additional information about environmental conditions in the Plan Area, which we cite as
725 necessary throughout this BO/CO.

726
727 Table 2-1 lists the land cover types and corresponding acreage within the Plan Area. We
728 organize the CLC classes by general categories (e.g., Active Agriculture, Native Wetland), and
729 within each category, sort the CLC classes in descending order of total acreage. Columns of the
730 table provide an acreage breakdown within the five land-use designations of the HCP:

731 • Development and Mining (see section 2.2);
732 • Preservation (see section 2.3);
733 • Base Zoning (see section 2.4)

734 • Very Low Density(see section 2.5); and
735 • Eligible for Inclusion (land-use designation subject to “certificates of inclusion;” see
736 section 2.1.1).

737
738 Table 2-2 consolidates the CLC data in Table 2-1 by general land use/land cover categories:
739 active agriculture, native wetland, native upland, existing development, and other types. Active
740 agriculture is the largest category, covering almost half (48.3%) of the Plan Area, followed by
741 native wetlands (36.7%), and native uplands (8.3%). The “Other” land use category in Table 2-2
742 consists mostly of open rural lands that are not in active agricultural use.

743
744 **2.1.1.4 Methods for Estimating the Extent of Development by Habitat Types**

745
746 Our predictions of the effects of HCP development activity on Covered Species must deal with
747 the uncertainties that arise from the Applicants’ HCP development on up to 39,973 acres (the
748 development cap) within a 66,245-acre portion (development envelope) of the Plan Area. The
749 full extent of the potential development envelope is comprised of three land-use designations of
750 the HCP:

751 • Development and Mining (43,767 acres);
752 • Base Zoning (2,431 acres); and
753 • Lands Eligible for Inclusion (20,047 acres).

754
755 In this section, we explain two methods (“Proportional” and “Reasonable Maximum Impact”)
756 that we use for making inferences about which 60.3% of the development envelope (39,973 of
757 the 66,245 acres) we attribute to development in our species-specific effects analyses. The
758 analysis for each species uses only one of the two methods.

759
760 For both methods, we first reduce the size of the potential development envelope by removing
761 the areas of existing development and open water from further consideration, because these
762 cover classes are highly unlikely to host new development subject to the HCP development cap.
763 Table 2-3 reports the acreages for the three development land-use designations in the columns
764 labeled A, B, and C, with the acreages for existing development and open water segregated to the
765 bottom of the table with a corresponding subtotal. The cover classes listed above the first
766 subtotal represent the remaining portion of the development envelope for our analyses of
767 development effects. Removing existing development and open water classes reduces size of the
768 potential new development envelope from 66,245 to 64,757 acres. The development cap of
769 39,973 acres is 61.7% of this smaller envelope, instead of 60.3% of the larger envelope.
770 Following this reduction of the development envelope, our two analysis methods diverge, as
771 explained below.

772
773 **Proportional Method**

774
775 Our “Proportional” method for estimating the extent of each cover class that new development
776 could affect is a proration of the acreages reported in columns A–C of Table 2-3. Because the
777 development cap is 61.7% of the potential development envelope, we expect that 61.7% of each
778 cover class will support development. We cannot identify the properties that will comprise this
779 61.7%; therefore, our analyses using the Proportional method cannot make firm predictions of

780 effects based on available site-specific species data. This method merely estimates the acreage of
781 development within particular cover classes.
782

783 We can identify plans for the Rural Lands West (RLW) development as the type of project that
784 would fill the HCP development cap. The owners of the RLW properties submitted development
785 plans to the Corps for necessary Federal permits (Passarella & Associates, Inc. 2017). Although
786 the owners subsequently withdrew these plans, we consider the proposals mature enough to
787 warrant identification in our analyses as areas that are more likely than not to satisfy part of the
788 HCP development cap. The relative abundance of cover classes in RLW is different from that of the
789 development envelope as a whole. For example, Orchards/Groves cover 40.5% of the
790 development envelope (excluding existing developed areas and open water), but none are present
791 in RLW. Because we know that the foreseeable development of RLW does not include any
792 Orchards/Groves, we can expect development of less than 61.7% of all Orchards/Groves in the
793 full development envelope. Similarly, we should expect development of more than 61.7% of
794 cover classes that are relatively more abundant in RLW. We adjust our proration of cover class
795 acreages in the full development envelope using the likely disposition of the RLW area as
796 follows:

- 797 • Column D of Table 2-3 lists the acreages of cover classes within RLW. Proposed
798 development in RLW (excluding 61 acres of existing development and 2 acres of open
799 water) will account for 4,011 acres (column D, first subtotal) of the development cap.
- 800 • Column E sums the acreages for the full development envelope (columns A, B, and C)
801 and subtracts the RLW acreage from this total.
- 802 • Column F computes the prorated acreage for development within the column E total.
- 803 • Column G returns the RLW acreage to the column F total. Column G is the acreage of
804 each cover class that we attribute to development under the Proportional method. Note
805 that the total acreage for all cover classes in column G is the development cap of 39,973
806 acres.
- 807 • Column H represents the undeveloped acreage following full development of 39,973
808 acres for each cover class that we expect under the Proportional method. Permittees
809 (ECPO and the owners of any eligible lands enrolled in the HCP) would secure these
810 undeveloped lands with conservation easements.

811
812 We use the Proportional method when:

- 813 (a) the species may occur on many cover classes, and the relative importance of most of
814 these is not sufficiently different to warrant the Reasonable Maximum Impact method
815 (described in the following subsection); or
- 816 (b) the species is associated primarily with native wetland cover classes.

817
818 The additional difficulties and permitting requirements associated with development in native
819 wetlands, which cover 8,115 acres (12.5%) of the 64,757-acre development envelope, makes
820 them less likely to host development than other cover classes. It is possible, but highly unlikely,
821 for the development cap to avoid entirely native wetlands within the development envelope.
822 Native wetlands within the proposed RLW development and the permitted Ave Maria
823 development cover 5.0 and 2.6%, respectively, of these areas, compared to the 12.5% wetlands
824 coverage in the full development envelope of the HCP. This suggests some degree of, but not
825 complete, wetlands avoidance in these developments. Rather than choose an arbitrary

826 development percentage for wetlands less than 61.7%, we apply the Proportional method in the
827 same manner to all cover classes, and consider it a modest overestimate of impacts to wetlands
828 and species associated with wetlands, but not a maximum impact scenario.

829

830 **Reasonable Maximum Impact Method**

831

832 We use the Reasonable Maximum Impact (RMI) method for species associated with cover
833 classes that could receive a disproportionate share of the development cap in the development
834 envelope (*i.e.*, more than 61.7%). As discussed in the previous subsection, we do not use this
835 method for species associated primarily with native wetlands, because wetlands are highly
836 unlikely to receive a disproportionate share of the development cap. Under the RMI method, we
837 rank the cover classes that the species uses as habitat in order of importance and attribute
838 development to the full acreage of each class in rank order up to the 39,973-acre development
839 cap. If the resulting attribution of development to cover classes is feasible under the HCP and not
840 otherwise unreasonable, the RMI method represents a plausible development scenario that would
841 have the greatest impact on the species.

842

843 When justified, an analytical advantage of the RMI method is that the spatial distribution of
844 development on cover classes that the species uses, and which collectively have a lesser
845 abundance than the development cap, becomes spatially explicit. Under the Proportional method,
846 the location of the approximately 61.7% of each cover class in the development envelope that
847 will support development is not determinable.

848

849 Under the RMI method, the likely disposition of lands within RLW, which affected the proration
850 of cover classes under the Proportional method, is not relevant. We attribute all the acreage of a
851 particular cover class in the development envelope with which a species is associated to
852 development, including any acreage within RLW. Table 2-4 is an example of the RMI method
853 for a hypothetical species that is associated with a mix of agricultural and native upland cover
854 classes.

855

856 **2.1.2 Development and Mining**

857

858 The HCP designates 43,767 acres of the Plan Area as the primary area (along with lands Eligible
859 for Inclusion and possibly Base Zoning) for up to 39,973 acres of residential/commercial
860 development and mining (labeled as the “Covered Activities” in the HCP) (see Figure 2-1). The
861 Applicants propose to continue their current land uses (agriculture, silviculture, recreation, exotic
862 and nuisance species control, oil and gas exploration/production) in the Development Areas until
863 they convert tracts for commercial/residential uses or earth mining. After reaching the 39,973-
864 acre development cap on HCP-enrolled lands in the Plan Area, permittees would add any
865 remaining undeveloped portions of the Development Areas (at least 3,794 acres; more if Eligible
866 lands are enrolled and developed) to the Preservation Areas (see section 2.3).

867

868 As we discussed in section 2.1.1, the ECPO Permittees may agree with owners of lands “Eligible
869 for Inclusion” in the HCP to substitute such lands for those designated for Development and
870 Mining in the HCP. Such inclusion would not alter the development cap that applies to the HCP
871 and any ITPs issued.

872

873 2.1.2.1 Sub-Activities and Stressors

874

875 Appendix A of the HCP contains the Applicants' deconstruction (parsing of major components
876 into constituent parts) of the HCP development and mining activity. The deconstruction
877 identifies stressors (changes to the environment) associated with various sub-activities, and notes
878 the spatial and temporal distribution (radius and duration/frequency) for the Covered Species'
879 potential exposure to each stressor.

880

881 Commercial/residential development is divided into three phases: (1) pre-construction; (2)
882 horizontal construction; and (3) vertical construction. Earth mining is divided into four phases:
883 (1) pre-construction; (2) mining; (3) conversion to development; and (4) reclamation activities.
884 Each of these phases is comprised of various activities (e.g., surveys, vegetation clearing,
885 building construction) and sub-activities (e.g., vegetation piling/burning, road bed grading). Each
886 sub-activity would introduce one or more stressors to which the Covered Species may respond, if
887 exposed.

888

889 The Applicants deconstruct the HCP development and mining into 49 and 44 unique sub-
890 activities, respectively, which we list in Tables 2-5 and 2-6. Stressors identified for 91 of these
891 93 sub-activities are noise and human disturbance. Habitat loss is a general stressor identified for
892 the vegetation clearing activity during the pre-construction phase of both development and
893 mining. Vegetation clearing is parsed further into sub-activities according to the type of habitat
894 cleared (e.g., citrus orchard, pasture, native forest). Other stressors identified include the
895 introduction of smoke from burning piles of vegetation debris and fuel/oil/odor from equipment
896 use.

897

898 2.1.3 Preservation Activities

899

900 The HCP designates 90,576 acres of the Plan Area for eventual preservation under permanent
901 conservation easements (collectively, the Preservation Area) (see Table 2-2). Permittees would
902 execute conservation easements under the County's Rural Lands Stewardship Program's
903 crediting system as they convert portions of the Development Area (along with enrolled lands
904 Eligible for Inclusion and possibly Base Zoning) to commercial/residential or mining, and
905 possibly enhance over time the value of the land as wildlife habitat and a corridor for regional
906 wildlife movement. Fees collected from the development activity would fund habitat
907 maintenance and enhancement activities (see section 2.7). The easements would preclude future
908 commercial/residential development and earth mining, but would allow a continuation of the
909 existing agricultural land uses.

910

911 Until landowner Permittees execute easements on properties within the Preservation Area, the
912 HCP prescribes a continuation of existing land uses, which include:

913

- 914 • crop cultivation;
- 915 • ranching/livestock operations;
- 916 • forestry and silviculture;
- 917 • recreation;
- exotic and nuisance species control; and

918 • oil and gas exploration and production.

919
920 Permittees under the HCP would annually document the proportion of landcover in the
921 Preservation areas that consists of native habitats and the proportion used for agricultural
922 purposes. The HCP seeks to maintain 100% of the current extent of native habitats and
923 agricultural uses in the Preservation areas, but stipulates a 95% standard to “allow a degree of
924 flexibility in accomplishing restoration of land cover as needed” (HCP section 2.2).

925
926 Upon reaching the 39,973-acre development cap on enrolled lands in the Plan Area, permittees
927 would place remaining undeveloped portions of the Development Areas under conservation
928 easements. At that time, the total area under such easements would then encompass 90,576 plus
929 at least 3,794 acres (the total acreage of the Development areas minus the cap), depending on
930 whether some Eligible lands and/or Base Zoning lands substitute for designated Development
931 areas. The final ratio of Preservation to Development acreage in the Plan Area would equal or
932 exceed $(90,576 + 3,794) \div 39,973 = 2.36$.

933
934 In addition to authorization for take of the Covered Species in the Development areas, the
935 Applicants also seek authorization for take that is incidental to land management activities within
936 the Preservation and Very Low Density Use areas. These activities include:

937 • prescribed burning;

938 • mechanical control of groundcover (e.g., roller chopping, brush-hogging, mowing);

939 • ditch and canal maintenance;

940 • mechanical and/or chemical control of exotic vegetation;

941 • soil tillage; and

942 • similar activities that maintain or improve land quality.

943
944 **2.1.4 Base Zoning**

945
946 The HCP designates a single property, the Half Circle L Ranch, as “Base Zoning.” This 2,431-
947 acre ranch (1.5% of the Plan Area) is located on the northeast edge of the Plan Area (see Figure
948 2-1). Base Zoning means that development at a density of up to 1 dwelling unit per 5 acres,
949 and/or ongoing agricultural uses, may occur consistent with current land use zoning for the
950 RLSA. The Applicants would account for any development of the Base Zoning Area, including
951 possible development at densities greater than 1 unit per 5 acres, in the 39,973-acre effective
952 development cap for the Plan Area. Higher-density development in the Base Zoning Area would
953 displace an equivalent acreage from the areas designated for Development, and place an acreage
954 into the areas designated for Preservation according to provisions of the RLSA, as adopted in the
955 HCP. Until the owner of the Half Circle L Ranch decides whether to develop some or all of the
956 property, it is *not* included in the HCP acreage for the Development, Preservation, or Very Low
957 Density Use areas.

958
959 At this time, the owner of the Half Circle L Ranch has placed it for sale on the open market. The
960 current or the future owner may choose to participate in or withdraw from the HCP, and may
961 choose to develop the property or to continue current agricultural practices. Regardless whether
962 its owner develops the Base Zoning Area under the HCP or withdraws it from the HCP
963 altogether, the development cap for the HCP is 39,973 acres.

964
965 We cannot consider the Base Zoning Area among the lands designated for Preservation, because
966 it is not. We cannot consider that it is limited to a development density of 1 unit per 5 acres,
967 because the HCP allows Base Zoning lands to substitute for Development lands that do not have
968 this restriction. Therefore, we conservatively treat the Base Zoning Area in this BO/CO as
969 contributing up to 2,431 acres to the development cap, the same as other lands within the
970 Development Area.

971
972 Treating the Base Zoning Area as available for high-density development is consistent with
973 purpose of this BO/CO, which is to determine whether the Action is likely to jeopardize the
974 continued existence of any of the Covered Species. If the Action satisfies this permit issuance
975 criterion under this scenario, it will do so whether the Half Circle L Ranch is preserved or
976 developed at lower densities than the Development areas. Therefore, our effects analyses in
977 sections 4 through 20 of this BO/CO include the Base Zoning Area among the lands designated
978 for up to 39,973 acres of commercial/residential development.

979 980 **2.1.5 Very Low Density Development**

981
982 The Applicants designate three areas, located on the southern and eastern edges of the Plan Area,
983 for “Very Low Density” (VLD) uses (see Figure 2-1). These parcels have a combined acreage of
984 2,667 acres (1.7% of the Plan Area). VLD uses include isolated residences, lodges, and
985 hunting/fishing camps, as well as a continuation of existing agricultural (primarily cattle grazing)
986 and silvicultural activities. The HCP limits dwellings in the VLD areas to no more than one unit
987 per 50 acres, and limits vegetation clearing to no more than 10% of the existing native vegetation
988 (HCP chapter 2.2).

989
990 About 668 acres (25.0%) of the VLD areas are open water (see Table 2-2). Native vegetation
991 types cover 1,180 acres (44.2%), of which 447 acres are upland types and 733 acres are wetland
992 types. Within the native cover types, Covered Activities include, but are not limited to:

- 993 • exotic and nuisance species control;
- 994 • prescribed burning;
- 995 • mechanical control of excessive forest understory/fuel loads;
- 996 • tree thinning to improve native forest productivity;
- 997 • mechanical, hydrologic, and/or chemical control of vegetation to improve community
998 structure and/or plant species diversity;
- 999 • construction and maintenance of surface water management structures for preservation or
1000 enhancement of existing/natural hydrologic function; and
- 1001 • scouting and monitoring of lands on foot, horseback, or by vehicle (HCP Chapter 2.2).

1002
1003 The HCP does not specify where clearing up to 10% of the native vegetation types would occur.
1004 Clearing 10% of the native vegetation would reduce their total extent by 118 acres. The
1005 maximum density of 1 unit per 50 acres over the full extent of the VLD areas (2,667 acres) for
1006 the construction of residences, lodges, and hunting/fishing camps corresponds to $2,667 \div 50 = 53$
1007 units. If located entirely within 118 acres of cleared native cover types, 53 units would occupy an
1008 average of 2.2 acres each.

1010 The construction of up to 53 dwelling units within the VLD areas could occur mostly or entirely
1011 on land cover types besides native uplands and wetlands (e.g., on 502 acres of improved pasture
1012 or on 241 acres of rural open lands). However, we must evaluate the HCP as proposed, which
1013 stipulates clearing of up to 10% of the native vegetation within the VLD areas. Consistent with
1014 our proportional method for distributing the development cap among cover types (see section
1015 2.1.4), we allocate the effects of land clearing among all cover types represented in the VLD
1016 areas. Table 2-7 provides calculations for the maximum extent of potential clearing (10%
1017 removal of each native cover type), which we represent as a conversion of 118 acres of the native
1018 cover types to the land cover class “Rural Structures.”

1019

1020 **2.1.6 Eligible for Inclusion**

1021
1022 The Applicants identify 20,047 acres in the Plan Area that they do not own as lands “Eligible for
1023 Inclusion” in the HCP (see Figure 2-1, and Tables 2-1 and 2-2). Owners of properties within the
1024 lands “Eligible for Inclusion” could elect to participate in the HCP during its implementation.
1025 Such enrollment could not increase the total amount or extent of incidental take authorized under
1026 ITPs issued to the ECPO Applicants for the HCP, and all relevant conservation commitments of
1027 the HCP would apply to any new lands covered. We explain in section 2.1.1 how the possibility
1028 of substituting Eligible lands for those assigned to the Development and Mining uses, or adding
1029 to those assigned to the Preservation uses, expands the immediate area involved in the Action. In
1030 section 2.1.4, we explain our methods for including the Eligible lands in the scope of our
1031 species-specific effects analyses.

1032

1033 The ECPO Applicants do not describe a specific process for admitting eligible lands to the HCP.
1034 Whatever process they may adopt, at the time of a new enrollment, the ECPO permit holders
1035 would need to demonstrate that the amount or extent of take authorized for the HCP has not been
1036 exceeded (*i.e.*, actions in the HCP that the Service expected to cause the authorized take have not
1037 yet occurred). Satisfying this condition would allow the permit holders to share with an owner of
1038 eligible lands the authorization for take that has not yet occurred. The enrollee would need to
1039 apply for, and the Service would need to issue, a separate ITP for the eligible lands. The ITP
1040 would replicate all previous requirements for take authorization associated with the HCP.
1041 Similarly, the owners of eligible lands within the Plan Area could sell lands to an ECPO or other
1042 enrolled permittee. That permittee could conduct Covered Activities on a newly-acquired
1043 property in accordance with their existing, an amended, or a new permit depending on
1044 circumstances.

1045

1046 The addition of Eligible lands to the HCP is uncertain. Owners of the Eligible lands are under no
1047 obligation to participate in the HCP. All persons under U.S. jurisdiction are subject to the take
1048 prohibitions of the ESA, and non-Federal entities may seek authorization for incidental take
1049 caused by their actions through an HCP/ITP. If private landowners seek Federal funding or
1050 permits for actions that may affect listed species or designated critical habitat, the Federal agency
1051 assumes responsibility for ESA compliance, including compliance with the take prohibitions.
1052 Owners of Eligible lands that choose to participate in the HCP to obtain take authorization would
1053 need to negotiate with the ECPO permittees for any substitution of their lands for ECPO lands
1054 assigned to the Development and Mining land use category of the HCP and any associated
1055 addition of their lands to those assigned to the Preservation category. Regardless whether

1056 Eligible lands enter the HCP, the development cap of the HCP evaluated in this BO/CO is 39,973
1057 acres.

1058

1059 **2.1.7 Other Activities Caused by the Action**

1060

1061 A BO/CO evaluates the consequences to species or critical habitat that are caused by the
1062 proposed Federal action, including the consequences of other activities that are caused by the
1063 proposed action and are reasonably certain to occur (see definition of “effects of the action” at 50
1064 CFR §402.02). Regulations at 50 CFR §402.17(a) specify criteria for identifying such activities:

1065 (a) *Activities that are reasonably certain to occur.* A conclusion of reasonably certain to occur
1066 must be based on clear and substantial information, using the best scientific and
1067 commercial data available. Factors to consider when evaluating whether activities caused
1068 by the proposed action (but not part of the proposed action) or activities reviewed under
1069 cumulative effects are reasonably certain to occur include, but are not limited to:

1070 (1) Past experiences with activities that have resulted from actions that are similar in
1071 scope, nature, and magnitude to the proposed action;
1072 (2) Existing plans for the activity; and
1073 (3) Any remaining economic, administrative, and legal requirements necessary for the
1074 activity to go forward.

1075

1076 The Applicants own the properties included in the Development, Preservation, Base Zoning, and
1077 Very Low Density designations of the HCP, but not the Eligible lands. The HCP describes
1078 activities for which the Applicants (and owners of Eligible lands that agree to participate in the
1079 HCP) seek authorization for incidental taking of listed species, and describes activities intended
1080 to minimize and mitigate the impacts of such taking. Development on the Eligible lands may occur
1081 independent of the HCP, and we are unaware of any third-party development proposals that
1082 would not occur but for the activities described in the HCP. Because the Applicants propose the
1083 possible addition of Eligible lands to the HCP, we include the Eligible lands in the Action Area.
1084 The Applicants propose to use the Marinelli Fund, in part, to finance the construction of wildlife
1085 crossings (see HCP section 9.5), which third parties (State and County transportation agencies)
1086 would carry out, so this is part of the proposed Action.

1087

1088 Third-party activities that are not a part of, but would be caused by, the development activity of
1089 the HCP, are the collective activities of future residents of the new developments. An increase in
1090 human habitation within the Plan Area is reasonably certain to occur, because creating the
1091 conditions (residences, commercial buildings, infrastructure) for such habitation is the intended
1092 outcome of the HCP development activity. Following changes caused by the Covered Activities
1093 (clearing, construction, land management, *etc.*), new residents of the Plan Area would cause
1094 additional changes. Such changes include, but are not limited to, a long-term increase in: human
1095 activity; pet populations; garbage; nighttime lighting; noise; and vehicular traffic on roads
1096 through and leading to the Plan Area. Of these changes, increased traffic extends the Action Area
1097 the farthest from the Plan Area boundaries, and is relevant to several of the Covered Species. In
1098 section 3 we describe the data and methods we have used to estimate the reasonably certain
1099 spatial extent and scale of the increase in traffic caused by a larger human population in the Plan
1100 Area. When relevant, we consider whether other changes caused by increased human habitation

1101 of the Plan Area are sources of reasonably certain consequences to Covered Species in each
1102 species-specific effects analysis.

1103

1104 **2.1.8 Goals for Species**

1105

1106 The HCP Handbook (USFWS and NMFS 2016) addresses how biological goals and objectives
1107 are to be established in Habitat Conservation Plans. The biological goals and objectives
1108 established in the plan must be consistent with the conservation and recovery goals established
1109 by the Service for the species. The goals are intended to provide an understanding of why
1110 specific conservation measures are necessary. These goals are developed based on the species'
1111 biology, threats to the species, the potential effects of the Covered Activities, and the
1112 conservation scope of the plan.

1113

1114 Because of the landscape scale of the HCP and the large areas of habitat used by panthers, the
1115 HCP incorporates specific biological goals for panthers. It also includes biological goals for the
1116 other Covered Species. The biological goals for panthers, as described in Section 4.3 of the HCP,
1117 are the following:

- 1118 1. Preserve and maintain large, interconnected blocks of Florida panther habitat
1119 (approximately 100,000 acres as calculated by GIS)
- 1120 2. Enhance Florida panther habitat and facilitate panther movement across the landscape
- 1121 3. Provide funding to the Marinelli Fund that can be used to enhance, restore, and/or
1122 establish panther habitat to facilitate panther movements across the landscape within the
1123 HCP Area. While impacts to panther habitat (predominantly previously-cleared areas) are
1124 fully offset through the preservation and maintenance of approximately 100,000 acres of
1125 land by the permittees, this funding is expected to provide additional conservation
1126 benefits through the enhancement of an existing corridor that has been historically
1127 traversed by panthers crossing SR-29, and the establishment of a corridor to facilitate
1128 dispersal of panthers northward from the Corkscrew Marsh area.

1129

1130 The general biological goals for the other Covered Species, as described in Section 7.1 of the
1131 HCP, are the following:

- 1132 1. Preserving and maintaining a landscape mosaic of native habitats, pastures, and rural
1133 open space within the lands designated under the Plan for Preservation/Plan-Wide
1134 Activities and Low Density Use that provides major conservation benefits to the Covered
1135 Species, including the regional wildlife corridors that provide landscape-scale linkages
1136 between existing public conservation lands;
- 1137 2. Providing in-kind mitigation for permanent losses of other Covered Species habitat
1138 associated with implementation of the Covered Activities, including habitat preservation,
1139 and habitat restoration, enhancement, and/or creation; and
- 1140 3. Contributing to the Marinelli Fund, which will be used to fund initiatives and activities
1141 that provide conservation benefits to the Florida panther and the other Covered Species.

1142

1143 For the objectives and measures related to panther biological goals, refer to Section 4.3.1 in the
1144 HCP. For the objectives and measures related to other species biological goals, refer to Section
1145 7.2 in the HCP.

1147

1148 2.1.9 The Marinelli Fund and Proposed Conservation Measures

1149

1150 Marinelli Fund

1151

1152 ECPO collaborated with several environmental groups to develop the Florida Panther Protection
1153 Program (FPPP), which seeks to assist panther recovery. To finance panther protection and
1154 habitat enhancement activities, the FPPP established the Marinelli Fund. While the Marinelli
1155 Fund would assure HCP implementation monitoring and reporting costs during implementation
1156 (HCP section 9.4), its major purpose is to assist with panther conservation and recovery activities
1157 throughout the Plan Area (HCP section 9.5).

1158

1159 The Marinelli Fund will receive contributions on a per-acre basis as Permittees initiate
1160 development projects within the Plan Area under the HCP, and will receive transfer fees
1161 thereafter on a per-unit basis as homes are sold and re-sold.

1162

1163 The activities financed by the Marinelli Fund may include (from Section 9.5 of the HCP for the
1164 full range):

- 1165 • design and construction of wildlife underpasses and fencing along roadways to prevent
1166 wildlife/vehicle collisions;
- 1167 • panther habitat acquisition, management, restoration and/or enhancement; and
- 1168 • other activities that are consistent with the goals of the FPPP or that benefit other
1169 Covered Species of the HCP.

1170 The HCP proposes to dedicate the first \$12.5 million of the Marinelli Fund to wildlife roadway
1171 crossings that specifically target benefits to the Florida panther (HCP section 9.5). Over the
1172 requested 50-year permit term, the Applicants anticipate the Fund would generate \$150 million
1173 (HCP section 9.2). Chapter nine of the HCP more fully explains the governance, funding,
1174 purposes, principles, and priorities of the Marinelli Fund.

1175

1176 Conservation Measures

1177

1178 The HCP's primary measure to avoid and minimize impacts to the Florida panther and other
1179 Covered Species is the designation of contiguous lands for Preservation and Very Low Density
1180 (VLD) uses. The goal of these designations is to maintain or enhance over time the proportions
1181 and quality of native habitats in these areas, while continuing existing agricultural land uses. The
1182 Preservation and VLD areas contain the majority (85%) of Plan Area native habitats (see Table
1183 2-2).

1184

1185 The HCP describes conservation measures that apply to particular Covered Species in Section 4
1186 (Florida Panther) and Section 7 (Conservation Plan for Other Covered Species). Such measures
1187 include pre-construction surveys, buffer zones around identified burrows/roosts, *etc.* We
1188 consider how these measures would influence the consequences to Covered Species resulting
1189 from Covered Activities under the HCP in the species-specific effects analysis sections of this
1190 BO/CO.

1191

1192 The Applicants have committed (HCP section 7.6.1.2) to the following project-level planning
1193 measures and best management practices (BMPs) in order to further enhance the conservation
1194 value of the HCP, including the northern and southern wildlife corridors. These measures,
1195 described in the bullet points below, will be required for developments under the HCP.

- 1196 • Prescribed Fire and Smoke Notice. As applicable, final development plans, associated
1197 homeowner's documents, and other documentation associated with residential and
1198 commercial development projects within the HCP Area will provide notice of the use of
1199 prescribed fire in the area, irrespective of the previous or planned use of prescribed fire
1200 on the site of the development itself. This notice will be provided and recorded in a
1201 manner such that initial and subsequent residents and owners will be made aware of the
1202 use of prescribed fire in and around the HCP Area to manage wildland fuels and maintain
1203 fire-adapted ecological communities within preserve areas. The following notice
1204 concerning the use of prescribed fire will be provided:
 - 1205 ○ Periodic prescribed burning is a recognized land management tool and a
1206 recommended method of fuel management within and around the HCP Area for
1207 minimizing wildfire hazards and maintaining healthy fire-adapted ecological
1208 communities. Homeowners acknowledge that they have received notice that
1209 prescribed burning may result in the periodic occurrence of temporary smoke and
1210 ash that drifts through developed areas.
- 1211 • Environmental Education and BMPs for Living with Wildlife. The materials contained in
1212 Appendix B of the HCP document will be included with the Homeowners' Association
1213 (HOA) documents for each residential development community within the HCP Area at
1214 the time of HOA incorporation. Decisions regarding which educational materials and
1215 BMPs will be implemented within each community are left to the HOA and community
1216 residents, but the materials will be transferred to the developer(s) and HOA(s).
- 1217 • Securing and Vaccinating Pets. HOA and/or homeowners' documents for residential
1218 developments within the HCP Area will state that pets within those developments should
1219 be kept indoors, on leash when outdoors, or secured within a secure covered kennel.
1220 Residents will be informed that vaccinating cats for feline leukemia virus (FLV) can
1221 prevent disease transmission from house cats to Florida panthers. As there is no definitive
1222 cure for FLV, community-wide vaccination of all pet cats protects homeowners' pets
1223 from illness, as well as preventing illness in Florida panthers.
- 1224 • Development Lighting Adjacent to the Northern and Southern Corridors. Plans for
1225 commercial and residential developments within the HCP Area that are submitted to
1226 federal and state regulatory agencies will detail the lighting plans and proposed
1227 restrictions adjacent to the northern and southern wildlife corridors (Figure 4-9) in terms
1228 of (i) distance of fixtures to the corridor edge(s); (ii) fixture types; (iii) degree of fixture
1229 shielding (to limit skyglow, light trespass and glare); (iv) light sources, including low-
1230 pressure sodium (LPS), high-pressure sodium (HPS), and metal halide and light emitting
1231 diodes (LEDs); (v) brightness; (vi) correlated color temperature (in degrees Kelvin); and
1232 (vii) use of passive lighting (e.g., roadway reflectors; unlighted road signs). These
1233 lighting plan details will form a technical basis for the developer and the Service to
1234 perform a HCP/ITP consistency check as to whether the lighting plan adequately
1235 minimizes artificial light at the corridor edge(s) and maintains the functionality of the
1236 corridor for crepuscular and nocturnal wildlife movement.

1237 • Open Space Buffers. Commercial and residential developments within the HCP Area
1238 will comply with Policy 4.13 of the Collier County Future Land Use Element for the
1239 RLSP, which states as follows: "Open space within or contiguous to a SRA shall be used
1240 to provide a buffer between the SRA and any adjoining FSA, HSA, or existing public or
1241 private conservation land delineated on the Overlay Map. Open space contiguous to or
1242 within 300 feet of the boundary of a FSA, HSA, or existing public or private conservation
1243 land may include: natural preserves, lakes, golf courses provided no fairways or other turf
1244 areas are allowed within the first 200 feet, passive recreational areas and parks, required
1245 yard and set-back areas, and other natural or manmade open space. Along the west
1246 boundary of the FSAs and HSAs that comprise Camp Keais Strand, i.e., the area south of
1247 Immokalee Road, this open space buffer shall be 500 feet wide and shall preclude golf
1248 course fairways and other turf areas within the first 300 feet." Under the RLSP,
1249 development plans must conform to this policy to gain development approvals from
1250 Collier County.

1251
1252 The Applicants have stated objectives for (HCP section 7.6.1.3) project-level planning measures
1253 and best management practices (BMPs) in order to further enhance the conservation value of the
1254 HCPs wildlife corridors. These objectives will be incorporated into developments under the
1255 HCP.

1256

- 1257 • Designing master plans that (i) concentrate more intensive land uses within the center of
1258 mixed-use residential/commercial developments (town centers), located at a distance
1259 from habitat preservation areas outside the development area, and (ii) diminish land use
1260 intensities adjacent to habitat preservation areas (e.g., providing transitions from mixed-
1261 use town centers, to residential neighborhoods, to community open space areas, to
1262 surface water management (lakes), to project boundaries and project perimeter buffers);
- 1263 • Minimizing impacts to native habitats within project boundaries that occur along the
1264 interface with habitat preservation areas external to the project;
- 1265 • Utilizing a combination of design elements, including surface water management lakes,
1266 berms, structural buffers, fencing, and directional and/or low-level lighting along the
1267 periphery of Covered Activities to minimize the effects of light, noise, and human
1268 activity on areas outside the project boundaries, and to minimize human interactions with
1269 Covered Species;
- 1270 • Designing internal roadway networks and roadway elements to minimize the potential for
1271 wildlife-vehicle collisions within the lands designated for Covered Activities. These
1272 elements may include strategic selection of key road segments for wildlife crossing
1273 structures such as box culverts, small animal culverts, wildlife pipes, amphibian tunnels;
1274 the use of landscaping, curbs, fencing, and other barriers to direct wildlife to safe road
1275 crossing areas; wide, open road shoulders near crossings to maximize visibility for
1276 wildlife and motorists; and wildlife crossing signage (Kautz et al. 2010);
- 1277 • Providing a sustainable mix of residential, commercial, retail, office, civic, and
1278 recreational land uses where these non-residential components minimize the need for
1279 residents to leave the development for basic needs (maintaining a high internal capture
1280 rate), thereby minimizing travel on the regional transportation network; and

1281 • In the case of earth mining, establishing perimeter berms to separate the mine areas from
1282 adjacent preservation areas (where present adjacent to the mine), and limiting offsite
1283 transport of mining products to daylight hours.

DRAFT

1289 **2.2 Tables and Figures for Proposed Action**

1290
1291
1292
1293

Table 2-1. Land cover class acreage within the Plan Area by designated use under the HCP.
Percentages reported are row or column totals divided by the grand total (159,489 acres).

GENERAL CATEGORY	COOPERATIVE LAND COVER CLASS	DEVELOP- MENT	PRESER- VATION	VERY LOW DENSITY	BASE ZONING	FOR INCLUSION	ROW TOTAL	ROW PERCENT
Agriculture	Orchards/Groves	18,481.80	8,784.00	0	0	7,772.00	35,037.80	22.0%
	Cropland/Pasture	14,548.60	9,158.70	0	698.4	2,496.00	26,901.70	16.9%
	Improved Pasture	4,392.60	7,599.40	501.8	1,082.40	1,546.00	15,122.30	9.5%
	Other Agriculture	0	1.1	0	0	0	1.1	0.0%
Native Wetland	Marsches	1,007.20	14,232.80	123.9	0	1,335.00	16,698.90	10.5%
	Cypress	141.2	11,549.80	17.4	0	1,270.00	12,978.40	8.1%
	Prairies and Bogs	708.4	8,205.10	97.6	0	1,152.00	10,163.10	6.4%
	Freshwater Forested Wetlands	110.1	4,094.30	357.2	0	662	5,223.60	3.3%
	Isolated Freshwater Swamp	168.1	3,681.40	40.4	0	173	4,062.90	2.6%
	Wet Flatwoods	134.8	2,300.20	3.2	53.3	20	2,511.50	1.6%
	Cypress/Tupelo	142.4	1,787.10	69.7	0	262	2,261.20	1.4%
	Isolated Freshwater Marsh	9.4	1,156.10	1.7	536.5	102	1,805.70	1.1%
	Strand Swamp	0	1,742.80	0	1.1	14	1,758.00	1.1%
	Other Hardwood Wetlands	4.3	437	22.1	0	53	516.3	0.3%
	Dome Swamp	0	279.4	0	37.2	0	316.5	0.2%
	Hydric Hammock	0	116.8	0	1.8	0	118.6	0.1%
	Freshwater non-Forested Wetlands	5.7	99.4	0	0	0	105.1	0.1%
	Other Coniferous Wetlands	11	12.8	0	0	0	23.7	0.0%
Native Upland	Mesic Flatwoods	938.4	6,026.00	112.3	0	314	7,390.60	4.6%
	Mixed Hardwood-Coniferous	240.2	2,240.70	135	0	165	2,780.90	1.7%
	Mesic Hammock	417.2	1,129.30	61.4	16.3	167	1,791.20	1.1%
	Shrub and Brushland	206.6	658.9	138	0	88	1,091.50	0.7%
	Palmetto Prairie	1.5	127	0	0	0	128.4	0.1%
	Scrubby Flatwoods	0	29.4	0	0	0	29.4	0.0%
	Scrub	0	9.3	0	0	0	9.3	0.0%
Other	Rural [Rural Open Lands]	1,414.80	4,154.80	240.9	0.3	1,153.00	6,963.80	4.4%
	Exotic Plants	291.7	528	1.9	0	59	880.6	0.6%
	Fallow Orchards	0	39.1	0	0	102	141.1	0.1%
	Extractive	0	8.2	61.2	0	34	103.3	0.1%
	Cultural- Terrestrial	0	7.4	0	0	15	22.4	0.0%
	Bare Soil/Clear Cut	0	7.1	0	0	0	7.1	0.0%
Existing Development	Low Intensity Urban	178.8	51.9	0.4	0	303	534.1	0.3%
	Transportation	105.4	84.2	13.8	3.9	200	407.3	0.3%
	High Intensity Urban	33.2	10.4	0	0	48	91.7	0.1%
	Utilities	0.5	1.7	0	0	0	2.3	0.0%
Open Water	Communication	3	0	0	0	0	3.1	0.0%
	Cultural- Lacustrine	45.2	63	657.1	0	419	1,184.40	0.7%
	Cultural- Riverine	25.1	92.5	0	0	42	159.6	0.1%
	Lacustrine	0	48.4	9.3	0	75	132.7	0.1%
Natural Lakes and Ponds		0	20.9	1.2	0	6	28.1	0.0%
COLUMN TOTAL		43,767.2	90,576.3	2,667.4	2,431.1	20,047.0	159,489.0	
COLUMN PERCENT		27.4%	56.8%	1.7%	1.5%	12.6%		

1294
1295

1296 **Table 2-2.** General land cover (acres) within the Plan Area by designated use under the HCP.
1297 Percentages reported are row or column totals divided by the grand total (159,489 acres).
1298

CATEGORY	DEVELOPMENT	PRESERVATION	VERY LOW DENSITY		ELIGIBLE FOR INCLUSION	ROW TOTAL	ROW PERCENT
			BASE ZONING	INCLUSION			
Active Agriculture	37,423.0	25,543.2	501.8	1,780.8	11,814.0	77,062.8	48.3%
Native Wetland	2,442.4	49,695.0	733.1	629.8	5,043.0	58,543.3	36.7%
Native Upland	1,803.9	10,220.5	446.6	16.3	734.0	13,221.3	8.3%
Other	1,706.5	4,744.6	304.0	0.3	1,363.0	8,118.4	5.1%
Existing Development	321.0	148.3	14.2	3.9	551.0	1,038.4	0.7%
Open Water	70.3	224.8	667.6	0.0	542.0	1,504.7	0.9%
COLUMN TOTAL	43,767.2	90,576.3	2,667.4	2,431.1	20,047.0	159,489.0	
COLUMN PERCENT	27.4%	56.8%	1.7%	1.5%	12.6%		

1299
1300
1301

1302 **Table 2-3.** Calculations for prorating the distribution of up to 39,973 acres of development (the
 1303 development cap in the HCP) among cover classes using the Proportional method for some
 1304 species-specific effects analyses (see section 2.1.4). Column "G" reports the acres of each cover
 1305 class that we attribute to development for such analyses.
 1306

GENERAL CATEGORY	COOPERATIVE LAND COVER CLASS	A	B	C	D	E	F	G	H
		DEVELOP- MENT & MINING	BASE ZONING	ELIGIBLE LANDS	RURAL LANDS WEST	A + B + C - D	E*(({Cap- D _{total} })/E _{total}))	D + F	A + B + C - G
Active Agriculture	Orchards/Groves	18,482	0	7,772	0	26,254	15,542	15,542	10,711
	Cropland/Pasture	14,549	698	2,496	2,923	14,820	8,774	11,697	6,046
	Improved Pasture	4,393	1,082	1,546	600	6,421	3,801	4,401	2,620
	Other Agriculture	0	0	0	0	0	0	0	0
Native Wetland	Marshes	1,007	0	1,335	60	2,282	1,351	1,411	931
	Cypress	141	0	1,270	22	1,389	822	844	567
	Prairies and Bogs	708	0	1,152	64	1,796	1,063	1,127	733
	Freshwater Forested Wetlands	110	0	662	8	764	452	460	312
	Isolated Freshwater Swamp	168	0	173	15	326	193	208	133
	Wet Flatwoods	135	53	20	10	198	117	127	81
	Cypress/Tupelo	142	0	262	20	384	228	248	157
	Isolated Freshwater Marsh	9	536	102	0	648	384	384	264
	Strand Swamp	0	1	14	0	15	9	9	6
	Other Hardwood Wetlands	4	0	53	0	57	34	34	23
	Dome Swamp	0	37	0	0	37	22	22	15
	Hydric Hammock	0	2	0	0	2	1	1	1
	Freshwater non-Forested Wetlands	6	0	0	0	6	3	3	2
	Other Coniferous Wetlands	11	0	0	0	11	6	6	4
Native Upland	Mesic Flatwoods	938	0	314	36	1,216	720	756	496
	Mixed Hardwood-Coniferous	240	0	165	0	405	240	240	165
	Mesic Hammock	417	16	167	1	600	355	356	245
	Shrub and Brushland	207	0	88	56	239	141	197	97
	Palmetto Prairie	1	0	0	0	1	1	1	1
	Scrubby Flatwoods	0	0	0	0	0	0	0	0
	Scrub	0	0	0	0	0	0	0	0
Other	Rural (Rural Open Lands)	1,415	0	1,153	124	2,444	1,447	1,571	997
	Exotic Plants	292	0	59	72	279	165	237	114
	Fallow Orchards	0	0	102	0	102	60	60	42
	Extractive	0	0	34	0	34	20	20	14
	Cultural - Terrestrial	0	0	15	0	15	9	9	6
	Bare Soil/Clear Cut	0	0	0	0	0	0	0	0
SUBTOTAL		43,376	2,427	18,954	4,011	60,746	35,962	39,973	24,784
Existing Development	Low Intensity Urban	179	0	303	31				
	Transportation	105	4	200	30				
	High Intensity Urban	33	0	48	0				
	Utilities	1	0	0	0				
	Communication	3	0	0	0				
Open Water	Cultural - Lacustrine	45	0	419	2				
	Cultural - Riverine	25	0	42	0				
	Lacustrine	0	0	75	0				
	Natural Lakes and Ponds	0	0	6	0				
SUBTOTAL		391	4	1,093	63				
COLUMN TOTAL		43,767	2,431	20,047	4,074				

1309 **Table 2-4.** Example of the Reasonable Maximum Impact method for attributing up to 39,973
 1310 acres of development among cover classes in some species-specific effects analyses. This
 1311 example is for a hypothetical species associated with a mix of agricultural and native
 1312 upland cover classes, which are ranked in order of importance to the species. The right-
 1313 most column tallies the cumulative acreage of potential development in rank order. We
 1314 would not attribute full development to the 11th ranked cover class in this example,
 1315 because its acreage in the development envelope, plus that of the higher-ranked classes,
 1316 exceeds the 39,973-acre cap by 16,167 acres.
 1317

COOPERATIVE LAND COVER CLASS	DEVELOP- MENT & MINING	BASE ZONING	ELIGIBLE LANDS	TOTAL	RANK	CUMULATIVE CONTRIBUTION TO DEVELOPMENT CAP
Improved Pasture	4,393	1,082	1,546	7,021	1	7,021
Palmetto Prairie	1	0	0	1	2	7,023
Scrubby Flatwoods	0	0	0	0	3	7,023
Mesic Flatwoods	938	0	314	1,252	4	8,275
Shrub and Brushland	207	0	88	295	5	8,570
Mixed Hardwood-Coniferous	240	0	165	405	6	8,975
Mesic Hammock	417	16	167	601	7	9,575
Scrub	0	0	0	0	8	9,575
Rural (Rural Open Lands)	1,415	0	1,153	2,568	9	12,143
Cropland/Pasture	14,549	698	2,496	17,743	10	29,886
Orchards/Groves	18,482	0	7,772	26,254	11	39,973
ALL OTHER CLASSES	3,125	634	6,346	10,105		
COLUMN TOTAL	43,767	2,431	20,047	66,245		

1318
 1319
 1320

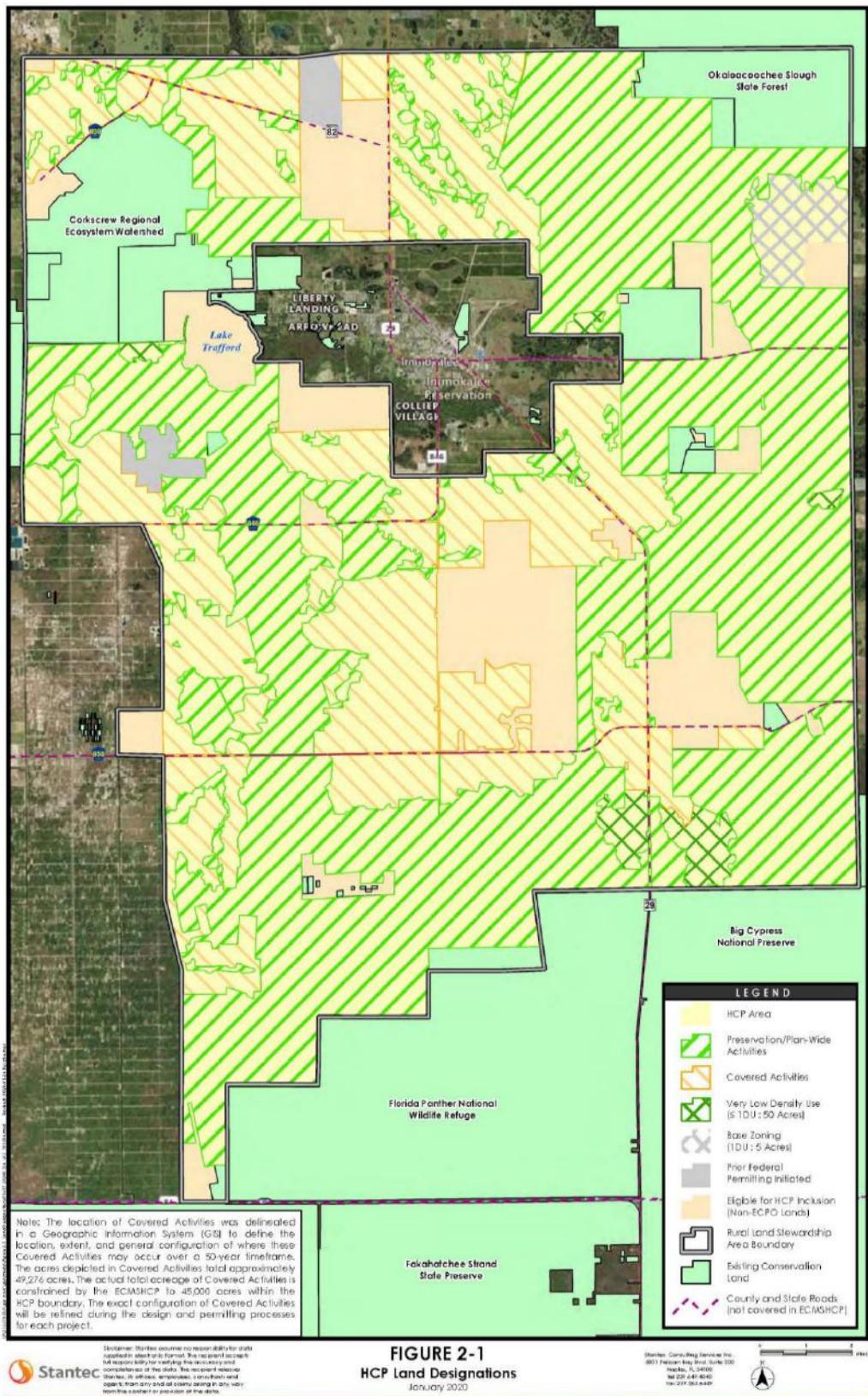
1321
1322
1323
1324

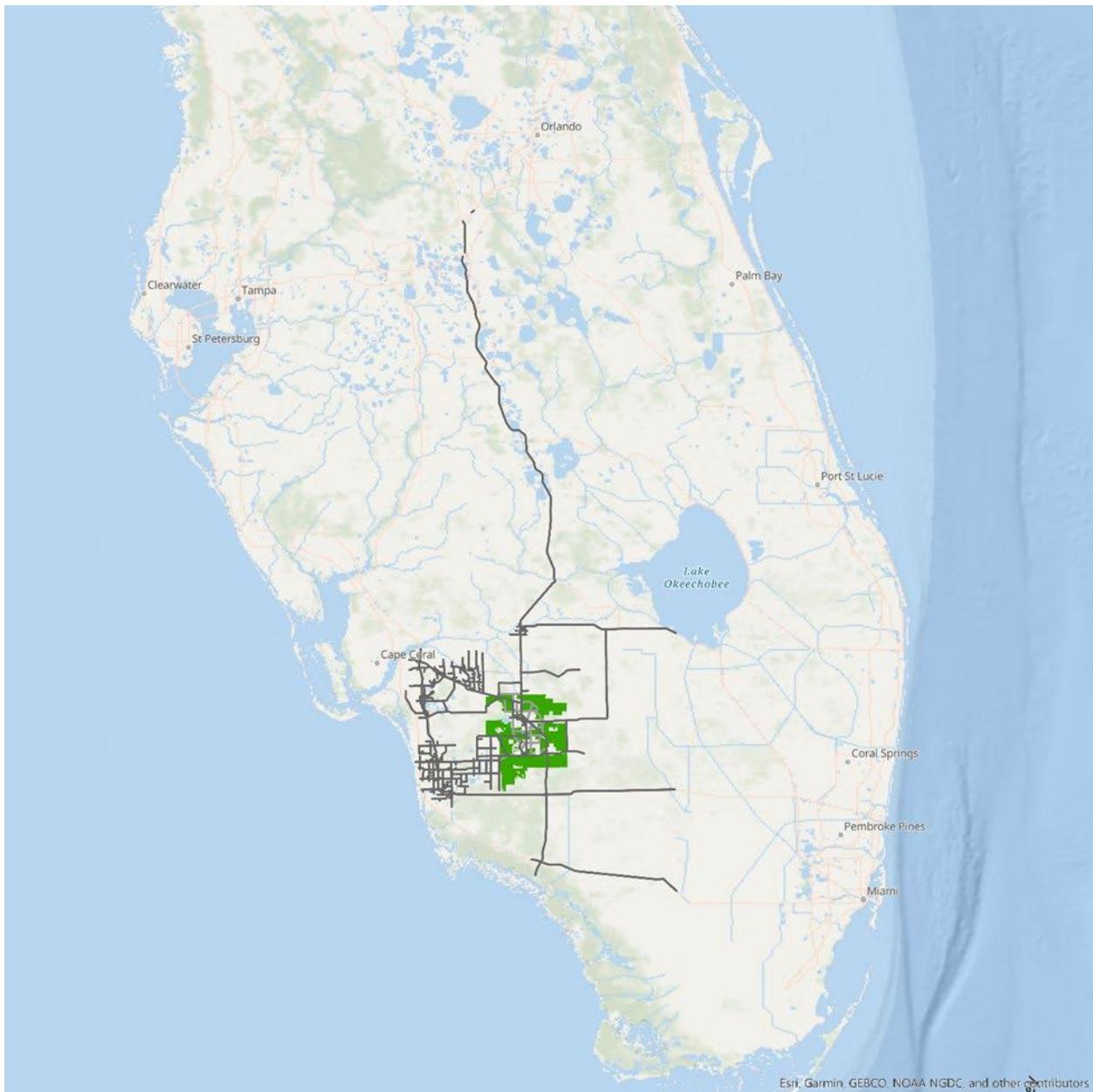
Table 2-5. Phases, activities, sub-activities, and stressors associated with development activity under the HCP (source: HCP Appendix A).

PHASE	ACTIVITY	SUB-ACTIVITY	STRESSOR(S)
Pre-construction	Listed species surveys	Pedestrian transects ATV/ORV surveys	Disturbance; noise Disturbance; noise
	Land surveying	Pedestrian transects ATV/ORV vehicle use	Disturbance; noise Disturbance; noise
	Geotechnical investigations	Small drill rig driving Small drill rig operation	Disturbance; noise Disturbance; noise; fuel/oil
Construction (horizontal)	Land/vegetation clearing	Row crop "clearing" Citrus clearing Pasture clearing Native herbaceous clearing Native forested clearing Exotic vegetation clearing Vegetation piling/burning	No replanting; disturbance; noise Habitat loss; disturbance; noise Habitat loss; disturbance; noise Habitat loss; disturbance; noise Habitat loss; disturbance; noise Disturbance; noise Disturbance; noise; smoke
	Earth moving/grading	Excavation Bulldozing Grading Compacting Sedimentation control berms Sedimentation control fencing	Noise; human disturbance Noise; human disturbance Noise; human disturbance Noise; human disturbance Noise; human disturbance Noise; human disturbance
	Dewatering	Excavation (receiving reservoir) Construction excavation Pumping	Noise; human disturbance Noise; human disturbance Noise; human disturbance
	General Construction	Small vehicle traffic Delivery trucks/vehicles Heavy equipment (cranes, etc.) Staging areas Fuel/oil storage Concrete batch plants Asphalt paving (parking)	Noise; human disturbance Noise; human disturbance Noise; humans; fuel/oil Noise; humans; fuel/oil Noise; humans; fuel/oil; odor Noise; humans; fuel/oil Noise; humans; fuel/oil
	Internal road construction	Road bed grading Road drainage grading Road bed compaction Road paving Bridges (wetland crossings)	Noise; humans; fuel/oil Noise; humans; fuel/oil Noise; humans; fuel/oil Noise; humans; fuel/oil Noise; humans
	Electrical utilities	High-voltage transmission lines Electrical substations Electrical distribution lines Underground electrical	Noise; human disturbance Noise; human disturbance Noise; human disturbance Noise; human disturbance
	Water and sewer utilities	Water supply wells Water treatment plants Water supply lines Sanitary sewer lines Stormwater sewers	Noise; humans; fuel/oil Noise; human disturbance Noise; human disturbance Noise; human disturbance Noise; human disturbance
Construction (vertical)	Building construction	Framing Interior construction Exterior construction	Noise; human disturbance Noise; human disturbance Noise; human disturbance
	Road lighting/signage	Streetlights, signals installation	Noise; human disturbance
	Recreational construction	Recreational fencing (fields) Recreational lighting install	Noise; human disturbance Noise; human disturbance

1325

1326 **Table 2-6.** Phases, activities, sub-activities, and stressors associated with mining activity under
 1327 the HCP (source: HCP Appendix A).


1328


PHASE	ACTIVITY	SUB-ACTIVITY	STRESSOR(S)
Pre-construction	Listed species surveys	Pedestrian transects	Disturbance; noise
		ATV/ORV surveys	Disturbance; noise
	Land surveying	Pedestrian transects	Disturbance; noise
		ATV/ORV vehicle use	Disturbance; noise
	Geotechnical investigations	Drill rig driving	Disturbance; noise
		Drill rig operation	Disturbance; noise; fuel/oil
Mining	Land/vegetation clearing	Row crop "clearing"	No replanting; disturbance; noise
		Citrus clearing	Habitat loss; disturbance; noise
		Pasture clearing	Habitat loss; disturbance; noise
		Native herbaceous clearing	Habitat loss; disturbance; noise
		Native forested clearing	Habitat loss; disturbance; noise
		Exotic vegetation clearing	Disturbance; noise
	Earth materials excavation	Vegetation piling/burning	Disturbance; noise; smoke
		Use of explosives (if necessary)	Noise (sudden)
		Excavation	Noise; human disturbance
		De-watering/pumping	Noise; human disturbance
		Onsite hauling	Noise; human disturbance
		Stockpiling	Noise; human disturbance
	Processing plant construction	Sedimentation control berms	Noise; human disturbance
		Sedimentation control fencing	Noise; human disturbance
		Heavy equipment (cranes, etc.)	Noise; humans; fuel/oil
		Delivery trucks/vehicles	Noise; humans
		Staging areas	Noise; humans; fuel/oil
		Small vehicle traffic	Noise; humans
	Internal mine road construction	Fuel/oil storage	Noise; humans; fuel/oil; odor
		Road bed grading	Noise; humans; fuel/oil
		Road drainage grading	Noise; humans; fuel/oil
		Road bed compaction	Noise; humans; fuel/oil
		Paving	Noise; humans; fuel/oil
		Bridges (wetland crossings)	Noise; humans
	Electrical utilities	High-voltage transmission lines	Noise; human disturbance
		Electrical substation	Noise; human disturbance
		Electrical distribution lines	Noise; human disturbance
Conversion to Development	Earth moving/grading	Excavation	Noise; human disturbance
		Bulldozing	Noise; human disturbance
		Grading	Noise; human disturbance
		Compacting	Noise; human disturbance
		Sedimentation control berms	Noise; human disturbance
		Sedimentation control fencing	Noise; human disturbance
Reclamation activities	Construction	See Table 2-3	
	Earth moving/grading	Grading	Noise; human disturbance
		Redistribute soils	Noise; human disturbance
1329	Revegetate per reclamation plan	Planting	Noise; human disturbance
	Post-reclamation monitoring	Onsite monitoring per plan	Human disturbance
1330			
1331			

1332 **Table 2-7.** Calculations for prorating the distribution of up to 10% clearing of native land cover
 1333 in the Very Low Density use areas, which we show as a conversion to Rural Structures.
 1334

GENERAL CATEGORY	COOPERATIVE LAND COVER CLASS	Existing Acres	Acres following up to 10% clearing	Acres Cleared
Agriculture	Improved Pasture	501.8	501.8	
Native	Marshes	123.9	111.5	12.4
Wetland	Cypress	17.4	15.7	1.7
	Prairies and Bogs	97.6	87.8	9.8
	Freshwater Forested Wetlands	357.2	321.5	35.7
	Isolated Freshwater Swamp	40.4	36.4	4.0
	Wet Flatwoods	3.2	2.9	0.3
	Cypress/Tupelo	69.7	62.7	7.0
	Isolated Freshwater Marsh	1.7	1.5	0.2
	Other Hardwood Wetlands	22.1	19.9	2.2
Native	Mesic Flatwoods	112.3	101.0	11.2
Upland	Mixed Hardwood-Coniferous	135.0	121.5	13.5
	Mesic Hammock	61.4	55.2	6.1
	Shrub and Brushland	138.0	124.2	13.8
Other	Rural (Rural Open Lands)	240.9	240.9	
	Rural Structures	0.0	118.0	
	Exotic Plants	1.9	1.9	
	Extractive	61.2	61.2	
Existing Development	Transportation	13.8	13.8	
Open Water	Cultural - Lacustrine	657.1	657.1	
	Lacustrine	9.3	9.3	
	Natural Lakes and Ponds	1.2	1.2	
	COLUMN TOTAL	2,667.0	2,667.0	118.0

1335
 1336

1339
1340

1341 **Figure 2-2.** Extent of the Action Area for this consultation, which includes:

1342 1) the 159,489-acre Plan Area (green); and
1343 2) 5,072 discrete road segments through and extending beyond the Plan Area (black).
1344 Together the road segments equal 1,825 miles.

1345

1346

1347 **3 TRAFFIC PREDICTIONS AND SOURCES OF CUMULATIVE 1348 EFFECTS**

1349

1350 We identified in section 2.8 the collective activities of future residents of new developments in
1351 the Plan Area as activities that are not a part of, but would be caused by, the development

1352 activities of the HCP, for which the Applicants seek ITPs (the Federal Action). Changes caused
1353 by the activities of future residents include an increase in traffic on existing roads. Section 3.1
1354 below describes the analyses we referenced in section 2.1.2 that support extending the Action
1355 Area (“all areas affected by the action”) beyond the Plan Area to include various roads through
1356 and outside of the Plan Area, because the Action Area is defined by the spatial extent of action-
1357 caused changes. We reference section 3.1 within the “Effects of the Action” subsections of the
1358 species-specific sections.

1359
1360 In addition to predicting the consequences to species caused by activities that are not part of, but
1361 would be caused by, the Federal action under consultation, a BO/CO must predict the
1362 consequences to species caused by future non-Federal activities within the action area, *i.e.*,
1363 cumulative effects. “Cumulative effects are those effects of future State or private activities, not
1364 involving Federal activities, that are reasonably certain to occur within the action area of the
1365 Federal action subject to consultation” (50 CFR §402.02).

1366
1367 The ECPO Applicants own 139,442 acres (87.4%) of the Plan Area, and the HCP proposes
1368 activities on these lands that we analyze in this BO/CO. We do not expect additional non-federal
1369 actions unrelated to the proposed HCP on the ECPO lands. The Applicants include an additional
1370 20,047 acres owned by others as lands “Eligible for Inclusion” in the HCP. As we noted in
1371 section 2.6, the addition of Eligible lands to the HCP is uncertain, but it is an explicit provision
1372 of the HCP. Therefore, we consider the Eligible lands part of the Plan Area, and include these
1373 lands in our analyses of the effects of the Covered Activities on up to 39,973 acres (45,000 acres
1374 minus the permitted development of Ave Maria) within the Plan Area.

1375
1376 Land-use provisions of the Collier County RLSA (see section 2.1.1) apply to the Plan Area
1377 which includes Eligible lands. The ratios of developed areas to rural/natural areas prescribed
1378 under the RLSA, pending the incorporation of Amendments to the Land Development Code
1379 approved by the Collier County Board of Commissioners, effectively limit the extent of
1380 development within its boundaries to about 45,000 acres, of which 39,973 acres remain
1381 undeveloped. In the species-specific sections of this BO/CO, we predict the consequences of
1382 developing up to 39,973 acres within the Plan Area using the methods we described in section
1383 2.1.4 (“Methods for Estimating the Extent of Development by Habitat Types”). Whether future
1384 development on the Eligible lands occurs as part of the HCP or independent of the HCP, our
1385 analyses address development on Eligible Lands.

1386
1387 Another reason we do not expect non-Federal development in the Plan Area as a source of
1388 cumulative effects is that native wetlands cover about a quarter (25.2%) of the Eligible lands (see
1389 Table 2-2). Although the construction of a single-family residence may occur without affecting
1390 wetlands, developments of a larger scale (*e.g.*, more than 100 acres) and associated infrastructure
1391 would likely require permits under section 404 of the Clean Water Act. This permitting authority
1392 would create a Federal nexus for most new development in the Eligible lands, which we do not
1393 consider as cumulative effects under ESA §7. The Federal nexus would mean that the Service
1394 will likely review these projects and request minimization and compensation measures. Only a
1395 small portion of projects would not have a Federal nexus (about 25 percent in our experience).

1397 Because more than 39,973 acres of future development in the Plan Area without a Federal nexus
1398 is unlikely, the sole source of cumulative effects that we have identified for this BO/CO is future
1399 vehicular traffic on the roads we include in the Action Area. Future traffic will include vehicles
1400 associated with the developments of the HCP and vehicles associated with regional population
1401 growth. We consider the former as changes caused by the Action, and the latter as changes
1402 caused by future non-Federal activities (*i.e.*, sources of cumulative effects). In the following
1403 section (3.1), we describe the analyses for predicting both changes. The changes made to widen
1404 roads or create new public roads to accommodate increased traffic are not considered part of
1405 cumulative effects because they will likely have a Federal nexus. This means the Service will
1406 likely consult on these projects and have the opportunity to request minimization and
1407 compensation measures.

1408

1409 **3.1 Traffic Analyses**

1410

1411 Continuing human population growth in southwest Florida drives a demand for new residential
1412 and commercial development. The location and density of development, such as the development
1413 under the HCP, directly influences the distribution and volume of traffic on existing public roads,
1414 as well as the construction of additional lanes to existing roads and entirely new transportation
1415 corridors. The improvement of existing corridors and construction of new roadways can likewise
1416 spur new development. The distribution and volume of traffic is relevant to this BO/CO,
1417 because panther vehicle collisions are a leading cause of Florida panther mortality, and affects
1418 other Covered Species as well. All road segments receiving a predictable increase in traffic
1419 volume that would not occur but for the level of HCP development in the Plan Area satisfy the
1420 definition of “action area” for consultation purposes (see section 2.1). This section explains how
1421 we predicted a reasonably certain increase in traffic caused by the HCP developments and caused
1422 by future regional growth unrelated to the HCP. Our analyses in this BO do not fully capture all
1423 of the roadway projects that may influence traffic in the action area or to whom additional
1424 panther mortality (or some proportion thereof) from those projects may be attributable. However,
1425 our analysis does evaluate the effects of traffic projected by the applicants from HCP-attributable
1426 activities above the current baseline and proposed and funded FDOT projects (D1IM traffic
1427 model). Other traffic effects are considered in the Cumulative Effects section and are detailed in
1428 Chapter 5 and Appendix F of this BO.

1429

1430 **Traffic Model**

1431

1432 In our draft Environmental Impact Statement (EIS) for the HCP (USFWS 2018), we predicted
1433 changes in traffic volume on existing roads within a defined Transportation Analysis Area,
1434 which encompassed the entire Plan Area. These predictions relied upon the Florida Department
1435 of Transportation (FDOT) District 1 Regional Planning Model (D1RPM). D1RPM is a tool for
1436 predicting the distribution and volume of traffic on the road network of the 12 southwest Florida
1437 counties included within FDOT District 1. D1RPM is a “trip-based” model that predicts traffic
1438 from a spatially explicit distribution of population and employment in 5,628 traffic analysis
1439 zones (TAZs) delineated for District 1. The current version of D1RPM is calibrated with
1440 socioeconomic data and observed traffic count data for the base year of 2010. Model users
1441 predict future traffic conditions by altering the base-year socioeconomic data. Although D1RPM

1442 generates multiple outputs, we use the results expressed as average annual daily traffic (AADT)
1443 on discrete road segments.

1444
1445 FDOT compiled a set of socioeconomic data to represent expected population and employment
1446 in all of the D1RPM TAZs for the year 2040. For our EIS, we substituted specific socioeconomic
1447 projections for the TAZs that are within the Plan Area based on the HCP. These substitutions
1448 anticipated development at a density comparable to that in Ave Maria on 39,973 acres of the
1449 Plan Area. We estimated that the HCP alternative would support about 72,200
1450 residential/commercial units and 21,300 jobs. The current population of the 12 counties of FDOT
1451 District 1 is about 2.7 million (FDOT 2019), and the projected 2040 population is about 4.1
1452 million (FDOT 2016). The new developments of the Plan Area would constitute about 1.8% of
1453 the 2040 District 1 population.

1454
1455 D1RPM distributes trips on the road network using a “gravity” model that generates trips
1456 between TAZs as a function of the population/employment “mass” of each TAZ and the distance
1457 between TAZs. Routes connecting TAZs of greater mass and proximity receive more trips than
1458 routes connecting widely separated TAZs of lesser mass. The model frequently computes small
1459 contributions (as few as 1 trip) to road-segment AADT from far-away TAZs in the 12-county
1460 District. However, this TAZ-specific precision of the model is an artifact of its deterministic
1461 gravity calculations. FDOT calibrates the model using traffic counting devices on road segments,
1462 which cannot identify the TAZ origin of the vehicles counted. The D1RPM estimates of AADT
1463 are verifiable and relatively accurate (FDOT 2016). The accuracy of TAZ-specific contributions
1464 to road segment AADT is not verifiable, but is likely highest for nearby TAZs with the greatest
1465 population/employment.

1466
1467 **Adding Road Segments to the Action Area**

1468
1469 To identify road segments that satisfy the “action area” definition for this BO/CO, we must
1470 predict the increase in traffic relative to current conditions that an increase in population and
1471 employment in the TAZs of the Plan Area is reasonably certain to cause. We obtained from
1472 FDOT observed (not modeled) AADT data for road segments in 2017 to represent current
1473 conditions. Using our population/employment projections for the Plan Area TAZs and the FDOT
1474 2040 data for all other TAZs, D1RPM attributes trips to/from the Plan Area TAZs in the AADT
1475 calculations for road segments in 11 of the 12 counties of District 1 (all except Okeechobee
1476 County). However, the Plan Area TAZs account for a small portion of AADT (less than 100
1477 daily trips) on hundreds of the road segments that receive thousands of daily trips under both
1478 current conditions and projected 2040 conditions.

1479
1480 The full geospatial data representation of the FDOT 2040 D1RPM road segment volume
1481 predictions, including a table of the road segment attributes, can be downloaded from the
1482 following internet location in the Service’s public-facing administrative record repository:
1483 <https://ecos.fws.gov/ServCat/Reference/Profile/111968>. This geospatial data can be viewed in
1484 Esri ArcMap-compatible applications. The FDOT 2040 D1RPM road segments are also
1485 viewable on computers and smart phones, via Esri’s Arc GIS Online web mapping service, at the
1486 following internet location:

1487 <https://fws.maps.arcgis.com/apps/webappviewer/index.html?id=66e4a31663c54ca9b9f6591f4b8b8683>.
1488
1489

1490 We do not consider the projected population and employment of the Plan Area TAZs for 2040
1491 high enough (1.8% of the projected 2040 District 1 population) to cause a reasonably certain
1492 increase in traffic at great distances from the Plan Area. The deterministic “gravity” simulation
1493 of traffic in D1RPM provides no statistical basis for quantifying confidence in TAZ-specific
1494 contributions to segment-specific AADT predictions. Therefore, we must choose AADT
1495 thresholds for filtering the model results to identify road segments that new developments in the
1496 Plan Area are reasonably certain to affect species during the course of the Action. The 100-trip
1497 threshold was selected as an appropriate Action Area criterion based on Charry and Jones (2009)
1498 analysis of multiple wildlife/traffic interaction studies. Charry and Jones 2009 analysis
1499 determined that the onset impacts to wildlife could be detected in traffic volume increases
1500 between 100 to 500 vehicles per day. We consider road segments for which the D1RPM
1501 attributes to the Plan Area TAZs a 2040 AADT increase of 100 trips, or greater, as areas to be
1502 affected indirectly by the action. Of the 65,265 road segments described in the D1RPM, 5,072
1503 segments met the 100 AADT, or larger, traffic volume increase threshold (Table 3-1). The
1504 addition of these roads expands the Action Area beyond the immediate area involved in the
1505 Action. Figure 2-2, which we referenced in section 2.1 (“Action Area”), is a map showing the
1506 5,072 road segments that meet these criteria (see D1RPM 2040 attribute table in the Service’s
1507 public-facing administrative record repository:

1508 <https://ecos.fws.gov/ServCat/Reference/Profile/111968>).
1509

1510 Extrapolating D1RPM Results Beyond 2040

1511
1512 To estimate the influence of traffic from non-HCP sources we extrapolated the traffic growth
1513 trend for non-HCP traffic volumes to 2070. To extrapolate, we subtracted the 2014 thru 2018
1514 AADT from the 2040 Non-HCP AADT, divided this by the intervening time interval (22 years)
1515 to get a ratio of traffic increase per year, then multiplied the result by 52 to approximate the
1516 change in traffic that would occur from non-HCP sources between 2018 and 2070.
1517

1518 **3.2 Tables and Figures**

1519
1520 **Table 3-1.** Summary table of the number and total distance of D1RPM road segments included
1521 in the Action Area.
1522

D1RPM segments	Number of segments	Total distance in miles
Non-Action Area	60,193	20,185
Action Area	5,072	1,835
Grand Total	65,265	22,020

1523 1524 **4 Florida Bonneted Bat** 1525 1526

1527 This section provides the Service's biological opinion of the Action for the Florida bonneted bat
1528 (FBB) in sections 4.1 through 4.5 and the Service's conference opinion of the Action for the
1529 Florida bonneted bat proposed critical habitat in sections 4.6 through 4.10.

1530

1531 **4.1 Status of Florida Bonneted Bat**

1532

1533 This section summarizes best available data about the biology and current condition of the FBB
1534 (*Eumops floridanus*) throughout its range that are relevant to formulating an opinion about the
1535 Action. The Service published its decision to list the FBB as endangered on October 3, 2013 (78
1536 FR 61004). Please refer to the final rule for additional information about the status of the FBB.

1537

1538 **4.1.1 Species Description**

1539

1540 The FBB is a member of the Molossidae (free-tailed bats) family within the order Chiroptera,
1541 and is the largest bat in Florida. The common name "bonneted bat" refers to the species' large
1542 broad ears, which project forward over the eyes, and join at the midline of the head. Wings of the
1543 members of the genus *Eumops* are among the narrowest of all molossids and are well-adapted for
1544 rapid, prolonged flight (Freeman 1981). The FBB's fur is short and glossy, with hairs sharply
1545 bicolored with a white base (Timm and Genoways 2004). Primary pelage color is highly
1546 variable, from black to brown to brownish-gray or cinnamon brown with ventral pelage paler
1547 than dorsal (Timm and Genoways 2004).

1548

1549 **4.1.2 Life History**

1550

1551 The FBB does not seasonally hibernate or enter short-term periods of torpor. Active year-round,
1552 the species is likely dependent upon a constant food supply to maintain its high metabolism.
1553 FBBs feed on flying insects of the following orders: Coleoptera (beetles), Diptera (true flies),
1554 Hemiptera (true bugs), and Lepidoptera (moths) (Belwood 1981; Belwood 1992; Marks 2013).
1555 Foraging in open spaces, the FBB uses echolocation to detect prey at relatively long range,
1556 roughly 10–16 feet (Belwood 1992). Individuals leave roosts to forage after dark, seldom occur
1557 below 33 feet in the air, and produce loud, audible calls when flying (Belwood 1992; Best *et al.*
1558 1997; Marks and Marks 2008a).

1559

1560 Like other molossids, the FBB is capable of low-energy, swift, long-distance travel from roost
1561 site to foraging areas (Norberg and Rayner 1987). Data from a few satellite tagged FBB
1562 indicated that individuals foraged several miles (maximum 24 miles) from their roosts and
1563 covered long distances in one night (maximum 56 miles) (Ober 2016; E. Webb, pers. comm.
1564 2018a-b).

1565

1566 Habitat for the FBB consists of foraging areas and roosting sites, both of which may occur in a
1567 broad array of land cover types. Researchers have recorded echolocation calls in the following
1568 land cover types:

- 1569 • pine flatwoods, including wet, mesic, and scrubby flatwoods, and pine rocklands
1570 (Belwood 1981; Arwood 2012, F. Ridgley, pers. comm. 2013a–d; 2014a–c);
- 1571 • freshwater forested wetlands, including cypress, mangrove, and other swamps (Smith
1572 2010; Arwood 2012);

1573 • mesic and rockland hardwood hammocks (Smith 2010);
1574 • lakes, ponds, rivers, and canals (Marks and Marks 2008b);
1575 • rural and agriculture lands, including groves, tropical gardens, crop-based agriculture
1576 (Bailey *et al.* 2017);
1577 • urban landscapes, including residential areas, disturbed nonnative areas, and developed
1578 park lands (S. Snow, pers. comm. 2011a–b; Timm and Genoways 2004; Gore *et al.*
1579 2015).

1580
1581 Bailey *et al.* (2017) detected FBB in all major land cover types surveyed by acoustic methods
1582 (agriculture, developed, upland, and wetland). This study developed occupancy models to
1583 explain the influence of various environmental factors on FBB detection rates. The researchers
1584 found that the extent of developed areas at acoustic monitoring locations had the largest effect on
1585 bat occupancy probabilities among the variables tested, with occupancy probability decreasing
1586 with increasing amount of developed land. Agriculture had a positive effect on occupancy, with
1587 occupancy increasing with the amount of crop-based agriculture. This study found that FBB did
1588 not make preferential use of pine forests.

1589
1590 Female bats rear flightless young in their day roosts, which provide protection from predators
1591 (Marks and Marks 2008b). For most bats, the availability of suitable roosts is an important and
1592 limiting factor (Humphrey 1975). FBBs roost in various sheltered situations well above the
1593 ground; therefore natural roosting habitat may include any area with tall live or dead trees
1594 (snags) that have cavities, hollows, deformities, decay, crevices, or loose bark. FBB will also use
1595 artificial structures for roosts, such as bat houses, utility poles, and buildings. Bat houses
1596 typically support small numbers of FBB, but emergence counts at two houses sharing a single
1597 pole detected 44 individuals (J. Myers, pers. comm. 2014a, 2014c).

1598
1599 Natural FBB roosts are difficult to locate. At this time, we are aware of only 19 natural roost
1600 sites. At these sites, FBBs roost singly or in colonies consisting of a male and several females
1601 (sometimes called a harem in the literature), in live or dead pines, cypress, and palms (Belwood
1602 1992; R. Arwood, pers. comm. 2015; Ober *et al.* 2018). Ober *et al.* (2017) suggest that FBB
1603 colony sizes are generally small, so that males can successfully defend them.

1604
1605 At a roost located on the Florida Panther National Wildlife Refuge, which is adjacent to the Plan
1606 Area, Braun de Torrez *et al.* (2016) counted 12 FBB during evening emergence counts, but
1607 suspected that others remained in the cavity. Ober *et al.* (2017) investigated the social
1608 organization of FBBs roosting in bat houses in southwest Florida. The average roost size was 10
1609 individuals, with a persistent (multiple seasons) harem social structure (1 male, multiple
1610 females).

1611
1612 The maternity season for most bat species in Florida occurs from mid-April through mid-August
1613 (Marks and Marks 2008a). The FBB is a subtropical species, and available data suggest the
1614 species is polyestrous (having more than one period of estrous in a year) (Timm and Genoways
1615 2004; Florida Bat Conservancy 2005; Ober *et al.* 2017). Energy demands on females increase
1616 during the maternity season, as females make multiple foraging excursions to support lactation
1617 (Kurta *et al.* 1989; Kurta *et al.* 1990; Kunz *et al.* 1995; Marks and Marks 2008a; H. Ober, pers.
1618 comm. 2014a). Observations of pregnant and post-lactating females in late August suggest a

1619 longer maternity season for FBB compared to other Florida bats (H. Ober, pers. comm. 2014b; J.
1620 Myers, pers. comm. 2014a–c). Reduced insect populations in urban areas may make it difficult
1621 for females to successfully rear offspring in urban areas (Kurta *et al.* 1990; Kurta and Teramino
1622 1992).

1623
1624 The FBB has low fecundity with a litter size of one pup annually (Florida Bat Conservancy
1625 2005; Timm and Arroyo-Cabral 2008). Wilkinson and South (2002) suggest a lifespan of 10–
1626 20 years for bats the size of FBBs, and Gore *et al.* (2010) estimate an average FBB generation
1627 time of 5–10 years. The FBB is not migratory, but may seasonally shift roosting sites and
1628 foraging areas (Timm and Genoways 2004; FWC, pers. comm. 2018).

1630 **4.1.3 Numbers, Reproduction, and Distribution**

1631
1632 Unlike most bat species, with ranges spanning several states or entire continents, the FBB occurs
1633 only within south and south-central Florida, which is one of the smallest distributions of any
1634 species of bat in the western hemisphere (Belwood 1992; Timm and Genoways 2004).

1635
1636 Numerous acoustic surveys for the FBB conducted in the past decade suggest that where the
1637 species is detected, abundance is low (Marks and Marks 2008a; 2012; FWC 2011a; FWC 2011b;
1638 Timm *in litt.* 2012). Bailey *et al.* (2017) conducted acoustic surveys for FBB in 15 of 16 Florida
1639 counties of “known or suspected” occurrence (no points surveyed in Monroe County). This study
1640 detected the species at 60 of 330 points monitored sunset to sunrise for several months in 2014
1641 and 2015. Using an occupancy model that explained detection probability as a function of
1642 environmental variables, this study estimated that FBB were likely present in > 20% of the 16-
1643 county, 18,401-mile² study area (>3,680 miles²). The local abundance of developed areas had the
1644 strongest effect among the environmental variables examined; occupancy probability decreased
1645 with increasing amount of developed land. Occupancy probability increased with increasing
1646 amount of crop-based agriculture in the local area. Figure 4-1 shows the results of the occupancy
1647 model.

1648
1649 NatureServe (2019) classifies the FBB as a G1 species, *i.e.*, critically imperiled globally due to
1650 extreme rarity (5 or fewer occurrences, or fewer than 1,000 individuals), or due to extreme
1651 vulnerability to extinction by natural or manmade factors. Based upon inferences from publicly
1652 available data, the 2016 IUCN Red List of Threatened Species list the species as “vulnerable”
1653 with a population size in the low hundreds to the low thousands (well below 10,000) (Solari
1654 2016). Some FBB researchers suggest a population size of less than 1,000 individuals (Marks
1655 and Marks 2008a; FWC 2011b; Marks and Marks 2012).

1656
1657 New information about the species’ range, roost colony sizes, and occurrence data (FWC and
1658 other sources, unpublished data) suggests that 1,000 individuals is likely an underestimate. The
1659 Service estimates the range-wide number of mature individuals at about 2,000 adults and the
1660 extent of occurrence at 8,734 km² (3,372 mile²), or an overall density of 0.6 FBB per mile²
1661 (Ziewitz 2019).

1662 **4.1.4 Conservation Needs and Threats**

1665 Habitat loss

1666

1667 Due to the critical importance and limited availability of roost sites, the loss of forest habitat is
1668 considered a threat to the FBB (Belwood 1992; Timm and Arroyo-Cabral 2008). Removing
1669 dead or live trees with cavities during forest management (e.g., thinning, pruning), prescribed
1670 fire, exotic species treatment, or trail maintenance may inadvertently remove roost sites. Loss of
1671 an active roost, especially when occupied by pregnant or lactating females, can strongly affect a
1672 small local population with low fecundity (probably 1 pup per mature female annually).
1673 Accordingly, managing landscapes to supply suitable roosting sites is the species' primary
1674 conservation need.

1675

1676 In urban areas, removing or modifying buildings or trees that provide roost sites may also harm
1677 FBB (Timm and Arroyo-Cabral 2008). Robson (1989) lists routine landscaping, removing
1678 dead pine or royal palm trees, pruning or trimming trees (especially cabbage palms), sealing
1679 barrel-tile roof shingles with mortar, destroying abandoned buildings, and clearing native
1680 vegetation as potential causes of roost destruction.

1681

1682 Belwood (1992) stated that tree cavities were rare in southern Florida and that competition for
1683 available cavities from native wildlife (e.g., southern flying squirrel, red-headed woodpecker,
1684 corn snake) was intense. Competition for cavities has probably increased since 1992, due to a
1685 continued loss of cavity trees and a continued influx of non-native or introduced species, which
1686 also vie for limited cavities for roosting or nesting.

1687

1688 Pesticides and contaminants

1689

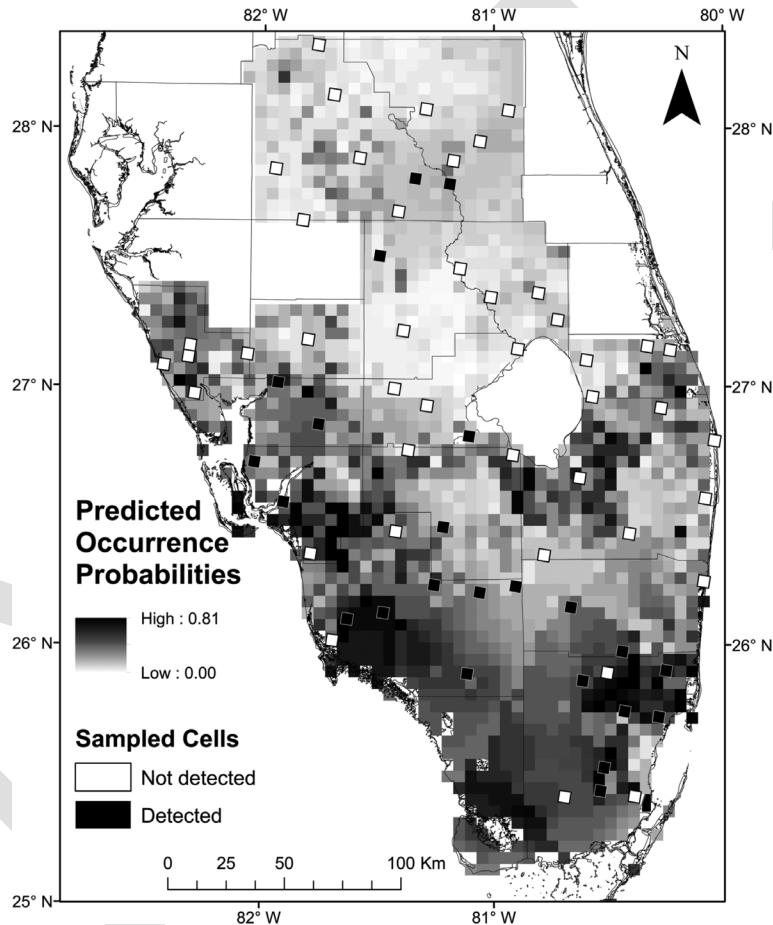
1690 The impacts of pesticides and other environmental contaminants on bats are largely unstudied,
1691 including the FBB. The FBB forages at dusk and after dark, and its range includes urban areas
1692 that receive airborne mosquito control treatments, where direct exposure to these pesticides or
1693 through consuming insects with pesticide residues is likely to occur. Likewise, the use of
1694 pesticides by homeowners and agricultural operators may also expose FBB to various chemicals
1695 directly or through diet. In addition to the possible harmful effects of pesticide exposure, Robson
1696 (1989) suggested that mosquito control programs are contributing to reduced food availability for
1697 the FBB. Although adverse effects to FBB resulting from direct and indirect chemical exposure
1698 are plausible, we have no data that estimates the impact to FBB numbers, reproduction, or
1699 distribution.

1700

1701 Extreme weather and climate change

1702

1703 This species is vulnerable to weather events such as extreme cold and hurricanes, which may
1704 increase in frequency as the climate changes. Members of the *Molossidae* family that inhabit the
1705 warmer temperate and subtropical zones incur much higher energetic costs for thermoregulation
1706 during cold weather events than those inhabiting northern regions (Arlettaz *et al.* 2000).


1707

1708 The high winds and falling trees of intense storms and hurricanes may directly kill FBB, destroy
1709 roost sites, expose individuals displaced from roost sites to predation following the storm, and
1710 reduce food availability (Timm and Genoways 2004; Marks and Marks 2008a; W. Kern, Jr. *in*

litt. 2012; R. Timm, *in litt.* 2012). The hurricane season overlaps with the FBB's extended breeding season, which increases the likelihood of reduced recruitment as an additional impact of storms (Marks and Marks 2008a). However, storms of lesser intensity may also create new roosting opportunities, if dead or damaged trees remain on the landscape afterwards.

Sea level rise is expected to shrink habitat availability for many south Florida species (Saha *et al.* 2011). Three subpopulations of the FBB occur in at-risk coastal locations (Gore *et al.* 2010). Within the species' range, low-lying areas in Collier, Lee, Miami-Dade, and Monroe Counties appear most vulnerable to inundation and saltwater intrusion.

4.1.5 Tables and Figures

Figure 4-2. Map showing predicted probability of FBB occurrence in 16 Florida counties, and areas sampled by acoustic methods for FBB presence. Black- and white-outlined cells show where FBB were and were not detected, respectively. Source: Bailey *et al.* (2017).

4.2 Environmental Baseline for Florida Bonneted Bat

1732 This section describes the current condition of the FBB in the Action Area without the
1733 consequences to the listed species caused by the proposed Action.

1735 **4.2.1 Action Area Numbers, Reproduction, and Distribution**

1737 All natural or vegetated land cover classes present in the Plan Area may support FBB foraging
1738 activity, including native uplands, wetlands, open waters, and agricultural areas (Table 2-1).
1739 Using our range-wide density estimate of 1 adult FBB per 1,079 acres (section 4.1.3), the
1740 159,489-acre Plan Area would support about 148 adult FBB. Foraging may also occur in existing
1741 developed areas to some extent. Forested land cover types, both upland and wetland, are the most
1742 likely to support natural roost sites. We have no data about FFB roosts in bat houses or buildings
1743 in the Plan Area. The Plan Area contains approximately 41,763 acres of roosting habitat (Table
1744 4-1), mostly (84.7%) within the designated Preservation areas.

1745
1746 The Applicants did not conduct FBB surveys of the Plan Area during the development of the
1747 HCP; however, individuals have been detected through acoustic monitoring within and
1748 immediately outside of the Plan Area. Available data includes 3 locations within the
1749 Development and Mining designation of the Plan Area and over 50 detections within 5 miles of
1750 the Plan Area (various sources, unpublished data). Nearby, the FBB is known to occur in the
1751 Florida Panther National Wildlife Refuge, Corkscrew Swamp, and Okaloacoochee Slough State
1752 Forest.

1753
1754 The model of Bailey et al. (2017) attributes a variable, but generally moderate, probability of
1755 occurrence to portions of the Plan Area based on an analysis of acoustic detections and habitat
1756 conditions (Figure 4-1). The acoustic monitoring station located within the Plan Area for this
1757 range-wide study did not detect FBBs. Known roost sites occur within 1 mile of the Plan Area
1758 (e.g., Braun de Torrez et al. 2016), but not within the Plan Area. Lacking data about roosts or
1759 other concentrations of FBB activity in the Plan Area, we attribute the same probability of
1760 occurrence to all areas of suitable habitat in the Plan Area.

1761
1762 FBB may roost singly or in harems of a single male and several females, and may shift roosts
1763 seasonally (section 4.1.2). Using a sex ratio of 1:1, the estimated Plan Area abundance of 148
1764 FBB would consist of 74 females. Using an average harem size of 1 male and 9 females (Ober et
1765 al. 2017), 74 adult females would occupy about 8–9 colonial roosts. Smaller colonies would use
1766 more roosts, and larger colonies would use fewer roosts. Roosting singly, 148 FBB could use up
1767 to 148 roosts at any given time, but this is unlikely, given the current understanding of the
1768 species' social organization.

1770 **4.2.2 Action Area Conservation Needs and Threats**

1771
1772 We expect current threats to the species range-wide, such as loss of active roosts and roosting
1773 habitat, to increase with increased development in the Plan Area. Maintaining native wetland and
1774 upland forested habitats to provide roost sites, as well as vegetated and open water areas to
1775 provide foraging opportunities, is the species' primary conservation need in the Plan Area.

1777
1778
1779
1780
1781

4.2.3 Tables and Figures

Table 4-1. Acreage of FBB roosting habitat within the Plan Area.

COOPERATIVE LAND COVER CLASS (Florida bonneted bat roosting habitat)	DEVELOPMENT	PRESERVATION	VERY LOW DENSITY	BASE ZONING	ELIGIBLE FOR INCLUSION	Plan Area Total
Cypress	141	11,550	17	0	1,270	12,978
Freshwater Forested Wetlands	110	4,094	357	0	662	5,224
Isolated Freshwater Swamp	168	3,681	40	0	173	4,063
Wet Flatwoods	135	2,300	3	53	20	2,512
Cypress/Tupelo	142	1,787	70	0	262	2,261
Strand Swamp	0	1,743	0	1	14	1,758
Other Hardwood Wetlands	4	437	22	0	53	516
Dome Swamp	0	279	0	37	0	317
Hydric Hammock	0	117	0	2	0	119
Other Coniferous Wetlands	11	13	0	0	0	24
Mesic Flatwoods	938	6,026	112	0	314	7,391
Mixed Hardwood-Coniferous	240	2,241	135	0	165	2,781
Mesic Hammock	417	1,129	61	16	167	1,791
Scrubby Flatwoods	0	29	0	0	0	29
COLUMN TOTAL	2,308	35,427	819	110	3,100	41,763
COLUMN PERCENT	5.5%	84.8%	2.0%	0.3%	7.4%	

1782
1783
1784

4.3 Effects of the Action on Florida Bonneted Bat

1785
1786
1787
1788
1789
1790
1791

This section describes all reasonably certain consequences to the FBB that we predict the proposed Action would cause, including the consequences of other activities not included in the proposed Action that would not occur but for the proposed Action. Such effects may occur later in time and may occur outside the immediate area involved in the Action.

1792
1793

4.3.1 Development and Mining, Base Zoning, and Lands Eligible for Inclusion

1794
1795
1796
1797
1798
1799

The designated Development and Mining, Base Zoning, and Lands Eligible for inclusion (collectively, the development envelope of the HCP) encompass 66,245 acres, or 42% of the Plan Area. The cap on total development within the development envelope is 39,973 acres, or 25% of the Plan Area. We estimate Plan Area FBB numbers at about 148 adult FBBs (section 4.2.1), and expect the development footprint to support about $0.25 \times 148 = 37$ adults.

1800
1801
1802
1803
1804
1805
1806
1807
1808

FBBs may forage in virtually all of the vegetated and open water cover classes of the Plan Area. FBB detections along Florida's east coast have declined as development has converted native and agricultural cover to residential/commercial uses (Gore 2010). FBB detection probability decreases with the local abundance of developed areas and increases with the local abundance of agricultural areas (Bailey *et al.* 2017; see section 4.1.3). Consistent with these observations, we expect that the conversion of vegetated land cover, both native and agricultural, to urban or mining uses would reduce FBB numbers in the Plan Area to some extent. However, the availability of suitable roosts is likely the key factor that limits FBB abundance on the landscape (see section 4.1.4).

1809
1810 FBBs are most likely to find natural roost sites in the forested cover classes of the Plan Area,
1811 both upland and wetland. Table 4-2 shows our application of the “proportional method”
1812 described in section 2.1.4, which estimates that development of up to 39,973 acres within the
1813 development envelope would convert up to 3,316 acres of forested habitats to residential,
1814 commercial, or mining uses. The designated Development and Mining areas contain 2,357 acres
1815 of forested habitats, which is the maximum loss of forest cover that could occur if development
1816 is confined entirely to these areas (*i.e.*, no substitution of Base Zoning or Eligible lands in the
1817 development cap).

1818
1819 The loss of 2,357–3,316 acres of forest cover from the development envelope would reduce Plan
1820 Area forest cover by 5.6–7.9 percent. We expect Plan Area forests to support 8–9 colonial roost
1821 sites for a reproductive harem (1 male, multiple females) (section 4.2.1). The percentage loss of
1822 forest cover applied to 8 or 9 roost sites is less than 1, but conservatively, we estimate that 1
1823 maternity colony would occur in the development footprint. The loss of 2,357–3,316 acres of
1824 forest cover is more likely to remove solitary roosts and alternate roosts that individuals who are
1825 not part of a harem may use throughout the year.

1826
1827 The Applicants propose to follow the *Consultation Guidelines for the Florida Bonneted Bat*,
1828 which the Service has recently updated (USFWS 2019b). These guidelines recommend acoustic
1829 surveys, roost surveys, and various avoidance and minimization strategies. Application of these
1830 guidelines should avoid killing or injuring FBBs when surveys identify an active roost. However,
1831 locating a FBB roost is difficult, and we expect tree removal associated with the development
1832 activities to remove some active roosts. Such removal would kill or injure any non-volant pups in
1833 the roost and, at minimum, displace any adults present. Pregnant females displaced from an
1834 established roost are more likely to fail to reproduce that year, due to the diversion of foraging
1835 time to searches for an alternate roost suitable for birthing and rearing a pup.

1836
1837 Bats are vulnerable to predation by diurnal birds (*e.g.*, hawks and falcons). Mikula *et al.* (2016)
1838 estimated that the diurnal predation rate on bats is 100–1,000 times higher than the nocturnal
1839 predation rate when standardized relative to the duration of day versus night bat activity. The
1840 proportion of bats that actually survive fleeing diurnal disturbance at a roost site is
1841 undeterminable, but survival is more likely if alternative shelter is available nearby.

1842
1843 Using the average harem size of 1 adult male and 9 adult females (section 4.1.2), we expect that
1844 the removal of 1 active maternity roost would, at minimum, displace the adults and kill or injure
1845 9 pups. The predation rate of adult FBBs displaced by roost removal is undeterminable, but we
1846 believe most would survive. FBB are likely to occupy areas undergoing development until roosts
1847 are removed by construction activity; however, we believe FBBs are more likely to persist long-
1848 term in the native habitats of the Preservation and Very Low Density Development areas (see the
1849 following sections 4.3.2 and 4.3.3), where forest cover providing potential roosts is more
1850 abundant.

1851
1852 The use of pesticides and other chemicals within developed areas could reduce the prey available
1853 for bats and sicken or kill any FBBs that consume treated insects. The HCP does not provide
1854 information on the types of pesticides and other chemicals planned for use in the Development

1855 areas. We expect that mosquito and other chemical pest-control practices would occur with a
1856 frequency similar to other towns and cities in the region. Although pesticide use is a plausible
1857 threat to FBB in the Plan Area, we are unable to estimate the amount or extent of adverse effects
1858 such use may cause.

1859

1860 **4.3.2 Preservation Activities**

1861

1862 The Preservation areas contain 56.5% of the land cover in the Plan Area (Table 2-2), virtually all
1863 of which may support foraging activity for the 148 FBBs we estimate occupy the Plan Area
1864 (section 4.2.1). The Preservation areas contains 85% of the forest cover in the Plan Area (Table
1865 4-1), which we expect to support 85% of the roosts (solitary and group) in the Plan Area. We
1866 estimate the Plan Area supports 8–9 maternity roosts (section 4.2.1); therefore, the Preservation
1867 areas likely contain 6–8 of these.

1868

1869 Covered Activities in the Preservation areas include prescribed burning, mechanical control of
1870 groundcover, ditch and canal maintenance, mechanical and chemical control of exotic
1871 vegetation, soil tillage, cattle grazing, pesticide and herbicide applications, and other activities
1872 that maintain or improve land quality and agricultural uses. Conservation easements placed in
1873 these areas as other areas are developed would preclude future commercial and residential
1874 development and earth mining, but would allow a continuation of the existing agricultural land
1875 uses and other activities listed above.

1876

1877 Fire can have short-term beneficial effects on FBB foraging (Braun de Torrez *et al.* 2018).
1878 However, prescribed fire can kill or injure FBB through heat or smoke inhalation, and damage or
1879 destroy active and potential roosts. To minimize FBB impacts, the Applicants propose to retain
1880 large cavity trees and snags and to implement the Ecological Land Management BMPs of the
1881 *Consultation Guidelines for the Florida Bonneted Bat* (USFWS 2019b) in the Preservation areas.
1882 These BMPs include buffers for heavy equipment use, guidelines for prescribed fires, and other
1883 recommendations for conserving FBB roosting and foraging habitat. If properly applied, the
1884 BMPs should avoid, or limit to a discountable probability, FBB death or injury caused by these
1885 various land management activities.

1886

1887 Exposure to chemicals (*i.e.*, pesticides, rodenticides, insecticides, fungicides and/or herbicides)
1888 associated with agricultural uses could kill or sicken bats. The HCP does not provide specific
1889 information regarding the types of chemicals used or the frequency of use. Although pesticide
1890 use is a plausible threat to FBB in the Plan Area, we are unable to estimate the amount or extent
1891 of adverse effects such use may cause.

1892

1893 We do not expect the management of Preservation areas to reduce the numbers, reproduction, or
1894 distribution of the FBB in the Preservation areas, because these activities would, at minimum,
1895 maintain current conditions. With the addition of specific actions that benefit the FBB, long-term
1896 management of the Preservation areas could increase FBB densities and the Plan Area
1897 population. However, lacking more detailed information about FBB in the Plan Area and specific
1898 performance measures in the HCP for improving FBB habitat, we are unable to estimate the
1899 extent of potential benefits.

1900

1901 **4.3.3 Very Low Density Development**

1902
1903 The Very Low Density (VLD) use areas contain 1.7% of the land cover in the Plan Area (Table
1904 2-2), virtually all of which may support foraging activity for the estimated 148 FBBs that reside
1905 in the Plan Area. The VLD areas contain 2.0% of the forest cover in the Plan Area (Table 4-1),
1906 which we expect to support 2% of the roosts (solitary and group) for about 148 FBBs in the Plan
1907 Area. We estimate the Plan Area supports 8–9 maternity roosts (section 4.2.2); therefore, it is
1908 unlikely that the VLD areas contain a maternity roost.

1909
1910 Land uses in the VLD areas are similar to the Preservation areas, but may also include isolated
1911 residences, lodges, and hunting/fishing camps, at a density of no more than one dwelling unit per
1912 50 acres. The Applicants would continue current ranching/livestock operations and other
1913 management activities as described for the Preservation areas (e.g., exotic species control,
1914 prescribed burning). As in the Preservation areas, we do not expect continuing the existing land
1915 management regimes to harm FBBs. The Applicants propose to follow the *Consultation*
1916 *Guidelines for the Florida Bonneted Bat* (USFWS 2019b), which include acoustic and roost
1917 surveys and avoidance and minimization strategies.

1918
1919 The HCP does not specify a footprint for the isolated residences, lodges, and hunting/fishing
1920 camps, but indicates that their construction could clear up to 10% of the existing native
1921 vegetation (see section 2.5). New dwelling development could occur within any of the cover
1922 types present besides open water and existing development. It is possible that dwelling
1923 development in the VLD areas could entirely avoid forested areas, but we conservatively
1924 estimate an 82-acre habitat loss (10% of these types, Table 2-7). We consider the probability that
1925 a FBB maternity roost occurs in the footprint of VLD residence development as discountable
1926 (the removal of 82 acres from 41,763 forest acres in the Plan Area that support 8–9 maternity
1927 roosts). The predation rate of adult FBBs displaced by removal of solitary or non-maternity
1928 roosts is undeterminable, but we believe that most would survive. In general, we expect a minor
1929 reduction in FBB roosting and foraging habitat in the VLD use area, but no harm that is
1930 reasonably certain to occur.

1932 **4.3.4 Tables and Figures**

1933 **Table 4-2.** Acreage of FBB roosting habitat within the development envelope of the Plan Area.

1934

1935

COOPERATIVE LAND COVER CLASS (Florida bonneted bat roosting habitat)	DEVELOPMENT BASE ZONING		ELIGIBLE FOR INCLUSION	Development Envelope (Total)	Estimated Extent of Development
	DEVELOPMENT	BASE ZONING			
Cypress	141	0	1,270	1,411	844
Freshwater Forested Wetlands	110	0	662	772	460
Isolated Freshwater Swamp	168	0	173	341	208
Wet Flatwoods	135	53	20	208	127
Cypress/Tupelo	142	0	262	404	248
Strand Swamp	0	1	14	15	9
Other Hardwood Wetlands	4	0	53	57	34
Dome Swamp	0	37	0	37	22
Hydric Hammock	0	2	0	2	1
Other Coniferous Wetlands	11	0	0	11	6
Mesic Flatwoods	938	0	314	1,252	756
Mixed Hardwood-Coniferous	240	0	165	405	240
Mesic Hammock	417	16	167	601	356
Scrubby Flatwoods	0	0	0	0	0
COLUMN TOTAL	2,308		110	3,100	5,517
COLUMN PERCENT	41.8%		2.0%	56.2%	3,311

1936 ¹ Prorated acreages according to the “proportional method” taken from column “G” of Table 2-3.

1937 **4.4 Cumulative Effects on Florida Bonneted Bat**

1938 For purposes of consultation under ESA §7, cumulative effects are those caused by future state, tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future Federal actions that are unrelated to the proposed action are not considered, because they require separate consultation under §7 of the ESA.

1939 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the sole source of effects that are consistent with the definition of cumulative effects for this Action. FBB generally fly high (>33 feet) above the ground (see section 4.1.2), which minimizes the risk of collisions with vehicles. We have no information that vehicles are a predictable cause of FBB injury, mortality, or significant behavioral modification.

1940 **4.5 Conclusion for Florida Bonneted Bat**

1941 In this section, we summarize and interpret the findings of the previous sections for the FBB (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to jeopardize the continued existence of a species.

1960	<u>Status</u>
1961	
1962	The FBB is endemic to south and south-central Florida. In areas where the species is detected, abundance is generally low. The species forages in a wide range of habitat types, and roosts in the cavities/crevices of live and dead trees. FBBs also use artificial structures as roosts (<i>e.g.</i> , bat houses, buildings). Detection probability is negatively correlated with the local extent of developed (urban) land, but the species does occur in some urban areas. The Service currently estimates range-wide abundance of about 2,000 adults, an extent of occurrence of 3,372 mile ² , and an overall density of about 0.6 FBB per mile ² (1 adult per 1,079 acres).
1963	
1964	
1965	
1966	
1967	
1968	
1969	
1970	The loss of roost sites is the primary known threat to the FBB. Trees with features that provide suitable roosting conditions are limited, and competition with other species for available cavities is likely intense. Accordingly, managing landscapes to supply suitable roosting sites is the species' primary conservation need. In both urban and rural areas, FBB and their insect prey are exposed to various pesticides and contaminants, but the impacts of such exposure are unknown. The species is vulnerable to severe cold weather and storm events and to habitat loss resulting from sea-level rise associated with climate change.
1971	
1972	
1973	
1974	
1975	
1976	
1977	
1978	<u>Baseline</u>
1979	
1980	All vegetated and open-water land cover classes present in the Plan Area are potential foraging habitats for the FBB, and all forested cover classes, both upland and wetland, are potential roosting habitats. The Plan Area contains 41,763 acres of forested habitat. Acoustic monitoring has detected FBB within and immediately outside of the Plan Area. Documented roosts occur less than 1 mile from the Plan Area. Using the range-wide density of 1 adult FBB per 1,079 acres, we estimate FBB numbers in the Plan Area at about 148 adults. Using the average documented harem size of 1 male and 9 females, we estimate that the Plan Area contains 8–9 maternity colonies.
1981	
1982	
1983	
1984	
1985	
1986	
1987	
1988	
1989	Threats to the FBB in the Plan Area include habitat loss, especially loss of roosting habitat, roost site competition from native and exotic species, and exposure to pesticides and other contaminants. Managing natural areas to supply suitable roosting sites is the species' primary conservation need in the Plan Area.
1990	
1991	
1992	
1993	
1994	<u>Effects</u>
1995	
1996	The loss of 2,357–3,311 acres of forest cover from the Development, Base Zoning, and Eligible lands (depending on the actual distribution of the development cap in these land use designations) would reduce the 41,763 acres of forest cover in the Plan Area by 5.6–7.9%. We expect the Plan Area forests to support 8–9 colonial roost sites. The expected loss is less than 1 colonial roost, but conservatively, we estimate that 1 maternity colony would occur in the development footprint. The destruction of 1 active maternity roost would, at minimum, displace 10 adults (average harem size) and kill or injure 9 pups, if present. The predation rate of adult FBBs displaced by roost removal is undeterminable, but we believe most would survive.
1997	
1998	
1999	
2000	
2001	
2002	
2003	
2004	

2005 We do not expect the management of Preservation and VLD use areas to reduce the numbers,
2006 reproduction, or distribution of the FBB in these areas, because these activities would, at
2007 minimum, maintain current conditions. The applicants propose to retain large cavity trees and
2008 snags in the management of these areas. With the addition of specific actions that benefit the
2009 FBB, long-term management of these areas could increase FBB densities and the Plan Area
2010 population. We consider the probability that a FBB maternity roost occurs in the footprint of
2011 VLD residence development as discountable.

2012

Cumulative Effects

2014

2015 We have no information that suggests collisions with vehicles are a predictable cause of FBB
2016 injury, mortality, or significant behavioral modification.

2017

Opinion

2019

2020 The primary impact of the Action to the FBB is the possible removal of a maternity roost during
2021 construction activity. We expect this impact to occur only once, affecting the average number of
2022 pups and adults in a colony (9 pups and 10 adults). The implementation of the *Consultation*
2023 *Guidelines for the Florida Bonneted Bat* may avoid this impact. The death of all adults in a roost
2024 destroyed incidental to construction activities, which is not likely, would represent a 0.5%
2025 reduction in the estimated range-wide abundance of about 2,000 adults.

2026

2027 The conversion of land cover that provides foraging areas would add an increment to the overall
2028 impact of urbanization in the range of the FBB. The Action's increment of urbanization, 39,973
2029 acres (62.5 mile²) of new development, would represent a 1.9% reduction of the estimated range-
2030 wide FBB extent of occurrence (3,372 mile²).

2031

2032 We believe that most FBB individuals present during development activity are likely to survive
2033 displacement caused by a gradual loss of habitat in the Development areas, because suitable
2034 habitat would remain in the Preservation areas and is available on adjacent conservation lands.
2035 Easements in the Preservation areas executed as portions of the Development areas are converted
2036 from existing uses would protect both native habitats and agricultural lands from future
2037 development. The likely survival of most FBB affected by development activity and the assured
2038 continuation of existing habitat conditions in the Preservation areas, which may improve under
2039 management and protection, supports an interpretation that the scale of the Action-caused
2040 reduction in numbers, reproduction, and distribution we predict does not appreciably reduce
2041 species' likelihood of survival and recovery.

2042

2043 After reviewing the current status of the species, the environmental baseline for the Action Area,
2044 the effects of the Action and the cumulative effects, it is the Service's biological opinion that the
2045 Action is not likely to jeopardize the continued existence of the FBB.

2046

4.6 Status of Florida Bonneted Bat Proposed Critical Habitat

2048

2049 This section summarizes best available data about the current condition of all units of proposed
2050 critical habitat (pCH) for the FBB that are relevant to formulating an opinion about the Action.

2051 The Service published its proposal to designate CH for the FBB on June 10, 2020 (85 FR 35510–
2052 35544).

2053 2054 **4.6.1 Description of Florida Bonneted Bat Critical Habitat Geographic Extent**

2055 Proposed CH for FBB is comprised of 1,478,333 acres in 4 separate units located in 10 Counties
2056 in Florida (Figure 4-3). A breakdown of units by counties is as follows:

- 2058 (1) Unit 1: Peace River and surrounding areas (Charlotte, DeSoto, Hardee, and Sarasota
2059 Counties);
- 2060 (2) Unit 2: Babcock-Webb WMA, Babcock Ranch, and surrounding areas (Charlotte,
2061 Lee, and Glades Counties);
- 2062 (3) Unit 3: Big Cypress and surrounding areas (Collier, Monroe, and Hendry Counties);
2063 and
- 2064 (4) Unit 4: Miami-Dade natural areas (Miami-Dade County).

2065 Table 4-3 lists these units and identifies the acreage of each that is under Federal, State, County,
2066 or private ownership.

2067 **4.6.2 Physical and Biological Features**

2068 In this CO for FBB pCH, we use the term physical and biological features (PBFs) to label the
2069 key components of pCH that provide for the conservation of the FBB. Our pCH rule identified
2070 seven PBFs (85 FR 35510–35544):

- 2071 (1) Representative forest types (all age classes) that support the Florida bonneted bat by
2072 providing roosting and foraging habitat within its core areas (i.e., Polk, Charlotte, Lee,
2073 Collier, Monroe, and Miami-Dade Counties), including:
 - 2074 (a) Pine flatwoods;
 - 2075 (b) Scrubby pine flatwoods;
 - 2076 (c) Pine rocklands;
 - 2077 (d) Royal palm hammocks;
 - 2078 (e) Mixed or hardwood hammocks;
 - 2079 (f) Cypress;
 - 2080 (g) Mixed or hardwood wetlands;
 - 2081 (h) Mangroves (mature and pristine);
 - 2082 (i) Cabbage palms; and
 - 2083 (j) Sand pine scrub.
- 2084 (2) Habitat that provides for roosting and rearing of offspring; such habitat provides
2085 structural features for rest, digestion of food, social interaction, mating, rearing of young,
2086 protection from sunlight and adverse weather conditions, and cover to reduce predation
2087 risks for adults and young, and includes forest and other areas with tall or mature trees
2088 and other natural areas with suitable structures, which are generally characterized by:
2089 (a) Tall or mature live or dead trees, tree snags, and trees with cavities, hollows,
2090 crevices, or loose bark, including, but not limited to, trees greater than 10 m (33 ft)
2091 in height, greater than 20 cm (8 in) diameter at breast height, with cavities greater
2092 than 5 m (16 ft) high off the ground;

2097 (b) High incidence of tall or mature live trees with various deformities (e.g., large
2098 cavities, hollows, broken tops, loose bark, and other evidence of decay);
2099 (c) Sufficient open space for Florida bonneted bats to fly; areas may include open or
2100 semi-open canopy, canopy gaps and edges, or above the canopy, which provide
2101 relatively uncluttered conditions; and/or
2102 (d) Rock crevices.
2103 (3) Habitat that provides for foraging, which may vary widely across the Florida bonneted
2104 bat's range, in accordance with ecological conditions, seasons, and disturbance regimes
2105 that influence vegetation structure and prey species distributions. Foraging habitat may
2106 be separate and relatively far distances from roosting habitat. Foraging habitat consists
2107 of:
2108 (a) Sources for drinking water and prey, including open fresh water and permanent or
2109 seasonal freshwater wetlands, in natural or rural areas (non-urban areas);
2110 (b) Wetland and upland forests, open freshwater wetlands, and wetland and upland
2111 shrub (which provide a prey base and suitable foraging conditions (i.e., open habitat
2112 structure));
2113 (c) Natural or semi-natural habitat patches in urban or residential areas that contribute to
2114 prey base and provide suitable foraging conditions (i.e., open habitat structure);
2115 and/or
2116 (d) The presence and abundance of the bat's prey (i.e., large, flying insects), in
2117 sufficient quantity, availability, and diversity necessary for reproduction,
2118 development, growth, and survival.
2119 (4) A dynamic disturbance regime (natural or artificial) (e.g., fire, hurricanes) that
2120 maintains and regenerates forested habitat, including plant communities, open habitat
2121 structure, and temporary gaps, which is conducive to promoting a continual supply of
2122 roosting sites, prey items, and suitable foraging conditions.
2123 (5) Large patches (more than 40,470 ha (100,000 ac)) of forest and associated natural or
2124 semi-natural habitat types that represent functional ecosystems with a reduced influence
2125 from humans (i.e., areas that shield the bat from human disturbance, artificial lighting,
2126 habitat loss and degradation).
2127 (6) Corridors, consisting of roosting and foraging habitat, that allow for population
2128 maintenance and expansion, dispersal, and connectivity among and between geographic
2129 areas for natural and adaptive movements, including those necessitated by climate
2130 change.
2131 (7) A subtropical climate that provides tolerable conditions for the species, such that normal
2132 behavior, successful reproduction, and rearing of offspring are possible.

2133 FBB pCH does not include human-made structures (such as buildings, aqueducts, runways,
2134 roads, and other paved areas) and the land on which they are located existing within the legal
2135 boundaries.

2136 All pCH units are occupied by the FBB. The Service determined that designating unoccupied
2137 units was not essential the conservation of the FBB.

2141 **4.6.3 Conservation Value of Florida Bonneted Bat Proposed Critical Habitat**

2142
2143 The PBFs of pCH listed in section 4.6.2. address the various aspects habitat that supports the
2144 FBB. Not all pCH units contain all seven PBFs. Each pCH unit was selected for its
2145 conservation value with respect the PBFs which it does contain.

2146
2147 Unit 1 contains five of the seven PBFs for the bonneted bat (*i.e.*, PBFs 2, 3, 4, 6, and 7). While
2148 this unit contains representative forest types that support the species by providing roosting and
2149 foraging habitat, it consists of area primarily outside of the bat's core areas (*i.e.*, does not possess
2150 all features described in PBF 1). Because of its relatively small size, this unit also does not
2151 possess all features described in PBF 5. However, Unit 1 encompasses a known movement
2152 corridor (generally connecting individuals between Unit 2 and Avon Park Air Force Range) and
2153 adds ecological diversity (a natural river corridor) to the overall proposed designated areas. In
2154 addition, the Peace River and adjacent forested lands maintain high habitat suitability, providing
2155 open water and likely abundant prey.

2156
2157 Unit 2 represents the westernmost portion of the species' core areas. This unit was occupied at
2158 the time of listing, is currently occupied, and contains all seven PBFs for the FBB. Babcock-
2159 Webb WMA and surrounding areas support the largest abundance known (approximately 79
2160 bonneted bats), and the bulk of all known roost sites (Myers, pers. comm. 2015; Gore, pers.
2161 comm. 2016; Ober, pers. comm. 2014; Braun de Torrez, pers. comm. 2016).

2162
2163 Unit 3 represents the southwestern portion of the species' core areas. The species has been
2164 documented to use many locations throughout the unit (specifically, within BCNP, PSSF,
2165 FSPSP, and FPNWR) (see table 1 of the final listing rule (78 FR 61004, October 2, 2013)). The
2166 discoveries of three natural roosts in 2015 and 2016 further demonstrate the relevance and
2167 importance of Unit 3. This unit contains all seven of the PBFs for the FBB.

2168
2169 Unit 4 represents the eastern portion of the species' core areas and includes the bulk of the
2170 remaining high-quality natural habitat in the species' former strongholds on the east coast
2171 (Belwood 1992, pp. 216–217, 219; Timm and Genoways 2004, p. 857; Timm and Arroyo-
2172 Cabrales 2008, p. 1; Solari 2016, pp. 1–2; see *Historical Distribution*, proposed listing rule (77
2173 FR 60750, October 4, 2012)). This area may be the last remaining predominantly natural
2174 occupied habitat on the east coast of Florida. This unit contains all seven of the PBFs for the
2175 FBB.

2176
2177 **4.6.4 Conservation Needs for Florida Bonneted Bat Proposed Critical Habitat**

2178
2179 The PBFs essential to the conservation of the Florida bonneted bat in Unit 1 may require special
2180 management considerations or protection due to the following: habitat loss, fragmentation, and
2181 degradation resulting from development (including oil and gas exploration) and land conversion;
2182 impacts from land management practices (e.g., timber management and fuels reduction,
2183 prescribed fire, management of nonnative and invasive species, habitat restoration) or lack of
2184 suitable habitat management; impacts from climate change and coastal squeeze; and pesticide
2185 use.

2187 The PBFs essential to the conservation of the Florida bonneted bat in Unit 2 may require special
2188 management considerations or protection due to the following: habitat loss, fragmentation, and
2189 degradation resulting from development (including oil and gas exploration) and land conversion;
2190 impacts from land management practices (e.g., timber management and fuels reduction,
2191 prescribed fire, management of nonnative and invasive species, habitat restoration) or lack of
2192 suitable habitat management; impacts from coastal squeeze; and pesticide use.
2193

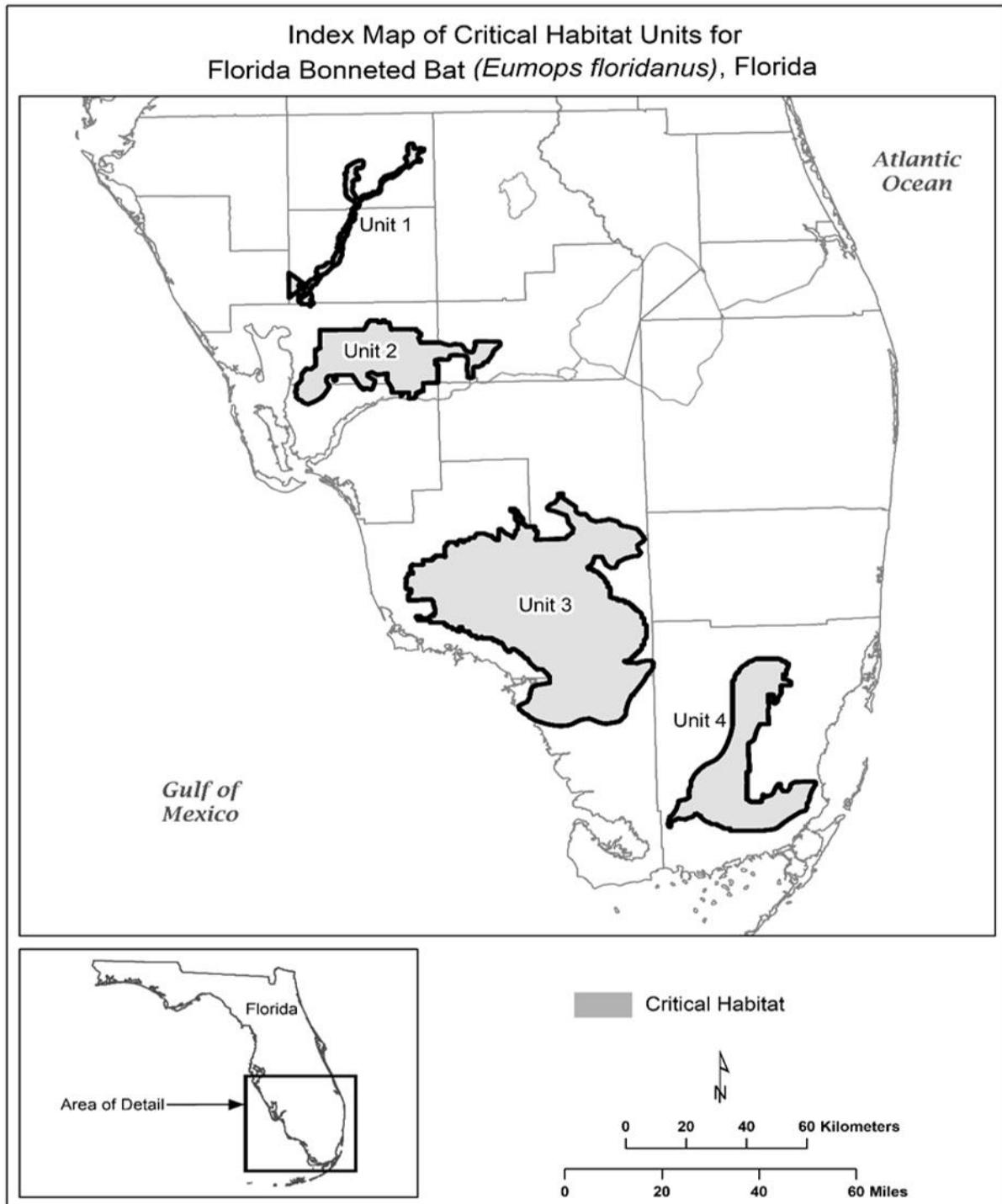
2194 The PBFs essential to the conservation of the Florida bonneted bat in Unit 3 may require special
2195 management considerations or protection due to the following: habitat loss, fragmentation, and
2196 degradation resulting from development (including oil and gas exploration) and land conversion;
2197 impacts from land management practices (e.g., timber management and fuels reduction,
2198 prescribed fire, management of nonnative and invasive species, habitat restoration) or lack of
2199 suitable habitat management; impacts from climate change and coastal squeeze; and pesticide
2200 use.
2201

2202 The PBFs essential to the conservation of the Florida bonneted bat in Unit 4 may require special
2203 management considerations or protection due to the following: habitat loss, fragmentation, and
2204 degradation resulting from development and land conversion; impacts from land management
2205 practices (e.g., timber management and fuels reduction, prescribed fire, management of
2206 nonnative and invasive species, habitat restoration) or lack of suitable habitat management;
2207 impacts from climate change and coastal squeeze; and pesticide use.
2208

2209 **4.6.5 Tables and Figures**

2210

2211 **Table 4-3.** Florida bonneted bat proposed critical habitat units, including acres by land
2212 ownership type, and co-occurring listed species and designated critical habitat found in each unit.
2213 Note: WMA = Wildlife Management Area.


2214

Unit	Ownership	Area (acres)
Unit 1—Peace River and surrounding areas	State	11,212
	County	295
	Local	32
	Private and Other	34,810
	Unidentified	1,960
	Total	48,310
Unit 2—Babcock-Webb WMA, Babcock Ranch, and surrounding areas	Federal	3
	State	151,050
	County	9,203
	Local	21
	Private and Other	79,077
	Unidentified	1,587
	Total	240,941
Unit 3—Big Cypress and surrounding areas	Federal	619,573
	Tribal	26,012
	State	152,882
	County	8,362
	Local	427
	Private and Other	94,460
	Unidentified	4,745
Unit 4—Miami-Dade natural areas	Total	906,462
	Federal	176,395
	Tribal	805
	State	64,639
	County	10,404
	Total	282,620
	TOTAL	1,478,333

2215

2216

2217
2218

2219
2220
2221
2222
2223

Figure 4-3. Florida bonneted bat proposed critical habitat in central and south Florida. Each proposed critical habitat unit is identified by number from north to south.

2224 **4.7 Environmental Baseline for Florida Bonneted Bat Proposed Critical**
2225 **Habitat**

2226
2227 This section is an analysis of the effects of past and ongoing human and natural factors leading to
2228 the current status of FBB pCH within the Action Area. The environmental baseline is a
2229 “snapshot” of the condition of PBFs that are essential to the conservation of the species within
2230 the pCH overlapping the Action Area at the time of the consultation, and does not include the
2231 effects of the Action under review.

2232
2233 **4.7.1 Action Area Conservation Value of Florida Bonneted Bat Proposed Critical Habitat**

2234
2235 The Action Area consists of the Plan Area and existing roads surrounding the Plan Area (section
2236 2.1). Because pCH does not include existing roads, the Action Area discussion here will be
2237 limited to the Plan Area. The southern portion of the Plan Area, totaling 30,730 acres (Table 4-
2238 4), is within pCH Unit 3 (Big Cypress and surrounding areas (Figure 4-4). This portion is
2239 3.4 percent of Unit 3 (906,462 acres).

2240
2241 Proposed CH within the Plan Area consists of 13,206 acres of habitats listed in PBF 1 (Table 4-
2242 5). This part of the Plan Area contains 16,641 acres of habitat that could be used for roosting and
2243 rearing of offspring (PBF 2) and 30,078 acres of habitat that could be used for foraging (PBF 3)
2244 (Table 4-5). This area is subject to dynamic disturbance (BPF 4) in the form of hurricanes and
2245 periodic fires. While the portion of Unit 3 within the Plan Area is not greater than 100,000 acres
2246 (PBF 5), it is part of a patch larger than 100,000 ac. This portion is also located in the northern
2247 part of this pCH unit and serves as a corridor (PBF 6) for FBBs moving from the southern part of
2248 this unit to Unit 2 to the north. Lastly, FBB pCH within the Plan Area is located in a subtropical
2249 climate (PBF 7).

2250
2251 **4.7.2 Action Area Conservation Needs for Florida Bonneted Bat Proposed Critical**
2252 **Habitat**

2253
2254 The Plan Area within FBB pCH Unit 3 has the same conservation needs as rest of Unit 3.
2255 Namely, special management considerations or protection due to the following: habitat loss,
2256 fragmentation, and degradation resulting from development (including oil and gas exploration)
2257 and land conversion; impacts from land management practices (e.g., timber management and
2258 fuels reduction, prescribed fire, management of nonnative and invasive species, habitat
2259 restoration) or lack of suitable habitat management; impacts from climate change and coastal
2260 squeeze; and pesticide use.

2262 **4.7.3 Tables and Figures**

2263

2264 **Table 4-4.** Habitat types in the Florida bonneted bat proposed critical habitat within the Plan
2265 Area of the Eastern Collier Multiple Species Habitat Conservation Plan.

2266

Cooperative Land Cover Type	Covered Activities	Eligible Lands	Very Low Density		
			Preserve	Use	Total
Cropland/Pasture	1,320	128	3,559	0	5,007
Cultural - Lacustrine	0	0	8	447	455
Cultural - Riverine	4	4	33	0	40
Cypress	22	228	6,965	15	7,229
Cypress/Tupelo(incl Cy/Tu mixed)	0	14	1,102	51	1,168
Exotic Plants	0	5	56	0	61
Extractive	0	0	8	44	52
Freshwater Forested Wetlands	0	371	1,521	277	2,169
Freshwater Non-Forested Wetlands	0	0	0	0	0
High Intensity Urban	0	11	0	0	11
Improved Pasture	157	0	1,087	81	1,325
Isolated Freshwater Marsh	0	11	612	0	622
Isolated Freshwater Swamp	0	17	1,244	6	1,267
Lacustrine	0	0	1	0	1
Low Intensity Urban	0	0	18	0	18
Marshes	17	248	2,101	40	2,406
Mesic Flatwoods	30	52	2,140	112	2,334
Mesic Hammock	0	6	105	3	114
Mixed Hardwood-Coniferous	64	0	957	16	1,037
Natural Lakes and Ponds	0	0	5	0	5
Orchards/Groves	0	0	186	0	187
Other Hardwood Wetlands	0	53	421	8	481
Palmetto Prairie	0	0	89	0	90
Prairies and Bogs	18	221	2,541	53	2,833
Rural	18	67	291	123	499
Shrub and Brushland	41	13	257	95	406
Transportation	0	61	7	4	72
Utilities	0	0	0	0	0
Wet Flatwoods	21	11	809	1	842
	Total	1,712	1,519	26,123	1,375
					30,730

2267

2268

2269

2270 **Table 4-5.** The acreage of each land use category of Florida bonneted bat proposed critical
2271 habitat within the Eastern Collier Multiple Species Habitat Conservation Plan that contains
2272 physical and biological features 1 through 3.

2273

PBF	Development and Mining, Base Zoning, and Lands Eligible for Inclusion			Very Low Density Use	
	Preserves		Total		
1	501	12,078	205	13,206	
2	889	15,264	488	16,641	
3	3,074	25,799	1,205	30,078	

2274

2275

2276

2277

2278 **Figure 4-4.** Florida bonneted bat proposed critical habitat (pCH) overlaid on the Plan Area of
2279 the Eastern Collier Multiple Species Habitat Conservation Plan in Collier County, Florida. A
2280 portion of the Plan Area is within pCH Unit 3.
2281

2282 **4.8 Effects of the Action on Florida Bonneted Bat Proposed Critical Habitat**

2283
2284 This section analyzes the direct and indirect effects of the Action on pCH for the FBB. Direct
2285 effects are caused by the Action and occur at the same time and place. Indirect effects are caused
2286 by the Action, but are later in time and reasonably certain to occur. Our analyses are organized
2287 according to the land-use designations of the HCP found in the description of the Action in
2288 section 2 of this BO/CO.

2289
2290 **4.8.1 Development and Mining, Base Zoning, and Lands Eligible for Inclusion**

2291
2292 The Development and Mining, Base Zoning, and Lands Eligible for Inclusion (lands that make
2293 up the Development Envelope) within FBB pCH Unit 3 contain 501 acres of habitats that are
2294 listed in PBF 1 (Table 4-5). This acreage is 3.8 percent of PBF1 habitats within the Plan Area
2295 portion of Unit 3. These same Development Envelope lands contain 889 acres (6.7 percent) of
2296 habitats that support PBF 2 (habitat that provides for roosting and rearing of offspring). Finally,
2297 there are 3,074 acres (10.2 percent) of habitat that support PBF 3 (Habitat that provides for
2298 foraging) in the Development Envelope within Unit 3.

2299
2300 Lands in the Development Envelope within Unit 3 will likely be developed because development
2301 proposals have already been submitted for the areas in the southwest portion of the Plan Area
2302 which is most of the Development Envelope lands in Unit 3. Once developed, they will lose
2303 these PBFs 1 through 3. They will also lose some of PBF 4 (dynamic disturbance) except for
2304 hurricanes. They will no longer be part of a large patch of forested or natural habitat (PBF 5) and
2305 they will no longer have the characteristics of PBF 6 (corridors). PBF 7 (subtropical climate)
2306 will remain.

2307
2308 Given that the Development Envelope FBB pCH habitats make up at most 10 percent (PBF 3) of
2309 Plan Area lands in Unit 3, and that Plan Area lands in Unit 3 make up 3 percent of Unit 3, it is
2310 unlikely that development of these lands will significantly alter the PBFs of Unit 3.

2311
2312 **4.8.2 Preservation Activities**

2313
2314 The Preservation Areas within FBB pCH Unit 3 contain 12,078 acres of habitats that are listed in
2315 PBF 1 (Table 4-5). This acreage is 91.4 percent of PBF1 habitats within the Plan Area portion of
2316 Unit 3. These Preservation Areas contain 15,264 acres (91.7 percent) of habitats that support
2317 PBF 2 (habitat that provides for roosting and rearing of offspring). Finally, there are 25,799 acres
2318 (85.8 percent) of habitat that support PBF 3 (Habitat that provides for foraging) in the
2319 Preservation Areas within Unit 3.

2320
2321 The Preservation Areas will be maintained in their current state which is mostly native habitats
2322 and some agriculture within Unit 3. Landowners will continue to manage this land as they
2323 always have. Therefore, we expect the Preservation Areas to maintain PBFs 1-4. The
2324 Preservation Areas within Unit 3 maintain connectivity to large acreages of Unit 3 to the south
2325 and outside of the Plan Area, preserving PBF 5. The HCP includes permanent protection of two
2326 north/south wildlife linkages that begin in the pCH and extend to the north outside of the pCH.
2327 These linkages preserve connectivity (PBF 6) for FBBs to move north toward Unit 2. PBF 7

2328 (subtropical climate) also will remain. Preservation Areas may be restored or enhanced which
2329 would improve PBFs 1 through 6.

2330
2331 Because the Preserve Areas are expected to be maintained or improved, and they make up from
2332 86 percent (PBF 3) to 91 percent (PBFs 1 and 2) of the habitats supporting PBFs in the Plan Area
2333 portion of Unit 3, we expect activities in the Preserve Areas of Unit 3 will maintain or possibly
2334 improve the PBFs of Unit 3.

2335 2336 **4.8.3 Very Low Density Development**

2337
2338 The VLD Areas within FBB pCH Unit 3 contain 205 acres of habitats that are listed in PBF 1
2339 (Table 4-5). This acreage is 1.6 percent of PBF1 habitats within the Plan Area portion of Unit 3.
2340 These VLD Areas contain 488 acres (2.9 percent) of habitats that support PBF 2 (habitat that
2341 provides for roosting and rearing of offspring). Finally, there are 1,205 acres (4.0 percent) of
2342 habitat that support PBF 3 (Habitat that provides for foraging) in the Preservation Areas within
2343 Unit 3.

2344
2345 The VLD Areas will be developed at a ratio of 5 acres per 50 acres (10 percent). If this 10
2346 percent of development of VLD all occurred in habitats supporting PBFs, then 20.5 acres (0.2
2347 percent) of habitats listed for PBF 1 would be lost, 48.8 acres (0.3 percent) of habitats supporting
2348 PBF 2 would be lost and 120.5 acres (0.4 percent) of habitats supporting PBF 3 would be lost.
2349 The undeveloped acreage is expected to be maintained as it has been in the past and therefore
2350 maintain PBFs 1 through 3 in these areas. Therefore, dynamic disturbance (PBF 4) is expected to
2351 continue in the remaining acreage. The small and scattered acreages expected to be developed in
2352 the VLD Areas are not expected to disconnect these areas from the larger habitat blocks (PBF 5),
2353 nor are they expected to significantly reduce the connectivity (PBF 6) of the VLD Area. PBF 7
2354 (subtropical climate) also will remain.

2355
2356 Since the VLD Areas have a very small percent (up to 0.4 percent for PBF 3) of habitats
2357 supporting PBFs in the Plan Area of Unit 3, the remainder of the VLD lands are expected to
2358 retain many PBFs, and the Plan Area lands in Unit 3 make up 3 percent of Unit 3, we expect the
2359 development of the VLD areas to have an insignificant effect on the PBFs of Unit 3.

2360 2361 **4.8.4 Summary**

2362
2363 The loss of habitats supporting PBFs of FBB pCH in Unit 3 is expected to be 889 acres in the
2364 Development Envelope and 120.5 in the VLD Areas, or a total of 1,009.5 acres. This is 0.1
2365 percent of Unit 3. Undeveloped portions of VLD Areas are expected to retain most of their PBFs
2366 and, Preserve areas may be restored or enhance which could improve the PBFs.

2367 2368 **4.9 Cumulative Effects**

2369
2370 As discussed in section 4.7.1, the only part of the Action Area that contains FBB pCH is the Plan
2371 Area. We are unaware of other non-federal actions in the Plan Area that are reasonably certain to
2372 occur and that may affect the FBB pCH. Therefore, there are no cumulative effects related to
2373 FBB pCH.

2374

2375 **4.10 Conclusion for the Florida Bonneted Bat Proposed Critical Habitat**

2376

2377 In this section, we summarize and interpret the findings of the previous sections for FBB pCH
2378 (status, baseline, effects, and cumulative effects) relative to the purpose of a CO under
2379 §7(a)(2) of the ESA, which is to determine whether a Federal action is likely to:

2380

- 2381 a) jeopardize the continued existence of species listed as endangered or threatened; or
- 2382 b) result in the destruction or adverse modification of designated CH.

2383

2384 “*“Destruction or adverse modification”* means a direct or indirect alteration that appreciably
2385 diminishes the value of pCH for the conservation of a listed species. Such alterations may
2386 include, but are not limited to, those that alter the PBFs essential to the conservation of a species
2387 or that preclude or significantly delay development of such features (50 CFR §402.02).

2388

Status

2389

2390 Proposed CH for the FBB is comprised of 1,478,333 acres in 4 units located in 10 counties in
2391 central and southern Florida. Seven PBFs have been proposed that relate to habitats necessary for
2392 FBBs to roost, rear offspring, and forage; and to conditions needed to maintain these habitats and
2393 FBB populations (disturbance, large patches of habitat, corridors, and subtropical climate).

2394

Baseline

2395

2396 The acreage of the Action Area within pCH Unit 3 is 30,730 acres, and its percent of Unit 3 is
2397 small (3.4 percent). This area does include all seven PBFs and consists mostly of native habitats.
2398 Unit 3 is 906,462 acres.

2399

Effects

2400

2401 Development within the Development Envelope located in Unit 3 will cause the loss of up to 889
2402 acres that support PBFs. The Development Envelope FBB pCH habitats make up at most 10
2403 percent (PBF 3) of Plan Area lands in Unit 3, and the Plan Area lands in Unit 3 make up 3
2404 percent of Unit 3. Considering these factors, it is unlikely that development of these lands will
2405 significantly alter the PBFs of Unit 3.

2406

2407 The Preserve Areas are made up of 25,799 acres of habitats supporting Unit 3 PBFs. Because the
2408 Preserve Areas are expected to be maintained or improved, and they make up from 86 percent
2409 (PBF 3) to 91 percent (PBFs 1 and 2) of the habitats supporting PBFs in the Plan Area portion of
2410 Unit 3, we expect activities in the Preserve Areas of Unit 3 will maintain or possibly improve the
2411 PBFs of Unit 3.

2412

2413 Up to 120.5 acres of land supporting PBFs within the VLD Areas could be lost to development.
2414 Since the development expected within the VLD Areas would cause the loss of a very small
2415 percent (up to 0.4 percent for PBF 3) of habitats supporting PBFs in the Plan Area of Unit 3, the
2416 remaining VLD lands are likely to retain many PBFs, and the Plan Area lands in Unit 3 make up

2420 3 percent of Unit 3, we expect the development of the VLD areas to have an insignificant effect
2421 on the PBFs of Unit 3.

2422

2423 **Cumulative Effects**

2424

2425 We are unaware of other non-federal actions in the Action Area that are reasonably certain to
2426 occur and that may affect the FBB pCH.

2427

2428 **Opinion**

2429

2430 Although the Action would reduce the acreage that can support the PBFs of FBB pCH in Unit 3
2431 by about 0.1 percent, we believe the action would not significantly decrease the PBFs within
2432 Unit 3. The PBFs may be improved if Preserve Areas are restored or enhanced.

2433

2434 After reviewing the current status of the pCH, the environmental baseline for the Action Area,
2435 the effects of the Action, and the cumulative effects, it is the Service's conference opinion that
2436 the Action is not likely to destroy or adversely modify pCH for the FBB.

2437

2438 **5 Florida Panther**

2439

2440 This section provides the Service's biological opinion of the Action for the Florida Panther.

2441

2442 **5.1 Status of Florida Panther**

2443

2444 This section summarizes best available data about the biology and current condition of the
2445 Florida panther (*Puma concolor coryi*) (panther) throughout its range that are relevant to
2446 formulating an opinion about the Action. The Service published its decision to list the panther as
2447 endangered on March 11, 1967 (32 FR 4001). In addition, the Florida Panther Act (Florida
2448 Statute 372.671), a 1978 Florida State law, made killing a panther a felony. The panther is listed
2449 as endangered by the States of Florida, Georgia, Louisiana, and Mississippi in addition to its
2450 Federal listing. Critical habitat has not been designated for the panther.

2451

2452 The following Service documents, cited in this section as necessary, provide additional details
2453 about the status of the panther:

- Florida Panther Recovery Plan (3rd Edition, 2008)
- Annual Report on the Research and Management of Florida Panthers: 2018–2019 (FWC
2456 2019)
- Species Status Assessment for the Florida Panther (USFWS Draft 2020)

2457

2458 **5.1.1 Species Description**

2459

2460 An adult panther is unspotted and typically rusty reddish-brown on the back, tawny on the sides,
2461 and pale gray underneath. Adult males can reach a length of 7 feet (ft) (2.1 meters [m]) from
2462 their nose to the tip of their tail and may exceed 161 pounds (lbs) (73 kilograms [kg]) in weight;
2463 but, typically adult males average around 116 lbs (52.6 kg) and stand about 24 to 28 inches (in)
2464 (60 to 70 centimeters [cm]) at the shoulder (Roelke 1990). Female panthers are smaller with an
2465

2466 average weight of 75 lbs (34 kg) and length of 6 ft (1.8 m) (Roelke 1990). Panther kittens are
2467 gray with dark brown or blackish spots and five bands around the tail. The spots gradually fade
2468 as the kittens grow older and are almost unnoticeable when 6 months old. At this age, their
2469 bright blue eyes slowly turn to the light-brown straw color of the adult (Belden 1988).
2470

2471 **5.1.2 Life History**

2472
2473 Panthers require large areas to meet their needs. Mean home range size of females >24 months-
2474 of-age between 2004 and 2018 was 217.04 km² (48.38–765.35 km²; n = 43). Mean home range
2475 size of adult males >36 months-of-age during the same time period was 428.35 km² (91.16–
2476 1987.60 km²; n = 34). Adult female puma home ranges in western North America vary from
2477 about 55 km² to over 300 km² (Pierce and Bleich 2003, Logan and Swenor 2010). Male puma
2478 home ranges in western North America are typically 1.5–3 times the size of female home ranges
2479 at 150 km² to 700 km² (Pierce and Bleich 2003, Logan and Swenor 2010). Numerous factors
2480 influence panther home range size including habitat quality, prey density, interrelationships with
2481 other panthers, and landscape configuration (Belden 1988, Comiskey et al. 2002, Sunquist and
2482 Sunquist 2002, Logan and Swenor 2010). All these factors can fluctuate over time and can
2483 change panther densities across the landscape. In turn, these fluctuations make it difficult to
2484 determine the amount of habitat necessary to sustain the panther population.
2485

2486 Male panthers are polygynous, maintaining large, overlapping home ranges containing several
2487 adult females and their dependent offspring. Breeding activity peaks from December to March
2488 (Shindle et al. 2003). Litters (n = 82) are produced throughout the year, with 56 to 60 percent of
2489 births occurring between March and June (Jansen et al. 2005; Lotz et al. 2005). The greatest
2490 number of births occurs in May and June (Jansen et al. 2005; Lotz et al. 2005). Average litter
2491 size is 2.4 ± 0.91 (standard deviation) kittens. Seventy percent of litters are comprised of either
2492 two or three kittens.
2493

2494 Panther dens are usually located closer to upland hardwoods, pinelands, and mixed wet forests
2495 and farther from freshwater marsh-wet prairie (Benson et al. 2008). Most den sites are in dense
2496 saw palmetto (*Serenoa repens*), shrubs, or vines (Maehr 1990a; Shindle et al. 2003,
2497 Benson et al. 2008). Den sites are used for 6 to 8 weeks by female panthers and their litters from
2498 birth to weaning (Benson et al. 2008). Independence and dispersal of young typically occurs at
2499 14 months, but may occur as early as 9 months (Maehr et al. 2002).
2500

2501 Adult females and their kittens interact more frequently than any other group of panthers.
2502 Interactions between adult male and female panthers last from 1 to 7 days and usually result in
2503 pregnancy (Maehr et al. 1991). Aggressive interactions between males often result in serious
2504 injury or death. Independent subadult males have been known to associate with each other for
2505 several days and these interactions do not appear to be aggressive in nature. Based on radio-
2506 collared panthers, aggression between males is the most common cause of male mortality (FWC
2507 2014) and an important determinant of male spatial and recruitment patterns (Maehr et al. 1991;
2508 Shindle et al. 2003).
2509

2510 Dispersal is the movement an animal makes from its birthplace to where it reproduces or would
2511 have reproduced if it had survived (Howard 1960). Dispersal is an important driver of Florida

2512 panther range expansion into otherwise suitable, but presently unoccupied habitats in its former
2513 range and gene flow within the range. It is an important mechanism by which recovery of the
2514 species can be achieved through natural population growth over time. Panther dispersal begins
2515 after a juvenile becomes independent from its mother and continues until it establishes a home
2516 range. Dispersal distances are greater for males than females (Maehr et al. 2002). The
2517 maximum dispersal distance recorded for a young male was 500 miles (805 km; FWC 2009).
2518 Maehr et al. (2002) found males disperse an average distance of 42.5 miles (68.4 km) and
2519 females typically remain in or disperse short distances from their natal ranges. Female dispersers
2520 establish home ranges less than one average home range width from their natal range (Maehr et
2521 al. 2002a). Maehr et al. (2002a) reported all female dispersers (n = 9) were successful at
2522 establishing a home range whereas only 63 percent of males (n = 18) were successful.
2523 Dispersing males usually go through a period as transient (non-resident) subadults, moving
2524 through the fringes of the resident population and often occupying suboptimal habitat until an
2525 established range becomes vacant (Maehr 1997).

2526
2527 Female use areas smaller areas and males compete for access to as many females as possible by
2528 establishing home ranges that intersect with those of numerous females. Subordinate males are
2529 excluded from breeding in natal areas so dispersal may help increase their mating probability
2530 (Greenwood 1980). A large proportion of males can be denied access to females and it is this
2531 competition that leads to male dispersal. Because of competition for home ranges and exclusion
2532 from mating in natal ranges young male panthers often use unfavorable habitats, such as highly
2533 urbanized areas. As the panther population has grown since 1995 more panthers have appeared
2534 in such areas (Interagency Florida Panther Response Team 2014, Interagency Florida Panther
2535 Response Team 2015).

2536
2537 Panther dispersal is constrained geographically by human activities, fragmented habitat, and the
2538 fact that the population exists on a peninsula. Major urban areas are found on both the Atlantic
2539 and Gulf coasts restricting the current breeding population of panthers to the southern interior of
2540 the peninsula. Additionally, it is likely that the small size of the panther population in early
2541 years of the recovery effort, combined with the philopatric behavior of females slowed range
2542 expansion into unoccupied suitable habitat. As the panther population increased in size
2543 following genetic introgression in 1995, females were increasingly found further from the core
2544 population. By 2000, female panthers were present and breeding on Okaloacoochee Slough State
2545 Forest (OSSF) (FWC 2001). In 2012, a female was documented with kittens just south of the
2546 Caloosahatchee River, about 15 km north of OSSF (FWC unpublished data). It took about 20
2547 years for dispersing females to repopulate areas 40 km north of core population, and over 40
2548 years for female panthers to expand to areas north of the Caloosahatchee River, approximately
2549 60 km north of the core population.

2550
2551 During dispersal and other reasons for movement, Florida panthers exhibit three states of
2552 movement based on an analysis of 10 males and 3 females monitored with GPS-telemetry
2553 between 2005 and 2012: 1) resting 2) moderately active; and 3) traveling (van de Kerk et al.
2554 2015). Resting is characterized by very short step lengths (i.e., distance between subsequent
2555 hourly GPS locations) and near-uniform turning angles. Panthers of both sexes spend the
2556 majority of the day resting. Moderately active movement is characterized by long step lengths
2557 but more variable turning angles. Moderately active movement usually occurs during intrapatch

2558 movements or when searching for prey. This, movement tends to be slower and lacks
2559 directionality. Traveling is characterized by long step lengths and a near-straight-line movement
2560 pattern, indicating persistent directional movement. Traveling generally takes place while
2561 individuals move between habitat patches and patrol home ranges or territories (van de Kerk et
2562 al. 2015).

2563
2564 Male Florida panthers have longer daily movement distances than females (van de Kerk et al.
2565 2015, Criffield et al. 2018). Movement patterns of panthers are generally constrained within
2566 home ranges except when dispersing (van de Kerk et al. 2015). Young, dispersing males have
2567 longer average step lengths than resident males, possibly because dispersers must traverse longer
2568 distances in the search for available territories. Telemetry data indicate that panthers typically do
2569 not return to the same resting site day after day, except for females with dens or panthers
2570 remaining near kill sites for several days (USFWS 2008).

2571
2572 Activity levels for Florida panthers are greatest at night with peaks around sunrise and after
2573 sunset (Maehr et al. 1990b, USFWS 2008, Onorato et al. 2011, Criffield et al. 2018). Panthers
2574 primarily rest during the day and travel during the night (van de Kerk et al. 2015). The presence
2575 of physical evidence such as tracks, scats, and urine markers, confirms panthers move
2576 extensively within home ranges, visiting all parts of the range regularly while hunting, breeding,
2577 and other activities (Maehr 1997; Comiskey et al. 2002). Males travel widely throughout their
2578 home ranges to maintain exclusive breeding rights to females. Females without kittens also
2579 move extensively within their ranges (Maehr 1997). Panthers can move large distances in short
2580 periods of time. Nightly panther movements of 12 mi (20 km) are not uncommon (Maehr et al.
2581 1990a).

2582
2583 During movement panthers select forested habitats either within their home range or within a
2584 study area (Belden et al. 1988, Cox et al. 2006, Kautz et al. 2006, Land et al. 2008, Onorato et al.
2585 2011), especially during the day. At night panthers prefer to move along the forest edges, which
2586 they use as stalking cover to ambush white-tailed deer or feral hogs feeding in open areas. Once
2587 locating prey panthers often move into open areas to make the kill, and then drag the prey into
2588 forest cover to feed (Onorato et al. 2011). Panther movement into and use of open habitats is
2589 greater during nighttime than during daytime (Onorato et al. 2011).

2590
2591 Seasonal rainfall patterns have a strong influence of Florida panther movements (Criffield et al.
2592 2018). South Florida is characterized by a tropical climate, a topographically flat landscape that
2593 includes permanent and ephemeral wetlands, and abundant rainfall during the hotter summer
2594 months (May–October) followed by relatively dry cooler winters (October–May). Both sexes
2595 travel faster and farther during the dry season than the wet season (van de Kerk et al. 2015,
2596 Criffield et al. 2018). Males cover approximately 26 percent of their home range each week in
2597 the winter dry season compared to approximately 11 percent of their home range in the summer
2598 wet season. Females cover approximately 12 percent of their home range in the dry season
2599 compared to 4 percent in the wet season.

2600
2601 Movements of females are dictated by their reproductive chronology and are influenced by the
2602 presence of young (Criffeld et al. 2018). Pregnant females establish a den within their home
2603 range just prior to giving birth. When caring for kittens, this female spent 22 percent more time
2604 in resting mode than when she was without kittens. Florida panther kittens generally stay in their
2605 natal dens for the first 8 weeks of their lives, during which time movements of their mothers are
2606 restricted to areas close to the den. Kittens older than about 8 weeks can follow their mothers,
2607 but their limited mobility may constrain movement speed of their mothers, leading to shorter
2608 average step lengths. Movements become progressively longer until young disperse at
2609 approximately 14 months-of-age (Maehr et al. 2002b). Following dispersal of the young,
2610 females typically have a short period of less-constrained movement until they mate again and the
2611 cycle repeats (Criffeld et al. 2018). Adult males often have been observed in close proximity to
2612 females within 2 weeks of the dispersal of juveniles (Maehr et al. 2002b).
2613
2614 Panthers are unique among *Puma concolor* in that they will readily consume a wider variety of
2615 prey, and greater abundance of prey of low individual weight relative to other populations of
2616 *Puma concolor* studied in western North America, Central America, and South America (Iriarte
2617 et al. 1990). Maehr et al. (1990b) found prey consumed by panthers and their proportion of
2618 occurrence in panther diets were: feral hog (*Sus scrofa*), 42 percent; white-tailed deer
2619 (*Odocoileus virginianus*), 28 percent; raccoon (*Procyon lotor*), 12 percent; nine-banded
2620 armadillos (*Dasypus novemcinctus*), 8 percent; marsh rabbit (*Sylvilagus palustris*); 4 percent; and
2621 domestic livestock (*Bos taurus taurus* and *Equus ferus caballus*), 2 percent. The remaining 4
2622 percent of prey detected by Maehr et al. (1990b) included: cotton rat (*Sigmodon hispidus*);
2623 panther; opossum (*Didelphis virginianus*); rice rat (*Oryzomys palustris*); black bear (*Ursus
2624 americana*); an unknown Mustelidae (likely a river otter, *Lontra canadensis*); an unknown bird;
2625 an alligator (*Alligator mississippiensis*); an unknown lizard; and an unknown mammal.
2626
2627 Maehr et al. (1990b) also found panthers varied their diet from one area to another. For instance,
2628 north of 26°11' N latitude, (coinciding with I-75 and a steep transition in soil hydrology and
2629 chemistry), 85.7 percent of prey occurrence in panther diets was white-tailed deer and feral hog.
2630 South of I-75, these only made up 66.1 percent of prey consumed by panthers. Panthers also
2631 consumed more raccoons in the north than the south (19 percent versus 3 percent, respectively).
2632 Caudill et al. (2019) found the proportion of wild hog and white-tailed deer was equal north and
2633 south of the interstate (45.6 percent and 40.5 percent, respectively) but the relative abundance of
2634 each was inverse, with panthers consuming more wild hog in the north and more white-tailed
2635 deer in the south. In the Everglades, Dalrymple and Bass (1996) found 61.1 percent of prey
2636 consumed by panthers were white-tailed deer and feral hog, 11.1 percent were American
2637 alligator, and 16.7 percent were raccoons. The remainder in all cases included armadillo, rabbit,
2638 rodents, livestock, and other predators like bobcats, black bears, other panthers, and coyotes in
2639 trace amounts. All livestock consumed were north of I-75 (Table 5-1).
2640
2641 Panthers also change their food habits over time. Analyzing stomach content, scat, and feces
2642 samples collected from 1989 to 2014 across the range of the species, Caudill et al. (2019) found
2643 raccoon occurrence in panther diets increased after 1995, while wild hog occurrence decreased,
2644 and white-tailed deer occurrence appeared constant. Caudill et al. (2019) also found that food
2645 habits varied by region, and these too had changed over time. After genetic restoration (1996–

2646 2014) panthers generally north of I-75/Alligator Alley consumed more wild hog, while those
2647 south of this boundary consumed more white-tailed deer (Table 5-1).

2648

2649 Little information on the feeding frequency of the panther is available. However, the feeding
2650 frequency of the western *Puma concolor* is likely similar to the feeding frequency of the Florida
2651 panther. Ackerman et al. (1986) reported a resident adult male puma generally consumes one
2652 deer-sized prey every 8 to 11 days. Moreover, a resident female puma will consume one deer-
2653 sized prey item every 14 to 17 days, and one deer-sized prey item every 3.3 days for a female
2654 with three 13-month-old kittens. A comparison of the results obtained by Maehr et al. (1990b)
2655 and Caudill et al. (2019) finds overall biomass consumed by panthers has declined across their
2656 range as population size increased (Table 5-2).

2657

2658 Panthers can live up to 20 years in the wild, but the mean age at death for panthers radio-collared
2659 at ≥ 1 year-of-age are 7.7 years and 5.5 years for females ($n = 68$) and males ($n = 91$),
2660 respectively (FWC unpublished data). Survival rates are higher for females than for males with
2661 subadult females exhibiting the highest annual survival (Benson et al. 2009). These estimates
2662 follow the same pattern as other *Puma* studies with average annual female and male survival
2663 rates of 0.798 and 0.691, respectfully (female range: 0.586 – 0.86; male range: 0.33 – 0.91),
2664 across 8 different studies (Logan and Sweanor 2010, Lambert et al. 2006, Laundré et al. 2007,
2665 Clark et al. 2014, Robinson et al. 2014, Vickers et al. 2015).

2666

2667 5.1.3 Habitat

2668

2669 Our Florida Panther Recovery Plan and Species Status Assessment for the Florida Panther
2670 provide a description of Panther habitat characteristics, from which we summarize information
2671 that is relevant to this consultation here. Radio-collar data and ground tracking indicate that
2672 panthers use the mosaic of habitats available to them as resting and denning sites, hunting
2673 grounds, and travel routes. The majority of telemetry locations and natal den sites occur within,
2674 or very close to, forested cover types. These include cypress swamp, pinelands, hardwood
2675 swamp, and upland hardwood forests (Belden 1986; Belden et al. 1988; Maehr 1990c; Maehr et
2676 al. 1991; Maehr 1992; Smith and Bass 1994; Kerkhoff et al. 2000; Comiskey et al. 2002, Cox et
2677 al. 2006, Kautz et al. 2006, Land et al. 2008; Benson et al. 2008). Analysis of Global Positioning
2678 System (GPS) tracking data likewise finds panthers ($n = 12$) primarily forested habitat types,
2679 then all other habitat types in proportion to availability (Land et al. 2008). Onorato et al. (2010)
2680 provided further analysis of this data set and found panthers selected upland forest, wetland
2681 forest, marsh-shrub-swamp, and prairie-grassland habitats, and use agriculture and “other”
2682 habitat types relative to their availability and their proximity to a forest patch. Our own analysis
2683 of all records (Radio telemetry, GPS tracking, locations of panther-vehicle collisions, locations
2684 of confirmed depredation events, confirmed den locations, and confirmed observations) found
2685 95.7 percent of all panther records occur within a forest habitat type or within another habitat
2686 type within 984 ft (300 m) of forest cover.

2687

2688 Kautz et al. (2006) found forest structure is also important to panthers. Specifically, panthers
2689 prefer smaller forest patches in their home ranges (*i.e.*, 9 to 26 ac [3.6 to 10.4 ha]). This is likely
2690 because small forest patches have a higher edge-to-area ratio, making them most suitable for
2691 panthers stalking and ambushing prey (Belden et al. 1988; Cox et al. 2006, Frakes et al. 2015).

2692 Panthers mostly use those with dense understory vegetation comprised of saw palmetto for
2693 resting and denning (Maehr 1990a; Benson et al. 2008). On a landscape scale Frakes et al. (2015)
2694 found low human population density, high abundance of forest edge, low dry season water depth,
2695 and low wet season water depth also strongly predict panther presence.

2696
2697 Based on their South Florida Random Forest Panther (RFP) model, Frakes et al. (2015) estimated
2698 5,579 km² of habitat remain available to panthers south of the Caloosahatchee River. However, a
2699 shortcoming of the RFP model (Frakes et al. 2015) is that it did not use the full record of panther
2700 occurrence and instead relied exclusively on telemetry data to construct their model. To address
2701 this shortcoming the Service and FWC include additional GPS and telemetry data, vehicle
2702 mortality locations, depredation locations, and confirmed sightings in conjunction with the RFP
2703 modeling technique to delineate a more inclusive area of occupancy. The Service defines these
2704 two areas as Zones A and B (Figure 5-1). Zone A covers 6,103 km² and is largely coincident
2705 with the areas of suitable habitat identified by the South Florida RFP model (Frakes et al. 2015)
2706 with a probability of presence ≥ 0.30 and an average 0.667 probability of presence [on a scale of
2707 0 (low) to 1 (high)]. Approximately 4,357 km² (71 percent) of Zone A is within existing
2708 conservation lands. Zone A is known to support breeding female panthers and encompasses
2709 much of the original Primary Zone based on Kautz et al. (2006). Zone B, which covers 2,991
2710 km², is comprised of generally lower quality habitat that nevertheless provides connectivity
2711 between habitats in Zone A. This zone is used by dispersing panthers, and occasionally supports
2712 breeding females, but with substantially less frequency than Zone A. Zone B consists of panther
2713 habitat with a probability of presence ranging from 0.1 to 0.29 and an average 0.158 probability
2714 of presence. Approximately 1,339 km² (45 percent) of Zone B is within existing conservation
2715 lands. Zone B encompasses much of the original Secondary Zone based on Kautz et al. (2006).
2716 The combined area of Zones A and B is defined by the Service as the “Functional Zone,” and its
2717 extent encompasses approximately 9,094 km² (USFWS Draft 2020). These zones comprise areas
2718 of suitable habitat identified by the South Florida RFP model (Frakes et al. 2015) and additional
2719 areas of habitat known to support panthers based on existing occurrence data. In all,
2720 approximately 5,696 km² (63 percent) of the Functional Zone is protected by existing
2721 conservation lands and this Functional Zone remains the only area known to support a population
2722 of panthers (Frakes and Knight in preparation; Hostetler et al. 2013; Frakes et al. 2015; van de
2723 Kerk et al. 2019, USFWS Draft 2020).

2724
2725 **5.1.4 Travel and Dispersal Corridors**
2726

2727 As discussed in 5.1.2. panther dispersal is constrained geographically by human activities,
2728 fragmented habitat, and the fact that the population exists on a peninsula. Maintaining a
2729 permeable, connected landscape for panthers requires dispersal corridors that meet their needs
2730 and is essential for the conservation of panthers. In the absence of direct field
2731 observations/measurements, Harrison (1992) suggested landscape corridors for wide-ranging
2732 predators should be half the width of an average home range size. Following Harrison’s (1992)
2733 suggestion, corridor widths for panthers would range from 6.1 to 10.9 mi (9.8 to 17.6 km)
2734 depending on whether the target animal was an adult female or a transient male. Beier (1995)
2735 suggested that corridor widths for transient male puma in California could be as small as 30
2736 percent of the average home range size of an adult panther; however, topography in California is
2737 dramatically different from that in Florida. Without supporting empirical evidence, Noss (1992)

2738 suggests regional corridors connecting larger hubs of habitat should be at least 1.0 mi (1.6 km)
2739 wide. Beier (1993,1995) makes specific recommendations for very narrow minimum corridor
2740 widths based on short corridor lengths in a California setting of wild lands completely
2741 surrounded by urban areas; he recommended corridors with a length less than 0.5 mi (0.8 km)
2742 should be more than 328 ft (100 m) wide, and corridors extending 0.6 to 4 mi (1 to 7 km) should
2743 be more than 1,312 ft (400 m) wide.

2744
2745 An earlier effort to map areas of South Florida important for panther habitat conservation
2746 resulted in three distinct regions of panther habitat (Kautz et al. 2006): Primary Zone, Secondary
2747 Zone, and Dispersal Zone. The Dispersal Zone was defined as a small wildlife corridor east of
2748 LaBelle, Florida, intended for protection to facilitate long-term movements of panthers out of
2749 South Florida and into potentially suitable habitats in Central Florida north of the
2750 Caloosahatchee River. The Dispersal Zone encompasses 44 mi² (113 km²) with a mean width of
2751 3.4 mi (5.4 km) (Figure 5-2). Although it is not large enough to encompass an entire panther
2752 home range, the Dispersal Zone is strategically located and expected to function as an important
2753 landscape linkage to south-central Florida (Kautz et al. 2006). Panthers currently use this zone
2754 as they disperse northward into south-central Florida. Part of at least one female panther home
2755 range has been documented inside the dispersal zone, and female panthers recently documented
2756 north of the Caloosahatchee River are presumed to have used the Dispersal Zone in their
2757 northward expansion.

2758
2759 **5.1.5 Numbers, Reproduction, and Distribution**
2760

2761 Historically occurring throughout the southeastern United States (Young and Goldman 1946),
2762 today the panther is restricted to less than 5 percent of its historical range. Currently, the only
2763 breeding population is south of the Caloosahatchee River in south Florida. Female panthers have
2764 been documented in eight Florida counties since 1973 (USFWS 2020). From 1980 through
2765 October 2016, all occurrence data indicated that female panthers were present only south of the
2766 Caloosahatchee River and most reproduction occurred in Collier, Hendry, Lee, and Miami-Dade
2767 counties (USFWS 2020). In November 2016, an adult female panther was documented on the
2768 Babcock Ranch Preserve in Charlotte County (FWC 2017), the first time since 1973 that a
2769 female panther has been confirmed north of the Caloosahatchee River
2770 (USFWS 2020). A minimum of three adult female panthers and at least four litters of kittens
2771 have been documented north of the Caloosahatchee River between November 2016 and June
2772 2020 (Kelly and Onorato 2020, USFWS 2020). As of June 2020, there is no evidence that
2773 successful recruitment, i.e., offspring born and surviving to enter the breeding population as
2774 adults, has occurred north of the Caloosahatchee River (Kelly and Onorato 2020), and until that
2775 evidence is documented, we do not conclude that the breeding range of Florida panthers has
2776 expanded beyond South Florida (USFWS 2020).

2777 Since its listing the panther population has increased from an estimated 12-20 adults in the early
2778 1970s to an estimated 120-230 adults in 2015 (Figure 5-3; FWC and Service 2017, USFWS
2779 Draft 2020). The lower bound is based on the number of adults and subadults documented
2780 during the most recent annual minimum count (2015). The upper bound of 230 is calculated
2781 using annual count data from core (very good) panther habitat to derive a density of panthers for
2782 that area. The density value is then multiplied by the total number of acres of habitat in the
2783

2784 primary zone as identified by Kautz et al. (2006) to come up with an upper range of 230.
2785 Because this method does not account for sampling effort, imperfect detection of animals, or
2786 provide a margin of error, it can't be categorized as a scientific population estimate. Even with
2787 these shortcomings, this methodology has provided agencies with a reliable means of monitoring
2788 the population with the best data currently available (FWC and Service 2017).

2789
2790 Estimating the number of panthers on local scales often requires the use of density estimates in
2791 available habitat. Most estimates of puma density in western North America have been in the
2792 range of 0.3 to 3.6 individuals per 100 km² (Pierce and Bleich 2003, Quigley and Hornocker
2793 2010). However, recent studies employing new methodologies have reported puma densities in
2794 the range of 3.7 to 6.7 individuals per 100 km² in areas of northeast Oregon and the Rocky
2795 Mountains in western Montana, and estimates as high as 7.1 and 7.3/100 km² have been reported
2796 for Vancouver Island and Texas, respectively (Pierce and Bleich 2003, Quigley and Hornocker
2797 2010, Russell et al. 2012, Davidson et al. 2014).

2798
2799 Maehr et al. (1991) provided the earliest estimate of panther population density at 0.91/100 km²
2800 at a time when the number of panthers was thought to be 30–50 animals. This estimate was
2801 based on counting marked (radiocollared) and unmarked panthers in a given area. This
2802 technique has been described as the “gold standard” for estimating puma density even though it
2803 lacks a measure of variance and is in fact, nothing more than a simple count (Cougar
2804 Management Working Group 2005). Twenty years later, and following genetic restoration, new
2805 techniques have been developed that utilize a CMR framework on data collected from camera
2806 trap grids. These spatial mark-resight (SMR) models account for detection probabilities and
2807 effort, and provide measures of uncertainty associated with estimates. Sollmann et al. (2013)
2808 used an SMR model to estimate panther density in the Picayune Strand Restoration Project area
2809 at 1.5/100 km². Similar SMR models were later applied to data generated from camera trap grids
2810 on three 225-km² study areas that included public and private land in South Florida (Dorazio and
2811 Onorato 2018, Onorato et al. 2020). Panther density in the Addition Lands of Big Cypress
2812 National Preserve (BCNP) was estimated at 1.37/100 km² in 2014. Panther density in a study
2813 area that included FPNWR and adjoining areas of Picayune Strand State Forest (PSSF) and
2814 Fakahatchee Strand Preserve State Park (FSPSP) was estimated 4.03/100 km² in 2014. Panther
2815 density in the Immokalee Ranch (IMR) study area was estimated at 3.90/100 km² over a 14-
2816 month study period in 2017–2018. IMR encompassed privately-owned land in Collier and
2817 Hendry counties that included a mosaic of native cover and active agricultural land uses (e.g.,
2818 improved and semi-improved pastures for cow-calf operation and a variety of row crops). These
2819 results suggest that the increasing size of the panther population post-introgression has resulted
2820 in higher densities in the range of 1.37–4.03/100 km² in occupied habitats on public and private
2821 lands in South Florida. However, densities in other areas within the range of panthers have not
2822 been studied.

2823 2824 **5.1.6 Conservation Needs and Threats**

2825
2826 There are a variety of threats that have long been identified as affecting the viability of the
2827 panther population. The most substantial threats include habitat loss, fragmentation, and
2828 degradation from development and climate change; and mortality from vehicle collisions. Other
2829 stressors include illegal shootings; exposure to infectious disease; exposure to contaminants; and
2830 small population size, but the effects of these stressors to the population are not well documented
2831 (Harris 1984, Maehr 1992, 2008, Onorato et al. 2010, van de Kerk et al. 2019, FWC 2017,
2832 USFWS Draft 2020). In addition, the most recent population viability analysis (PVA) performed
2833 by van de Kerk et al. (2019) found that maintaining the genetic health of the panther population
2834 is important to long term viability.

2835
2836 Conservation needs that address the most substantial threats listed above include the following:
2837
2838 Conserving, restoring, and managing lands that are capable of maintaining and expanding
2839 panther population(s) throughout Florida (Federal, State, Local, and other). Land conservation
2840 measures include public acquisition of conservation lands and conservation easements,
2841 establishment of panther conservation banks, protection of panther habitats by wetlands
2842 mitigation banks, NRCS purchase of easements to protect wetlands, and management efforts of
2843 Native American tribes. As mentioned in section 5.1.3., 63 percent (5,696 km²) of the panther
2844 Functional Zone is in conservation. Management actions that affect panthers include prescribed
2845 fire, exotic plant removal, population monitoring, hydrologic restoration, vegetation plantings,
2846 silvicultural operations, public outreach and education, recreation management, and maintenance
2847 of utility corridors.
2848
2849 Maintenance of wildlife linkages that allow for a permeable landscape and that connect
2850 conservation lands that can support panthers. The maintenance of wildlife linkages is a major
2851 consideration in determining where to seek land acquisition, conservation easements, and to use
2852 other methods to secure conservation lands. The Dispersal Zone (section 5.1.3) is an important
2853 wildlife linkage for the panther because it provides access to areas where the panther population
2854 could expand north of the Caloosahatchee River. Other important linkages in southwest Florida
2855 (e.g., Camp Keais Strand and Okaloacoochee Slough) maintain connectivity between areas of
2856 protected panther habitat. Wildlife underpasses with fencing have become an important tool to
2857 help offset projected increases in panther mortalities resulting from increases in traffic within
2858 panther habitat. Based on demonstrated use of wildlife crossings by panthers and prey, over 60
2859 crossings and enhancements to existing bridges have been completed in other locations where
2860 panther vehicle mortalities have been frequent (USFWS Draft 2020). When wildlife underpasses
2861 are used to minimize effects of a development project, they also reduce effects of other sources
2862 of traffic using the same road.
2863
2864 The most recent population viability analysis (PVA) performed by van de Kerk et al. (2019)
2865 found that models which didn't include information about inbreeding effects on the population
2866 indicated the probability of extinction at 100 years was approximately 1.4 percent. However,
2867 when they included information about the genetic health of the population, they found extinction
2868 probabilities within 100 years ranged between 13 and 17 percent, but that genetic augmentation
2869 of the population at 10 year intervals reduced this range of possible extinction to between 6 and
2870 10 percent. Thus, in addition to land-based conservation needs, the genetic health of the
2871 population must be maintained in order to maximize the likelihood of its persistence.
2872
2873 **5.1.6.1 Habitat Loss**
2874
2875 Authors of scientific literature often use the terms habitat loss and habitat degradation
2876 interchangeably (Lindenmayer and Fischer 2006). However, habitat loss and habitat degradation
2877 are not the same. Habitat loss is the complete loss of suitable habitat for a given species, or the
2878 functional loss of otherwise suitable habitat through the loss of the species' access to it. In the
2879 former case, humans can cause habitat loss by converting suitable habitat to human use, while in
2880 the latter case habitat loss occurs when barriers close off a remnant of access to otherwise

2881 suitable habitat during the process of fragmentation (SECTION 5.1.6.2). Habitat degradation, on
2882 the other hand, refers to the qualitative reduction of habitat services for a species that continues
2883 to have access to it, though it is possible to degrade habitat to such an extent it is effectively lost
2884 to the species (SECTION 5.1.6.3).

2885
2886 Habitat loss has been identified as a key factor affecting the long-term viability of the panther
2887 population (Maehr 1992, USFWS 2008, Onorato et al. 2010, van de Kerk et al. 2019). Survey
2888 data of land use/land cover in Florida have been available since 1936 when the U.S. Forest
2889 Service completed their first forest inventory for Florida (Kautz 1998). More detailed statewide
2890 vegetation data derived from satellite imagery have been collected since the late 1980s through
2891 as recent as 2015 (Kautz et al. 1994, Kautz et al. 2007, FWC 2016). These data have been used
2892 for the draft Florida Panther SSA (USFWS Draft 2020) to estimate historical loss of panther
2893 habitat in Florida during three time periods: 1936–1987; 1987–2003; and 2003–2015.
2894

2895 Forest cover has been demonstrated repeatedly as a key component of landscapes used by
2896 panthers in Florida (Belden et al. 1988, Maehr and Cox 1995, Comiskey et al. 2002, Cox et al.
2897 2006, Kautz et al. 2006, Land et al. 2008, Onorato et al. 2011). Using forest cover as an index to
2898 panther habitats, Kautz (1998) reported that 17,677 km² of Florida forests were converted to
2899 agricultural or urban uses between 1936 and 1987, which was a total loss of 20.8 percent and a
2900 rate of loss of 0.41 percent per year. During the same period, forests declined by 3966 km² (33
2901 percent) in 10 South Florida counties, a rate of loss of 0.65 percent per year (Kautz 1994). Kautz
2902 et al. (2007) reported the results of a change detection analysis that compared land use/land cover
2903 in Florida between 1987 and 2003 and found a total of 367 km² of natural habitats in the Primary
2904 Zone (4.4 percent of the Primary Zone) was converted to other uses at a rate of loss of 0.28
2905 percent per year. Lastly, Dr. Robert Kawula (FWC, unpublished data) completed a change
2906 detection analysis of South Florida habitats by comparing 2003 land cover data (Kautz et al.
2907 2007) with a land cover database from 2015 (FWC 2016) and found a total of 144 km² of natural
2908 and semi-natural habitats in the Primary Zone (1.56 percent of the Primary Zone) was converted
2909 to other uses between 2003 and 2015, a rate of loss of 0.13 percent per year.
2910

2911 Between 1987 and 2003 just over half of the conversions of natural areas in the Primary Zone
2912 (55–57 percent) were to agricultural uses. Between 2003 and 2015, 41–42 percent of natural and
2913 semi-natural panther habitats lost were to urban development, while 25–27 percent were lost to
2914 conversions to agricultural use. Whether lands converted to agricultural use constitute a loss or
2915 degradation of habitat for panthers is a function of the proximity of agricultural lands to forest
2916 edges. Specifically, Land et al. (2008) and Onorato et al. (2010) found that panthers will use
2917 agricultural lands within 300 m of a forest edge in proportion to their availability, but avoid
2918 agricultural lands farther than 300 m from a forest edge.
2919

2920 Panthers can also temporarily lose the use of otherwise suitable habitat because of temporary or
2921 periodic events that prevent panthers from accessing them, such as might occur during high
2922 water events in the South Florida rainy season or because of periods of temporary human
2923 disturbance (Janis and Clark 2002, Swenor et al. 2008, McCarthy and Fletcher 2015, Criffield et
2924 al. 2018, McCarthy and Fletcher 2015, Abernathy et al. 2019). Additionally, panthers may
2925 permanently lose use of otherwise suitable habitat when human presence and activity near them
2926 become permanent, because panthers tend to avoid areas of sustained, high density human

2927 activity and may face high risk of mortality if they don't (Frake et al. 2015, Moss et al. 2016b,
2928 Blecha et al. 2018).

2929
2930 Loss of habitat that supports prey important to panthers is also problematic because prey
2931 abundance, distribution, and behavior dictates these same attributes among populations of *Puma*
2932 *concolor* everywhere they occur (Smith and Bass 1994, Dalrymple and Bass 1996, Riley and
2933 Lalecki 2001, Grigione et al. 2002, Laundre et al. 2007, Laundre et al. 2009). Loss of habitat
2934 supporting prey can have secondary effects that may intensify intraspecific competition
2935 (competition within a species); intensify interspecific competition (competition between species)
2936 (Murphy et al. 1995, Allen et al. 2013, Elbroch and Wittmer 2013, Allen 2014, Elbroch et al.
2937 2015); increase rates of depredation; and increase instances of prey switching (Moss et al. 2016a
2938 & b, Robins et al. 2019). Depredation and the consumption of lesser-preferred prey by panthers
2939 have become more prevalent as the population has grown (Tables 5-1 & 5-2, Caudill et al. 2019).
2940

2941 These secondary effects of habitat loss may increase the likelihood of mortality among
2942 individual panthers from all causes, such as interspecific aggression, predation from bears or
2943 coyotes, disease, bioaccumulation of toxins, illegal shootings, vehicle collision, and management
2944 removal (Vickers et al. 2015, Moss et al. 2016b, Blecha 2015, Blecha et al. 2018). We provide a
2945 more precise description of these effects to panthers in separate, appropriate sections of this
2946 chapter.

2947 2948 **5.1.6.2 Habitat Fragmentation**

2949
2950 Habitat fragmentation is defined as the subdivision of larger contiguous patches of habitat into
2951 smaller patches by the emergence of barriers that severely restrict or preclude the ability of
2952 individuals to access the habitat fragment (Lindenmayer and Fischer 2006). Such is the case
2953 with the panther, whose range has been systematically fragmented by a combination of road
2954 networks, residential development, and canals (USFWS Draft 2020). Roadways with high
2955 volumes of traffic create the principle barriers between these fragments. Charry and Jones (2009)
2956 found traffic volume of 100-500 trips/day began affecting all taxa, including large carnivorous
2957 mammals like *Puma concolor*, that impacts increased in severity up to 10,000 vehicles per day,
2958 and that at 10,000 or more vehicles/day, traffic levels often observed on interstates and multi-
2959 lane highways, created a near complete barrier to all taxa except for birds (Appendix C).
2960

2961 Schwab and Zandbergen (2011) found that when it comes to panthers, specifically, major roads
2962 present a stronger barrier to movement than minor roads, with females being significantly more
2963 reluctant to cross roads than males even when wildlife underpasses are present for them to use.
2964 Furthermore, Schwab and Zandbergen (2011) observed these roadways frequently serve as
2965 boundaries of female panther home ranges and their analysis of telemetry records indicated many
2966 of these individuals may spend a great deal of time near roadways without attempting to cross
2967 them. Schwab and Zandbergen (2011) concluded, "Road networks in south Florida have
2968 essentially segregated the movement of the sexes and have fragmented the limited remaining
2969 habitat of the Florida panther." Wildlife crossings produce relief from fragmentation caused by
2970 road networks, but this relief does not fully offset the barrier effect generated by these roadways.
2971 Smaller habitat patches, once isolated by fragmentation, may be too small to support an
2972 independent, viable population or subpopulation of individuals (Crooks 2002, Vickers et al.

2973 2015), and inbreeding depression and/or reduction in population viability could result (Ernest et
2974 al. 2003, Seth et al. 2014, Vickers et al. 2015, Benson et al. 2019).

2975 2976 **5.1.6.3 Habitat Degradation**

2977
2978 Habitat degradation is a process that makes habitat less suitable or less available to such an
2979 extent that a species breeding, feeding, or sheltering behavior is impaired (Lindenmayer and
2980 Fischer 2006). This means a species may still inhabit an area where habitat degradation occurs,
2981 but certain life history functions, such as reproduction, may no longer be as successful. Under the
2982 Endangered Species Act habitat degradation constitutes “Harm” whenever “significant habitat
2983 modification or degradation actually kills or injures wildlife by significantly impairing essential
2984 behavioral patterns including breeding, feeding or sheltering” (USFWS 1998).

2985 2986 Decline in Prey Availability

2987
2988 Degradation of habitat that supports populations of prey important to panthers is a threat to their
2989 survival and recovery because prey abundance, distribution, and behavior influences these same
2990 attributes among populations of *Puma concolor* (Smith and Bass 1994, Riley and Lalecki 2001,
2991 Riley and Lalecki 2001, Grigione et al. 2002, Laundre et al. 2007). One form of habitat
2992 degradation occurs in response to introductions of invasive species, their introduction into
2993 natural systems largely being a function of human presence on the landscape and trade between
2994 regions (Hulme 2008). For example, the presence of invasive species like the Burmese python
2995 can degrade the value of otherwise suitable habitat to panthers by preying on species important
2996 to panthers or by preying on panthers, directly (Dorcas et al. 2012, Wilson 2017, Caudill et al.
2997 2019). Conversely, the introduction of other invasive species have been beneficial for the
2998 Florida panther. In the 1500s European wild hogs were introduced near Big Cypress and wild
2999 pigs were well established by the 1900s (Belden and Frankenberger 1977). This alternative
3000 source of prey, along with the introduction of armadillos in 1924 (Taulman and Robbins 1996),
3001 may have allowed the panther population to persist during the period of general deer population
3002 decline that took place at this time.

3003
3004 **Current Prey Availability and Recent Declines:** In general, deer populations in South Florida
3005 are characterized by lower density and fecundity than in other areas of the state, primarily due to
3006 seasonal flooding, climatic stress, and the thin, nutrient poor soils that contribute to the low
3007 nutritional value of available forage and overall poor habitat quality (Harlow and Jones 1965,
3008 Fleming et al. 1994, Labisky et al. 1995, Garrison et al. 2011). Market, subsistence and trade
3009 hunting of deer pre-1900 were substantial in the area and similar to areas in eastern U.S. and
3010 throughout the southeast, likely contributed to the decline of prey and the imperilment of the
3011 panther population (Schortemeyer et al. 1991, Gill 2010). The white-tailed deer herd in Florida
3012 reached its lowest point near the end of the 1930s (FWC 2007). A white-tailed deer eradication
3013 program that began in Florida during the late 1930s to control the cattle-fever tick resulted in the
3014 extermination of 9478 deer between 1939 and 1943, including 8428 deer killed in Collier County
3015 (Davis 1943, Game and Fresh Water Fish Commission 1946, Alvarez 1993). The introduction of
3016 New World screwworm fly (*Cochliomyia hominivorax*) in 1933 also undoubtedly had an impact
3017 on deer populations in Florida. Concomitant with the reduced deer populations was a reported

3018 increase in panther livestock depredation and persecution of panthers in the region (Hamilton
3019 1941). The low point was followed with decades of harvest regulations and their enforcement,
3020 reduction of subsistence hunting, screwworm eradication in 1958, re-introduction of deer from
3021 other states, increased habitat availability and quality (due to logging and drainage program), and
3022 habitat protection through the creation of state wildlife management areas. And despite the
3023 substantial increase in human activity and development during this period, the deer herd
3024 flourished. Prey management was recognized as important, evident in the conservative hunting
3025 regulations (e.g., buck-only harvest) and land acquisition (e.g., purchase of the FPNWR).
3026

3027 Deer herds in the southeastern portions of the panther's occupied range have a history of extreme
3028 population fluctuations and have been subjected to severe, weather-related mortality events
3029 (Loveless 1959, Forrester 1992, Maehr and Lacy 2002). Although extreme water events are rare,
3030 the hydrological changes in the last decades in general have resulted in the increased depth and
3031 duration of hydroperiods. This change in hydrology, along with other landscape-level changes,
3032 has potentially impacted both deer and wild hog populations. Harvest and aerial monitoring data
3033 suggest both ungulate species have experienced population declines in portions of South Florida.
3034 For example, feral swine harvest on BNCP averaged 125.7 head/year during 1993–2003 and 2.4
3035 head/year during 2004–2015, with no harvest in recent years (FWC 2020a). Deer harvest has
3036 followed a similar declining trend in some management units, while elsewhere harvest appears to
3037 be stable or increasing.
3038

3039 The most drastic declines in the white-tailed deer populations have been observed in the southern
3040 portions of BCNP (south of U.S. Highway 41 [US 41]) since the early 2000s. Recent survey and
3041 harvest data indicate a near complete population crash in this region (FWC unpublished data).
3042 Further south in ENP, based on anecdotal evidence, deer and other mammals have declined since
3043 2000, or even earlier (Garrison et al. 2011). This drastic population decline in white-tailed deer
3044 has undoubtedly impacted the quality and suitability of habitat for panthers in this region. The
3045 causes for this decline are unknown, but analyses of hydrological data suggest that increasing
3046 water levels since 1995 have had a negative effect on the deer population (Garrison et al. 2011).
3047 However, the authors caution that the decline is likely due to a combination of factors that
3048 interact with high water levels, including predation, disease, and habitat degradation (Garrison et
3049 al. 2011). Extreme fluctuations in hydrological conditions caused by seasonal flooding, weather
3050 events (e.g., tropical storms), and manmade water impoundments, can increase stress and
3051 vulnerability to predation, diseases, malnutrition, and negatively influence reproduction,
3052 recruitment of fawns, and adult deer survival (Loveless 1959, Fleming et al. 1994, Labisky et al.
3053 1995, MacDonald-Beyers and Labisky 2005, Garrison et al. 2011).
3054

3055 The role that predation by panthers or other predators played in the severe deer declines in
3056 southeastern Florida is not fully understood as it is unlikely that a single predator-prey model
3057 accurately represents the predator-prey system in southeastern BCNP and ENP at all times (Gese
3058 and Knowlton 2001). This area has traditionally supported fluctuating deer and panther
3059 populations and it is likely that panther numbers "reflect the relative abundance and stability of
3060 local prey populations" (Maehr and Lacy 2002). Maehr and Lacy (2002) postulated that severe
3061 deer population nadirs in South Florida may prevent continuous occupation of a large carnivore

3062 population. The authors characterized the predator-prey system in South Florida as a stable-limit
3063 cycling model (Ballard et al. 2001) and further cautioned that the deer herd in southeastern
3064 Florida could be reduced or a herd increase neutralized by an artificial and rapid increase in a
3065 large predator population (Maehr and Lacy 2002). However, the recurrent fluctuations model
3066 (Gese and Knowlton 2001) may better approximate the relationship between panthers and deer in
3067 South Florida as the deer herd may never reach a state of equilibrium due to the interactive
3068 effects of a nutrient poor habitat, fire, seasonal flooding, and predation.
3069

3070 **Burmese Python Impacts on Prey Availability:** Burmese pythons (*Python bivittatus*), a non-
3071 native invasive apex predator from southeast Asia, are well-established in South Florida and
3072 have been associated with declining mammal populations due to predation and resource
3073 competition (Holbrook and Chesnes 2011, Dorcas et al. 2012, McCleery et al. 2015). Burmese
3074 pythons were likely first introduced in the southern portions of ENP prior to 1985 via releases or
3075 escapees from private ownership (Wilson et al. 2011). Pythons were encountered regularly in
3076 the region beginning in the mid-1990s; however, it was not until the early 2000s that they were
3077 first recognized as being established in ENP (Meshaka et al. 2000, Wilson et al. 2011). As of
3078 2018, breeding populations of Burmese pythons have been documented across South Florida,
3079 including areas within the occupied range of the Florida panther in ENP, BCNP, and areas within
3080 and surrounding Collier Seminole State Park, PSSF, and Rookery Bay National Estuarine
3081 Research Reserve.
3082

3083 Burmese pythons are habitat generalists and radio-tracked pythons in ENP used a mosaic of
3084 habitat types and exhibited frequent use of elevated tree islands within a freshwater wetland
3085 matrix (Hart et al. 2015). Pythons are large, ambush predators that can grow up to 20 feet in
3086 length and have few natural predators. Free-ranging Burmese pythons in Florida are generalist
3087 predators that consume a variety of prey species, including birds, mammals, reptiles, amphibians
3088 and fish (Snow et al. 2007, Rochford et al. 2010, Dove et al. 2011). Burmese pythons have been
3089 correlatively associated with severe declines of mammals in ENP, including marsh rabbit
3090 (*Sylvilagus palustris*), raccoon, and white-tailed deer (Holbrook and Chesnes 2011, Dorcas et al.
3091 2012). McCleery et al. (2015) empirically demonstrated that pythons caused reductions in marsh
3092 rabbit populations in ENP. All these species are prey for Florida panthers, and thus the presence
3093 of Burmese pythons may be having an adverse effect on the panther prey base.
3094 Python predation on white-tailed deer has been confirmed throughout the established breeding
3095 range of this invasive constrictor (Rochford et al. 2010, Boback et al. 2016, Bartoszek et al.
3096 2018). Although the extent of the impact of python predation on white-tailed deer population is
3097 unknown or speculative, some noteworthy python predation events on deer have been reported
3098 that illustrate the potential threat that pythons pose as a non-native competitor to panther prey
3099 resources in South Florida. These noteworthy events include a single adult python (4.32 m in
3100 length, 48.3 kg) consuming one adult deer and two fawns within a period of several months in
3101 ENP (Boback et al. 2016) and a comparatively smaller python (2.94 in length, 14.3 kg) in Collier
3102 County consuming a fawn (15.9 kg) that was 111.1 percent of the mass of the snake (Bartoszek
3103 et al. 2018). Burmese pythons represent a novel predatory threat to the native prey populations
3104 of the panther in South Florida, including white-tailed deer (Boback et al. 2016).

3105
3106 **Disease Impacts on Prey Availability:** White-tailed deer in Florida are at risk to infectious
3107 disease outbreaks that could reduce white-tailed deer populations and adversely affect the
3108 availability of panther prey. These diseases include bluetongue and epizootic hemorrhagic
3109 disease viruses (collectively referred to as hemorrhagic disease viruses), both considered to be
3110 the most important infectious diseases of white-tailed deer in Florida and the southeastern U.S.
3111 (Forrester 1992). White-tailed deer populations in Florida are also at risk from the New World
3112 screwworm (NWS) fly larvae. The negative effect of this infestation was demonstrated when
3113 NWS eradication efforts initiated in southeastern U.S. in 1958 resulted in dramatic increases in
3114 the white-tailed deer herds in South and Central Florida in the 1960s (Forrester 1992). A recent
3115 NWS infestation detected in the Lower Florida Keys in 2016 impacted the population of Florida
3116 Key deer (*O. v. clavium*) but was successfully managed and contained with no infestations
3117 detected in deer herds on the Florida peninsula (Lopez et al. 2016, Parker et al. 2017, Skoda et al.
3118 2018). The recent NWS infestation in the Florida Keys highlights the need for continued
3119 surveillance to detect future occurrences and for rapid response plans to contain and eradicate
3120 future infestations (Forrester 1992).
3121
3122 Of greater concern would be the introduction of chronic wasting disease (CWD) or heartwater
3123 disease—either of which could have long-term, negative impacts on deer populations. Chronic
3124 wasting disease is a transmissible spongiform encephalopathy of cervids that is slowly spreading
3125 across North America. Management efforts to contain or eradicate the disease in areas where it
3126 occurs have largely been ineffective, and in some regions the disease is negatively impacting
3127 deer densities. Although CWD has not yet been detected in Florida it has recently been found in
3128 TN and MS. Heartwater disease is caused by the bacteria *Ehrlichia ruminantium*. The bacteria is
3129 vectored by ticks, and in the southeastern United States, the Gulf Coast tick (*Amblyomma*
3130 *maculatum*) is a competent vector. Prevalence of infections is associated with proximity of deer
3131 to human development (Farnsworth et al. 2005).
3132
3133 **Land Management Impacts on Prey Availability:** Habitat management via prescribed fire is a
3134 critical conservation tool that has a positive influence on increased prey availability (Garrison
3135 and Gedir 2006). Large areas of the most important habitats occupied by panthers are on
3136 publicly owned conservation lands, including BCNP, FPNWR, FSPSP, PSSF, ENP, OSSF,
3137 Dinner Island Wildlife Management Area (WMA), Spirit of the Wild WMA, and others. How
3138 public lands are managed has the potential to affect panther habitat and prey populations via:
3139 prescribed fire, hydrologic alterations, levels of recreational uses, prevalence of invasive exotic
3140 plant communities, conversions from natural to plantation forests, and other activities. However,
3141 a prime goal in the management plans for most of these lands is to restore and maintain the areas
3142 in a natural state, which ultimately favors panther habitats and prey.
3143
3144 **Summary:** Habitat degradation affects panthers presently and is likely to continue in the absence
3145 of habitat restoration and management. Human degradation or alteration of habitats through
3146 logging and land clearing, oil and gas development, recreational use, or overhunting of prey
3147 species important to panthers degrade the value of habitat for panthers by decreasing the
3148 abundance of prey (Paviolo et al. 2009, Logan and Sweanor 2010). Additionally, the introduction

3149 of new urban and exurban can degrade the value of habitat by concentrating prey species away
3150 from areas of otherwise suitable habitat through supplemental feeding (Storm et al. 2007). Such
3151 concentration increases their exposure to diseases which can negatively impact the prey
3152 population well beyond the wildland/urban interface to the detriment of panthers (Edmunds et al.
3153 2016, Bradley and Altizer 2007). Urban and exurban development also typically cause a shift in
3154 prey availability, from larger prey to smaller prey, that can also diminish the value of otherwise
3155 suitable habitat in adjacent areas for panthers (Burdett et al. 2010, Moss et al. 2016a, Smith et al.
3156 2016). Lastly, prey populations may also decline through natural processes that permanently or
3157 temporarily make habitat less suitable for them. These include, but are not limited to: forest
3158 succession, forest dieback and pathology, seasonal flooding, and drought.
3159

3160 Human Activity
3161

3162 The absence of human development and activity is one of the strongest predictors of panther
3163 presence and abundance (Dickson and Beier 2002, Paviolo et al. 2009, Burdett et al. 2010,
3164 Frakes et al. 2015) because panthers tend to avoid human activity or face a high risk of mortality
3165 if they don't (Markovchick-Nicholls 2008, Sweanor et al. 2008, Sweanor and Logan 2010,
3166 Foster et al. 2010, Schwab and Zandbergen 2011, Morrison et al. 2014, Wilmers et al. 2015,
3167 Burdett et al. 2010, Moss et al. 2016a). At all phases of development (clearing, construction,
3168 use, and maintenance) human activities produce noise, dust, and smoke, and these can penetrate
3169 panther habitat by as much as 300 to 1,000 meters (Draft HCP 2019), depending on the source.
3170 Typically, the effect of human activity on panthers and other *Pumas* is initially behavioral in
3171 nature, with panthers avoiding areas of human activity or changing their predatory behavior in
3172 the presence of it (Blecha et al. 2015, Smith et al. 2015, Benson et al. 2016, Moss et al. 2016a,
3173 Moss et al. 2016b, Blecha et al. 2018). The extent and duration of their avoidance of areas of
3174 human activity is typically proportional to its duration, extent, and intensity. Specifically, short-
3175 term, localized, low intensity human disturbances usually result in similarly short-term,
3176 localized, habitat avoidance among panthers (Janis and Clark 2002, Sweanor et al. 2008,
3177 McCarthy and Fletcher 2015, Crieffield et al. 2018, Abernathy et al. 2019) whilst long-term,
3178 spatially expansive, high intensity human activities typically cause near permanent, functional,
3179 landscape-scale loss of otherwise suitable for panthers (Frakes et al. 2015, Wilmers et al. 2015,
3180 Blecha et al. 2018). Wherever the presence of human activity becomes permanent otherwise
3181 suitable habitat for panthers can be regarded as degraded because their use is limited by the
3182 behavioral response of panthers to noise and other manifestations of human activity that lead to
3183 their avoidance.
3184

3185 Human presence on the landscape also indirectly degrades habitat by impairing habitat
3186 management activities beneficial to panthers or their prey by reversing habitat degradation via
3187 natural processes, discussed in the previous section (Section 5.1.6.3.). Specifically, the presence
3188 of residential and commercial development often makes it difficult for management agencies to
3189 use prescribed burning to manage habitat for the benefit of species like white-tailed deer and
3190 panther, or to allow natural fires to run their course without suppression. In the absence of
3191 smaller-scale, prescribed burning at fixed intervals of time or naturally occurring fires allowed to
3192 burn without suppression, the mosaic of forest cover, open-canopy forest, and patches of early
3193 succession rich in forbs optimal for the deer population would be lost through natural processes
3194 of forest succession (Dees et al. 2001, Main and Richardson 2002). Thus, the reduction of this

3195 form of human activity could constitute habitat degradation that is ultimately detrimental to
3196 panthers.

3197
3198 In less developed areas human activity can lead to locally high concentrations of panther prey
3199 and panthers that are also, ultimately, detrimental to both. Specifically, lands managed to
3200 maximize the abundance of species such as white-tailed deer, wild hog, wild turkey, and
3201 raccoons undoubtedly increase the availability of prey for panthers and this, in turn, increases
3202 ability of landscapes to sustain high densities of panthers (FWC unpublished data). Such is often
3203 the case on lands owned or leased for the purpose of hunting, where habitats are managed to
3204 benefit these species and supplemental feeding is provided to attract and sustain species desirable
3205 for hunting. Likewise, livestock operations where cow-calf operations or other livestock species
3206 amenable to panther depredation are present, such as goats or sheep, may attract and sustain a
3207 large number of panthers (Interagency Florida Panther Response Team, 2017). However, as
3208 mentioned in Section 5.1.6.6. supplemental feeding and other forms of resource provisioning can
3209 concentrate prey species in high densities typically not found in nature, and this may cause them
3210 to be more susceptible to the spread diseases that ultimately, negatively impacts their population
3211 (Bradley and Altizer 2007). Likewise, reliance of panthers on livestock for their needs increases
3212 the chances they may be subject to illegal shootings or management removal. Furthermore, the
3213 concentration of panthers near either human activity may bring panthers into closer proximity to
3214 one another, increasing the possibility for interspecific aggression or disease transmission
3215 between individuals. Where these risks are more often realized than the benefits associated with
3216 these activities, their net effect on the value of affected habitat could only be characterized as a
3217 form of degradation.

3218
3219 Environmental Contaminants

3220
3221 Environmental contaminants are chemicals that accidentally or deliberately enter the
3222 environment, often because of human activities. Environmental contaminants present a potential
3223 threat to panther health, reproduction and survivorship, and many have been detected in panthers
3224 (Facemire et al. 1995). Environmental contaminants detected in panthers include mercury, poly-
3225 chlorinated biphenols (PCB), organochlorides (OCs), and anticoagulant rodenticides (Jordan
3226 1990, Newman et al. 2004, Brandon 2011, Cunningham 2012). Though no panther deaths to date
3227 are attributed solely to contaminant exposure, it is likely contamination with one or more
3228 environmental toxins can and have caused subclinical health effects. The effects of
3229 environmental contaminants in panthers is an ongoing area of research and monitoring, and is
3230 required as the subtle long-term effects of contaminant exposure is often challenging to prove
3231 until population declines occur (World Health Organization and United Nations and
3232 Environment Programme 2013).

3233
3234 Panthers may have a higher risk of exposure to contaminants because they consume a wider
3235 variety of prey than is typical of *Puma concolor*, generally, (Iriarte et al. 1990) and this broader
3236 generalization of prey creates many pathways of exposure (Roelke et al. 1991). Furthermore,
3237 because panthers are apex predators, they are at higher risk of toxin bioaccumulation that leads to
3238 serious impairment of life functions, behavior, or death (Cleckner et al. 1998). Lastly, panther
3239 exposure to contaminants can vary by time and place (Cunningham 2012) because the
3240 availability of prey species varies in response to environmental and demographic stochasticity,

3241 seasonal weather cycles, rare major events, proximity of panthers to development, and human
3242 activity (Richter and Labisky 1985, Roelke et al. 1991, Fleming et al. 1994).

3243
3244 In 1993, the Service issued a programmatic biological opinion to the Environmental Protection
3245 Agency (EPA) finding common poisons used to kill rats, the anticoagulant rodenticides (AR)
3246 chlorophacinone, diphacinone, pival, and sodium cyanide, jeopardized the continued existence of
3247 panther and several other South Florida listed species (USFWS 1993). However, in 2012, Mark
3248 Cunningham (FWC) reported that the tissues of 20.6 percent (7 of 34) panthers tested post-
3249 mortem contained 2 ARs not addressed with respect to panthers in the 1993 BO: brodifacoum
3250 and bromadiolone. Though they were killed in vehicle collisions, the concentrations of these
3251 ARs in 2 of the affected panthers was comparable to concentrations measured in 4 *Puma*
3252 *concolor* killed by AR toxicosis in the Santa Monica Mountains National Recreation Area
3253 (SMMNRA; Riley pers com), and the concentration of these in Florida panthers appears to be
3254 increasing over time and in proximity to areas of human development (Appendix D).

3255
3256 **5.1.6.4 Motor Vehicle Mortality**

3257
3258 Vehicle collisions are a significant source of mortality for panthers (Figure 5-4). This mortality
3259 directly affects the panther population by reducing the panther population size and potential for
3260 population growth and expansion. Panther mortality from vehicle collisions is presently the
3261 highest source of mortality for panthers and has increased significantly since 1972 (Figure 5-5).
3262 Much of the increase in mortality is strongly correlated with an increasing panther population
3263 size, but this trend is also colinear with the growth in the human population and in recent years
3264 the coupling of panther population size and vehicle mortalities has weakened with panther
3265 population size explaining less of the annual variation in panther/vehicle mortality (Figure 5-6).
3266 The FWC documented 351 vehicle-related panther mortalities and 8 vehicle-related panther
3267 injuries from 1972 to 2018 on highways in south Florida. Most of these incidents involve male
3268 panthers (60 percent), while 40 percent of collisions involve female panthers. Collisions with
3269 motor vehicles killed an average of 28 panthers each year over the past five years. Assuming an
3270 adult population size of 120 to 230 individuals, this means vehicle collisions kill between 12 and
3271 23 percent of adult panthers, annually.

3272
3273 Charry and Jones (2009) performed a meta-analysis of numerous studies investigating the impact
3274 of traffic volume on various wildlife taxa and identified increases in daily trip counts as a source
3275 of substantial negative effects to species that include habitat fragmentation and roadway
3276 mortality. In South Florida increases in traffic typically follow the construction of new
3277 residential and commercial developments. New developments also affect existing traffic patterns
3278 when they introduce popular commercial establishments that were previously uncommon or
3279 bring new, large nexuses of employment. These effects on traffic volume and distribution on
3280 roadways are regularly attributed to developers by local, state, and federal agencies. Many
3281 methods exist for the purpose of estimating the likely amount of new traffic coming from or
3282 going to new developments based on the number of residences and businesses, and these are
3283 typically used to assess the transportation impact fees levied against developers by local and state
3284 authorities. Just as local governmental entities typically do when it comes to assessing the need
3285 for transportation impact fees, we also attribute traffic changes caused by the construction of new
3286 residential and commercial developments to the developers that build them.

3287
3288 However, we recognize that local, state, and federal entities may take actions that incentivize
3289 new development, and that when this occurs, they may bear some responsibility for the traffic
3290 generated when new residential and commercial development is manifested on the landscape. It
3291 may be difficult to determine and incorporate multiple sources of causation for traffic increases
3292 into our consultations, we nonetheless incorporate them, when applicable, because we know
3293 increases in traffic volume increase the probability of panther mortality due to vehicle strikes.
3294 When other sources of influence on traffic volumes and distribution on the transportation
3295 network are identified, those that are likely to be non-federal (approximately 25 percent) will be
3296 accounted for in the Cumulative Effects analysis, while those that are likely to result from federal
3297 funding, authorization, or action will be consulted on at the time they are brought forward to the
3298 Service during the section 7 interagency consultation process.
3299
3300 We do not include predicted mortality from vehicle strikes in the take statement for a particular
3301 project because it is often impossible to identify the individual responsible for the collision,
3302 much less to ascertain whether that individual was leaving or entering the area of new
3303 development. Furthermore, design and maintenance of roadway facilities by local and State
3304 government can have an influence on wildlife roadway mortality, as can individual driver skill
3305 and behavior. That said, it is reasonably certain that increased traffic generated by new
3306 developments will increase the risk of panther-vehicle collisions. To manage the increased risk
3307 of vehicle collisions with panthers, the Service recommends the Action facilitate the construction
3308 of wildlife underpasses, or crossings, that can reduce vehicle collisions with panthers that
3309 wouldn't occur but for the increased traffic volume associated with new development.
3310 Underpasses allow panthers and other wildlife to safely cross under busy roadways, and maintain
3311 connectivity and gene flow within the panther population. Underpasses usually consist of a
3312 bridge, prefabricated concrete box, or culvert (Forman et al. 2003). A number of wildlife
3313 crossings with associated fencing have already been constructed on major roadways in southwest
3314 Florida to benefit the panther and other wildlife species. The effectiveness of these crossings in
3315 reducing overall mortality from vehicle collisions is estimated in Section 5.2.2.4. The Service
3316 also recommends maximizing internal trip capture for all new developments to reduce the
3317 number of vehicle trips on roads connecting developments, thereby reducing the likelihood of
3318 panther vehicle collisions.
3319
3320 **5.1.6.5 Illegal Shooting**
3321
3322 Illegal shootings have been documented, but the magnitude of the problem is unknown. These
3323 illegal takings result in the loss of individuals within the population (USFWS Draft 2020).
3324 Gunshot injuries resulting in immediate death or found at necropsy following death from other
3325 causes are common. The FWC records 34 panthers wounded or killed by gunshot, and one killed
3326 by arrow, between 22 May 1983 and 7 October 2018. Nineteen shootings of the 34 documented
3327 (55.9 percent) occurred within the last 10 years. This suggests shootings of panthers are
3328 increasing, possibly in response to the growth of the panther population. In a number of cases,
3329 evidence of gunshot was discovered during necropsy of an individual that died of collision with a
3330 motor vehicle. It is possible, then, that panthers that survive a gunshot injury may be
3331 predisposed to injury or mortality by other causes (e.g., vehicle strike or intraspecific
3332 aggression). This may be due to incapacitation of the panther because of secondary infections,

3333 lameness, and loss of ability to hunt. Discovery of gunshot wounds after death from other causes
3334 also indicates panthers are shot more often than reported. Therefore, the degree to which
3335 shootings are a threat to the panther population is not known, but shootings resulting in the loss
3336 of individuals from the population could potentially reduce the viability and recovery of the
3337 panther.

3338

3339 **5.1.6.6 Disease**

3340

3341 Several infectious diseases have caused mortality in panthers and their prey, and an outbreak of
3342 these are a threat to the health and recovery of the population (USFWS Draft 2020). Of particular
3343 concern are feline leukemia, rabies, pseudorabies, feline viral rhinotracheitis, feline calicivirus
3344 and feline panleukopenia, feline immunodeficiency virus (FIV), and dermatophytosis
3345 (ringworm), all of which pose a significant risk to individuals and the panther population as a
3346 whole. (FWC 2020a). For example, between 2002 and 2004, an outbreak of FeLV resulted in the
3347 deaths of at least five Florida panthers, and since 2010, infections have been diagnosed in six
3348 additional panthers. Through genetic analyses of the infecting virus, biologists determined the
3349 outbreak likely came from a cross-species transmission from a domestic cat. Panthers are known
3350 to prey upon domestic cats that roam freely outdoors. Similarly, 6 Florida panthers have been
3351 documented as killed by pseudorabies, which they contract from consuming infected prey like
3352 wild hogs.

3353

3354 Roelke (1990) found 65 percent of panthers were exposed to, or infected by, feline
3355 panleukopenia virus, 43 percent were exposed or infected by feline calicivirus; and 23 percent
3356 were exposed or infected by feline enteric corona virus. Roelke (1990) also found 25.6 percent
3357 were exposed to, or infected by, feline immunodeficiency virus; 26 percent exposed to rabies
3358 virus; 33.3 percent were exposed to feline syncytia-forming virus; 8 percent were exposed to
3359 *Toxoplasma gondii*, and 2.4 percent were exposed to *Brucella*. Some of these diseases are
3360 transmitted by domestic animals. Increased development and concentration of prey could
3361 increase the risk to panthers and their prey if domestic animals aren't contained indoors or
3362 properly vaccinated, or if prey species concentrate in areas of human development as a refugia
3363 from predation (Bradley and Altizer 2007, Razgūnaitė et al. 2009). Transmission of vector-
3364 borne diseases and prey choices among felids like panthers may also be influenced by changes in
3365 precipitation and temperature resulting from climate change (Mas-Coma et al. 2008, Khorozyan
3366 et al. 2015, VanWormer et al. 2016).

3367

3368 Panthers in the Action Area also now exhibit feline leukomyelopathy (FLM), a disorder of
3369 unknown origin that evidenced by nerve damage detectable during necropsy. In one case, severe
3370 deterioration of a panther's health with no prognosis of recovery required humane euthanasia. To
3371 date, FWC has confirmed FLM in 2 panthers and 6 bobcats. Trail camera footage has also
3372 captured nine panthers (mostly kittens) and four adult bobcats displaying signs and behavior
3373 consistent with this condition (FWC 2020a). Though the exact cause for feline leukomyelopathy
3374 is still under investigation, the symptoms are generally consistent with neuropathy reported in
3375 response to traumatic injuries, infections, metabolic problems, exposure to toxins, or a
3376 combination of these.

3377

3378 **5.1.6.7 Climate Change**
3379

3380 Our analyses under the Act include consideration of observed or likely environmental effects
3381 related to ongoing and projected changes in climate. As defined by the Intergovernmental Panel
3382 on Climate Change (IPCC), “climate” refers to average weather, typically measured in terms of
3383 the mean and variability of temperature, precipitation, or other relevant properties over time;
3384 thus, “climate change” refers to a change in such a measure which persists for an extended
3385 period, typically decades or longer, due to natural conditions (e.g., solar cycles) or human-caused
3386 changes in the composition of the atmosphere or in land use (IPCC 2013, p. 1450). Because
3387 observed and projected changes in climate at regional and local levels vary from global average
3388 conditions, rather than using global scale projections, we use “downscaled” projections when
3389 they are available. In our analysis, we use our expert judgment to weigh the best scientific and
3390 commercial data available in our consideration of relevant aspects of climate change and related
3391 effects. Based on the observed trends in the climate record gathered from thousands of
3392 temperature and precipitation recording stations around the world and changes observed in
3393 physical and biological systems, the scientific community is certain that the earth’s climate is
3394 changing and a warming trend in the climate is occurring (USGS 2019).
3395

3396 Florida is vulnerable to pulse events and sea level rise as well as to changes in rainfall and
3397 temperatures expected due to changes in environmental trends. NOAA (2017) model
3398 simulations using the more recent Coupled Model Intercomparison Project Phase 5 (CMIP5)
3399 predicts changes in precipitation seasonally for South Florida with increases in dry season
3400 rainfall up to 20 percent and decreases in wet season rainfall up to 30 percent. The change in
3401 timing of rainfall will likely stress ecosystems and cause changes in vegetation types. Sea level
3402 rise (SLR) of 1m by 2070 is projected under NOAA’s Intermediate-High, High, and Extreme
3403 Scenarios and the CARSWG Highest scenario (Noss et al. 2014, Hall et al. 2016, Kirtman et al.
3404 2017, Sweet et al. 2017, USGCRP 2017, USGCRP 2018). SLR of this magnitude will inundate
3405 405,006 acres (1639 km²; 18 percent) of the panther’s current range (Figure 5-7, USFWS Draft
3406 2020). Recent observations indicate SLR rise in the Southeastern United States, and South
3407 Florida in particular, is accelerating at a faster rate than previously estimated (Boon et al. 2012,
3408 Ezer 2019, VIMS 2020). If so, the amount of panther habitat lost through SLR may exceed 18
3409 percent in 2070. In addition, climate change may also alter habitat used by panthers and their
3410 prey, with an increase in dry season rainfall increasing water levels and hydro-periods during
3411 denning and fawning, and plants that serve as food resources being more dormant. A decrease in
3412 wet season rainfall will likely lead to lower water levels and increased droughts during
3413 reproductively sensitive times for panthers and prey. The changes in rainfall will likely affect
3414 our ability to conduct prescribed burns during preferred times of the year.
3415

3416 It is difficult to estimate, with any degree of precision, which species will be affected by climate
3417 change or exactly how they will be affected. The Service will use Strategic Habitat Conservation
3418 planning, an adaptive science-driven process that begins with explicit trust resource population
3419 objectives, as the framework for adjusting our management strategies in response to climate
3420 change (USFWS 2006). Changes in precipitation may alter wildfire patterns (Fill et al. 2019) in
3421 this fire-dependent ecosystem. Changes in precipitation can also alter the distribution and
3422 prevalence of infectious diseases, prey distribution, or temporarily fragment or aggregate panther

3423 populations and/or their prey, which could affect essential life functions and increase exposure to
3424 disease.

3425

3426 **5.1.6.8 Small and Isolated Population**

3427

3428 Historically pumas occurred throughout the southeastern United States. Habitat loss, declining
3429 prey populations, and persecution resulting from European settlement were the primary cause of
3430 the decline of pumas in North America, including the Florida panther. Today the panther is only
3431 found in south Florida in an area that is less than 5 percent of its historical range (Young and
3432 Goldman 1946). This resulted in inbreeding depression of the few remaining panthers and very
3433 low population size that led to the decision to list the panther as endangered (USFWS 2008).
3434 The few panthers that persisted in the 1980s and early 1990s exhibited some of the lowest levels
3435 of genetic variation that had been recorded for wild felids, certainly in comparison to other
3436 populations of pumas in western North America (Driscoll et al. 2002). Populations of animals
3437 — especially those that persist at low densities such as large carnivores — that are small and
3438 isolated from conspecifics invariably begin to be affected by a variety of factors such as altered
3439 sex ratios, reproductive declines, and outbreaks of disease. The prevalence of these issues in
3440 small populations can often be associated with inbreeding depression, which can result in the
3441 expression of deleterious alleles that can contribute to a variety developmental, reproductive and
3442 epidemiological problems (Roelke et al. 1993a, Roelke et al. 1993b). The documentation of
3443 many of these factors in panthers during that time period supported the notion that inbreeding
3444 depression was having a major impact on the population. Genetic augmentation initiated in
3445 1995 contributed to increasing growth of the panther population in recent years (Hostetler et al.
3446 2013). Recent PVA models (Hostetler et al. 2013 and van de Kerk et al. 2019) confirm that the
3447 panther population grew rapidly through 2013 ($\lambda > 1$), but that growth may be slowing
3448 (McClintock et al. 2015). This could indicate the heterozygosity initially introduced in the
3449 population, the heterozygosity that fueled the growth of the panther population after
3450 augmentation in the late 1990s, has peaked in its effects on population growth. Whereas genetic
3451 introgression was likely not the sole impetus for the increase in the population size (i.e., wildlife
3452 underpasses, land conservation efforts) it most certainly played a major role.

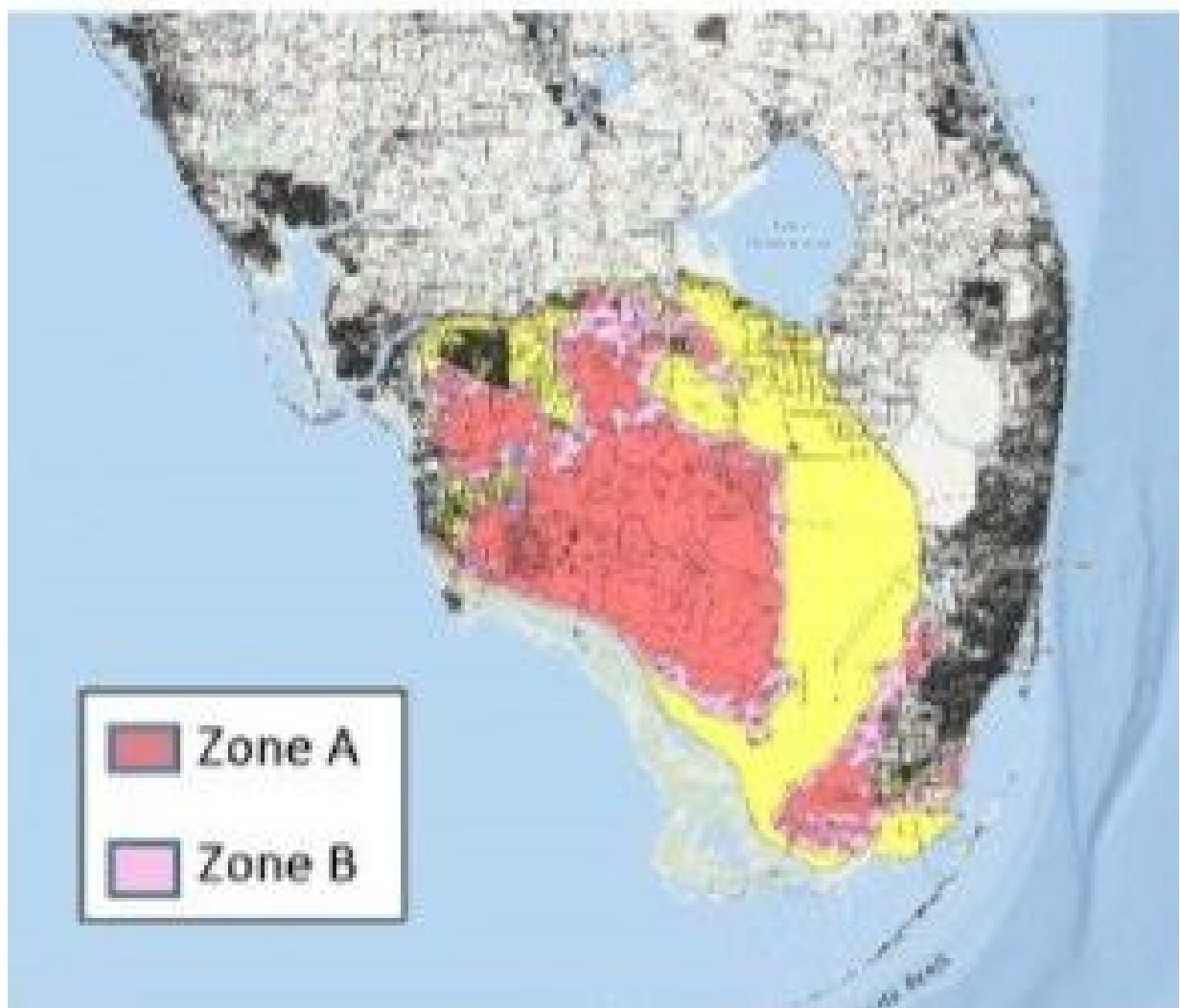
3453 Progress in improving the genetic health of the population may be compounded by further
3454 habitat loss, fragmentation, degradation, mortality or a combination of these (Ballou et al. 1989,
3455 Johnson et al. 2010). The extent to which these threats may influence genetic health was not
3456 analyzed in either PVA. These models assumed current conditions, and these threats were
3457 captured in the current vital rate of the panther population. As long as the panther population
3458 remains separated from other puma populations (i.e., the nearest puma population is in Texas
3459 more than 1500 miles away) the PVAs predict that the population will once again begin to be
3460 impacted by a loss of genetic variation due to a variety of factors, including genetic drift
3461 resulting in the inevitability that a genetic introgression management initiative will have to be
3462 repeated in the future. In all, the most recent analysis of population viability performed by van de
3463 Kerk et al. (2019) indicates maintenance of genetic variability in the population will remain a
3464 challenge, but that as long as it is addressed with genetic augmentation at recommended intervals
3465 a projected population size of 187 adults and subadults should remain viable for the next 50
3466 years if the current conditions (habitat availability, access, genetic health, and prey abundance)
3467 remain unchanged. However, we anticipate all these threats will remain or increase due to human
3468

3469 population growth and resulting loss, fragmentation, or degradation of their habitat (USFWS
3470 Draft 2020).
3471
3472

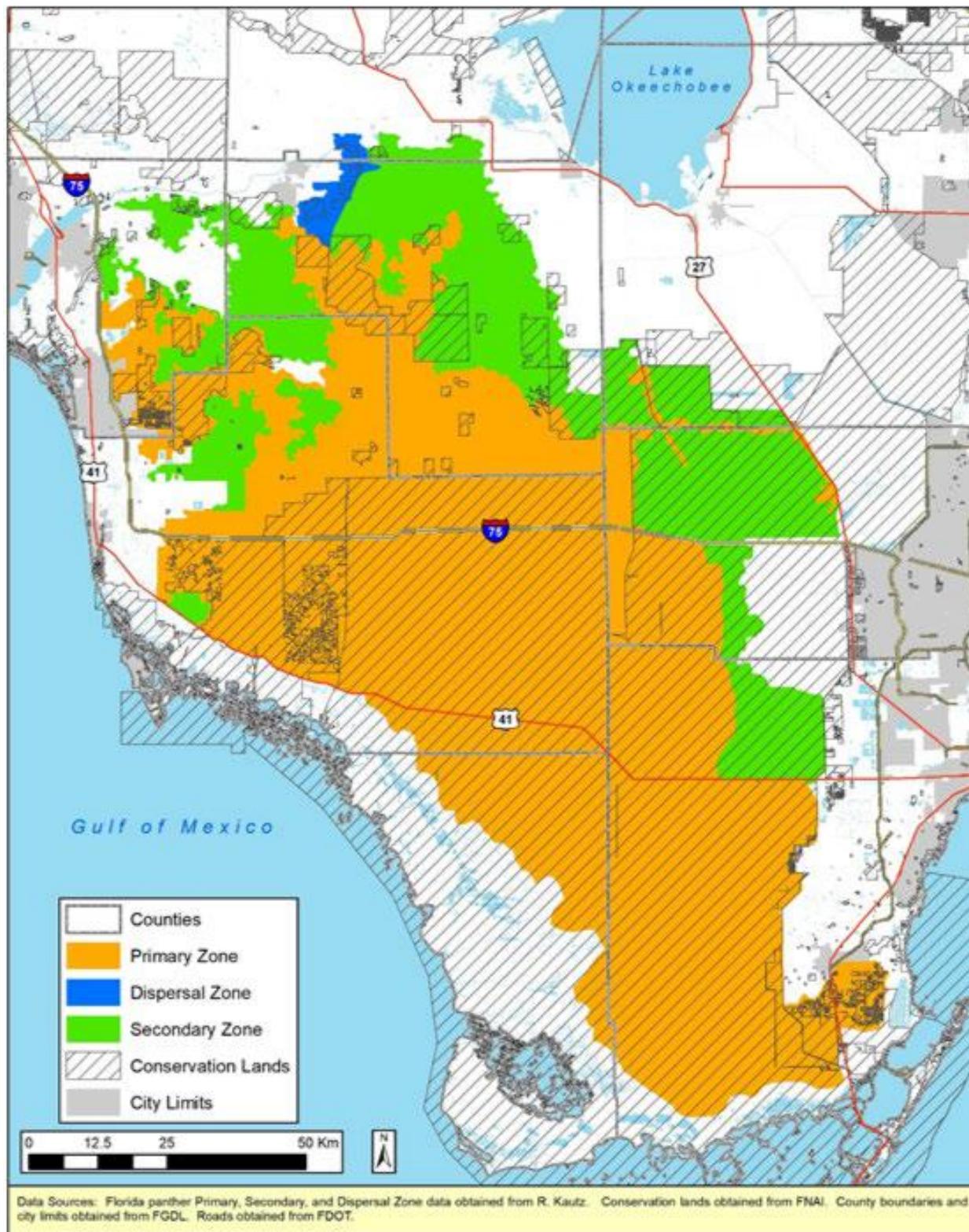
DRAFT

3473 **5.1.7 Tables and Figures**
34743475 **Table 5-1.** Percent of the Florida panther's diet by prey type with spatial and temporal
3476 components incorporated. The dividing line between north and south is Interstate 75 (Alligator
3477 Alley).

Percent Prey Occurrence In Diet	Spatial Occurrence 1977- 1989 ^a		Spatial Occurrence 1996-2014 ^b		Temporal Occurrence (North and South)		
	North	South	North	South	1977- 1989 ^a	1989- 2005 ^b	1996- 2014 ^b
SPECIES							
Wild hog (<i>Sus scrofa</i>)	33.9	8.8	29.01	11.24	42	55.93	21.97
Raccoon (<i>Procyon lotor</i>)	9.4	33.9	19.08	28.09	12	27.12	28.03
White-tailed deer (<i>Odocoileus virginianus</i>)	11.7	10.8	16.79	29.21	28	5.08	21.97
Nine-banded armadillo (<i>Dasypus novemcinctus</i>)	11.9	13.8	13.74	4.49	8	3.39	6.82
Rodentia	7.2	11.7	3.05	6.74	2	0	3.79
Rabbit (<i>Sylvilagus</i> spp.)	18.1	20.4	1.53	5.62	4	0	4.55
Livestock	1.7	0	3.05	0	2	6.8	5.3
Other	6.1	0.6	13.75	14.61	2	1.68	7.57

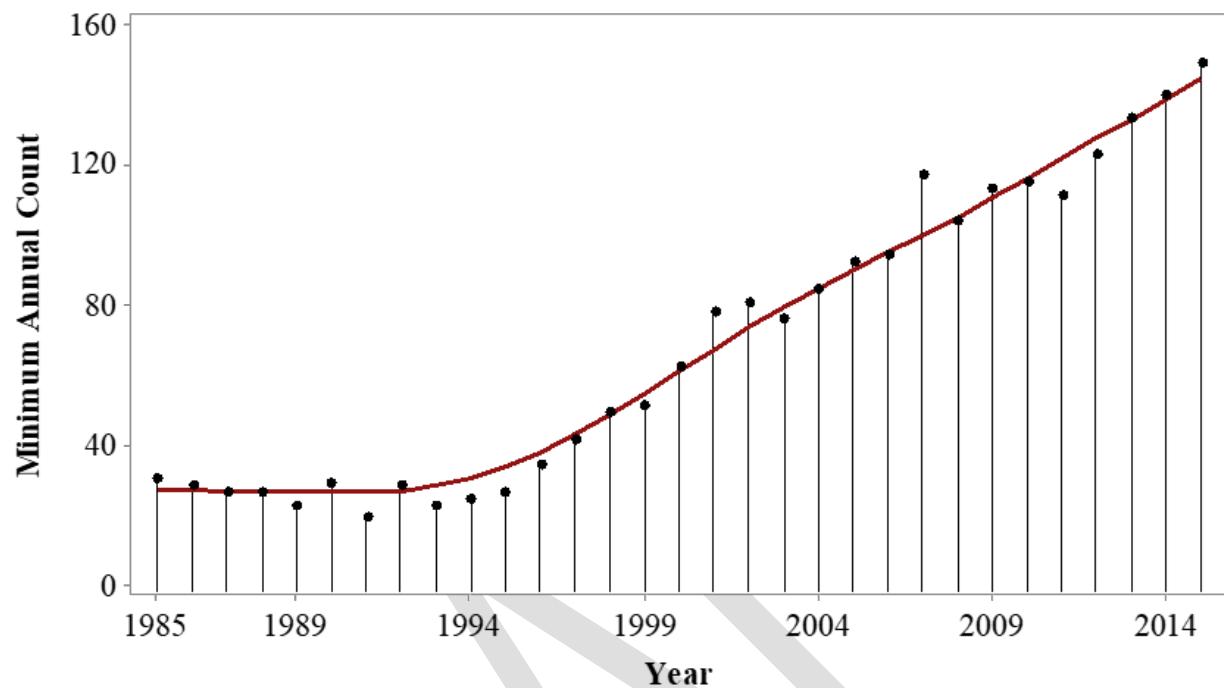

3478
3479 ^a from Maehr et al. 1990b
3480 ^b from Caudill et al. 2019
3481

3482 **Table 5-2.** Relative biomass consumed by the Florida panther with temporal and spatial
 3483 components included.
 3484


Relative Biomass Consumed ^c	Parameters		Temporal			Spatial 1977-1989 ^a		Spatial 1996-2014 ^b	
	SPECIES	Estimated Weight (kg)	Correction Factor ^{a,c}	1977-1989 ^a	1989-2005 ^b	1996-2014 ^b	North	South	North
Wild hog (<i>Sus scrofa</i>)	23.0	2.8	117.0	155.8	61.2	94.4	24.5	80.8	31.3
Raccoon (<i>Procyon lotor</i>)	5.0	2.2	25.9	58.4	60.4	20.3	73.1	41.1	60.5
White-tailed deer (<i>Odocoileus virginianus</i>)	36.0	3.2	90.7	16.5	71.2	37.9	35.0	54.4	94.6
Nine-banded armadillo (<i>Dasypus ovemcinctus</i>)	6.0	2.2	17.5	7.4	14.9	26.1	30.2	30.1	9.8
Rodentia	0.1	2.0	4.0	0.0	7.5	14.3	23.2	6.0	13.4
Rabbit (<i>Sylvilagus spp.</i>)	1.5	2.0	8.1	0.0	9.2	36.8	41.5	3.1	11.4
Livestock	45.0	3.6	7.1	24.2	18.8	6.0	0.0	10.8	0.0
Other	8.2	2.3	4.5	3.8	17.2	13.8	1.4	31.2	33.1
Total			270.3	262.3	243.3	235.8	227.4	226.4	221.1

3485 ^a from Maehr et al.1990b
 3486 ^b from Caudill et al. 2019
 3487 ^c from Ackerman et al. 1984
 3488
 3489

3490
3491


Figure 5-1. Florida panther Functional Zones as defined by the U.S. Fish and Wildlife Service. The yellow indicates Zone C, which is defined as an area occasionally used by Florida panthers and important to dispersal.

3498
3499
3500
3501

Figure 5-2. Florida panther zones based on Kautz et al. 2006.

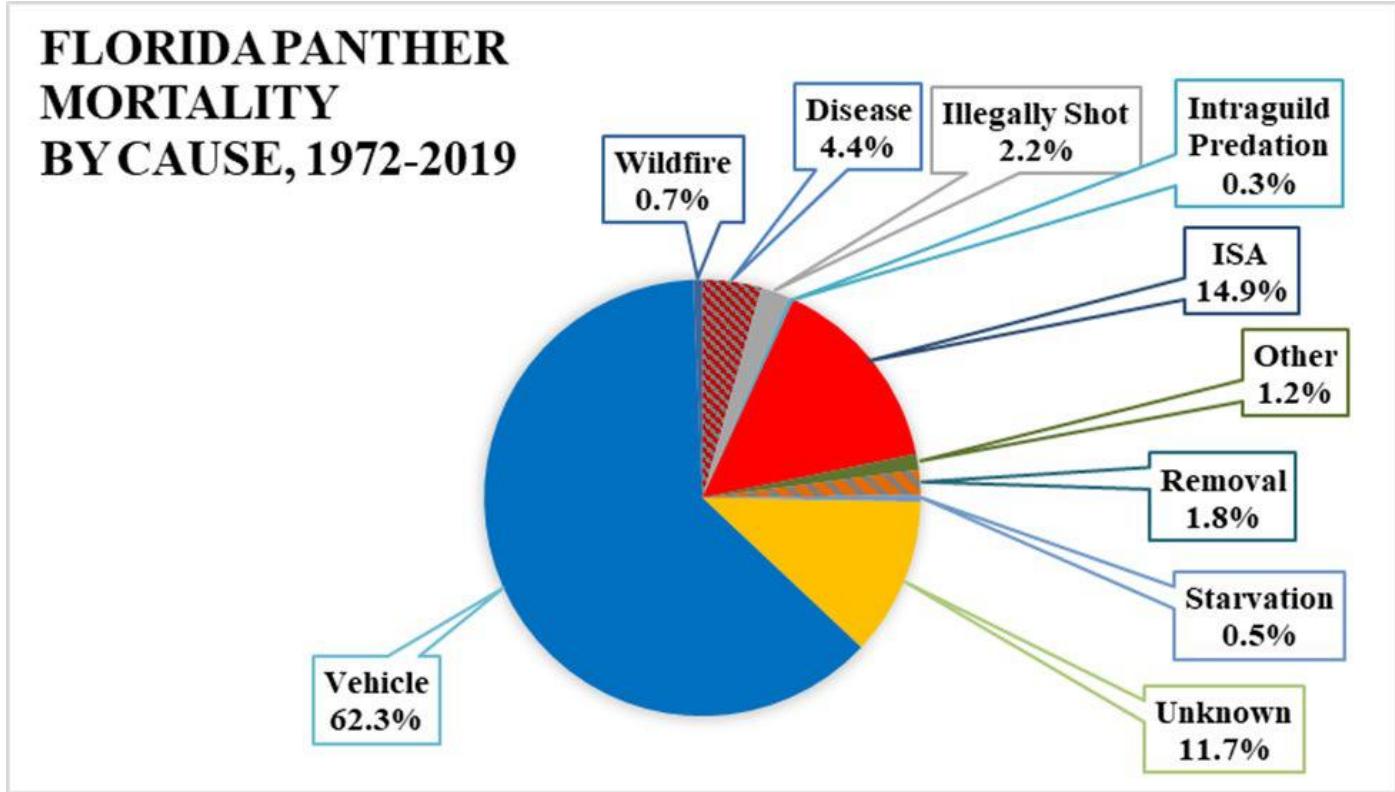
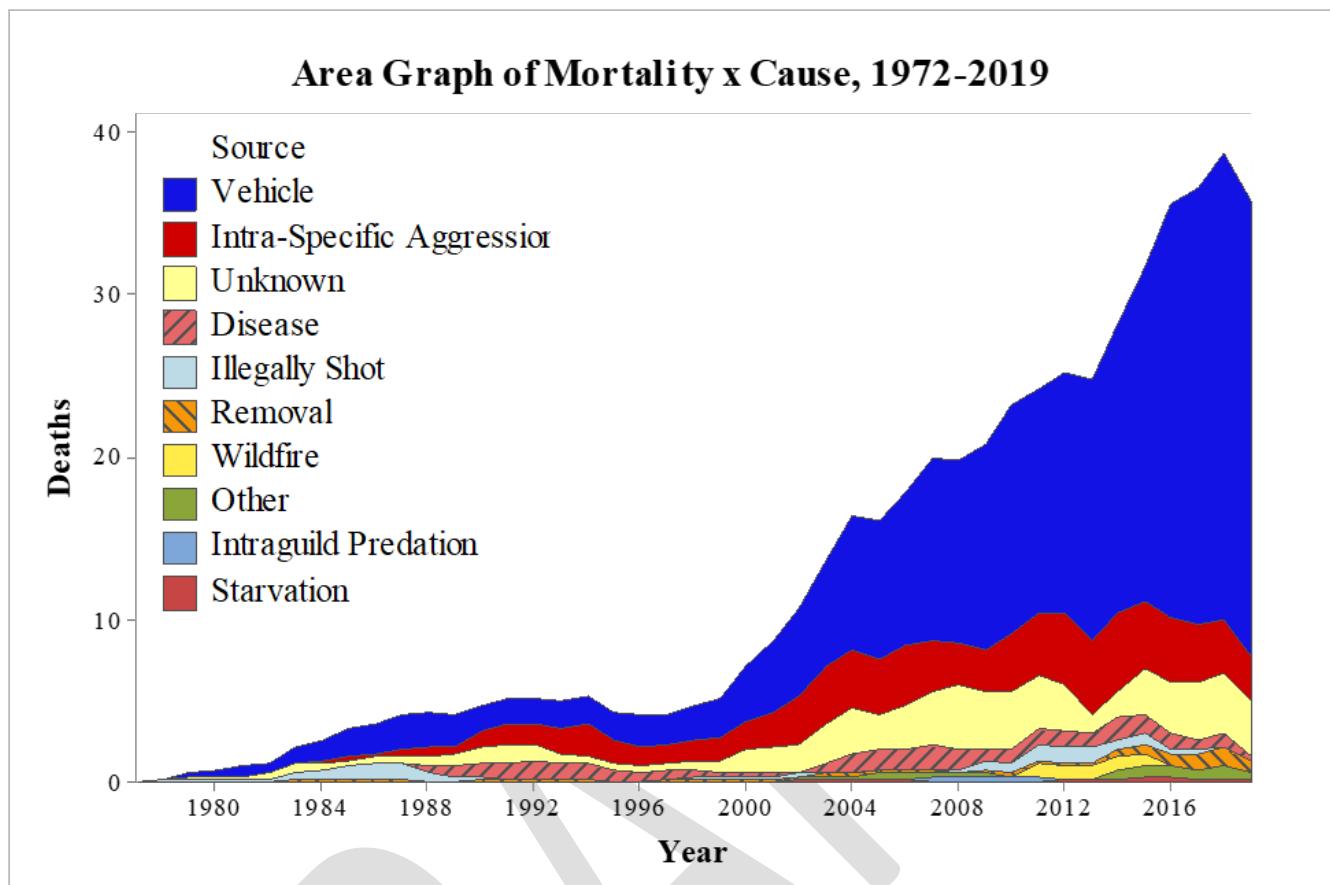
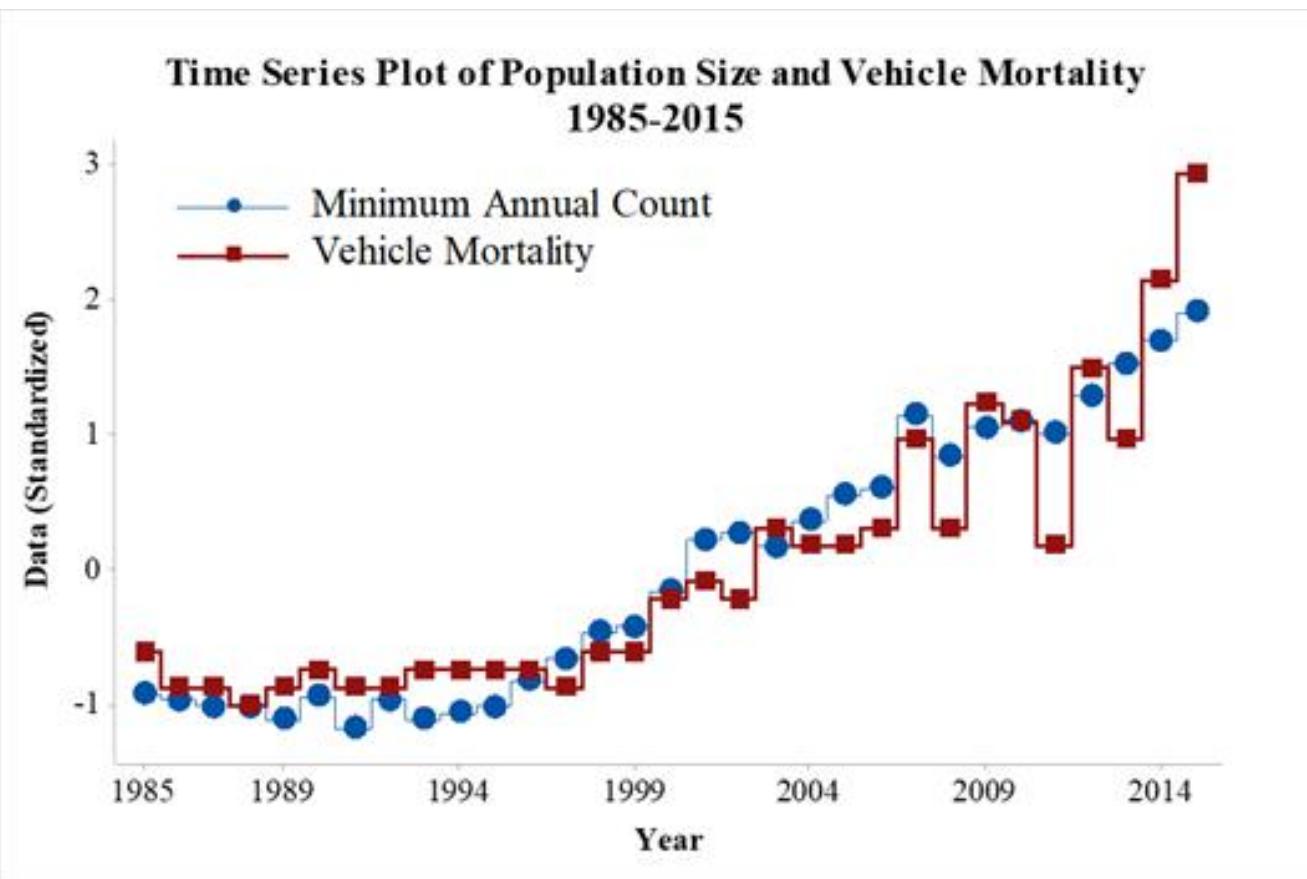

**Panther Population Size Estimated by the Minimum Annual Count
1985-2015**

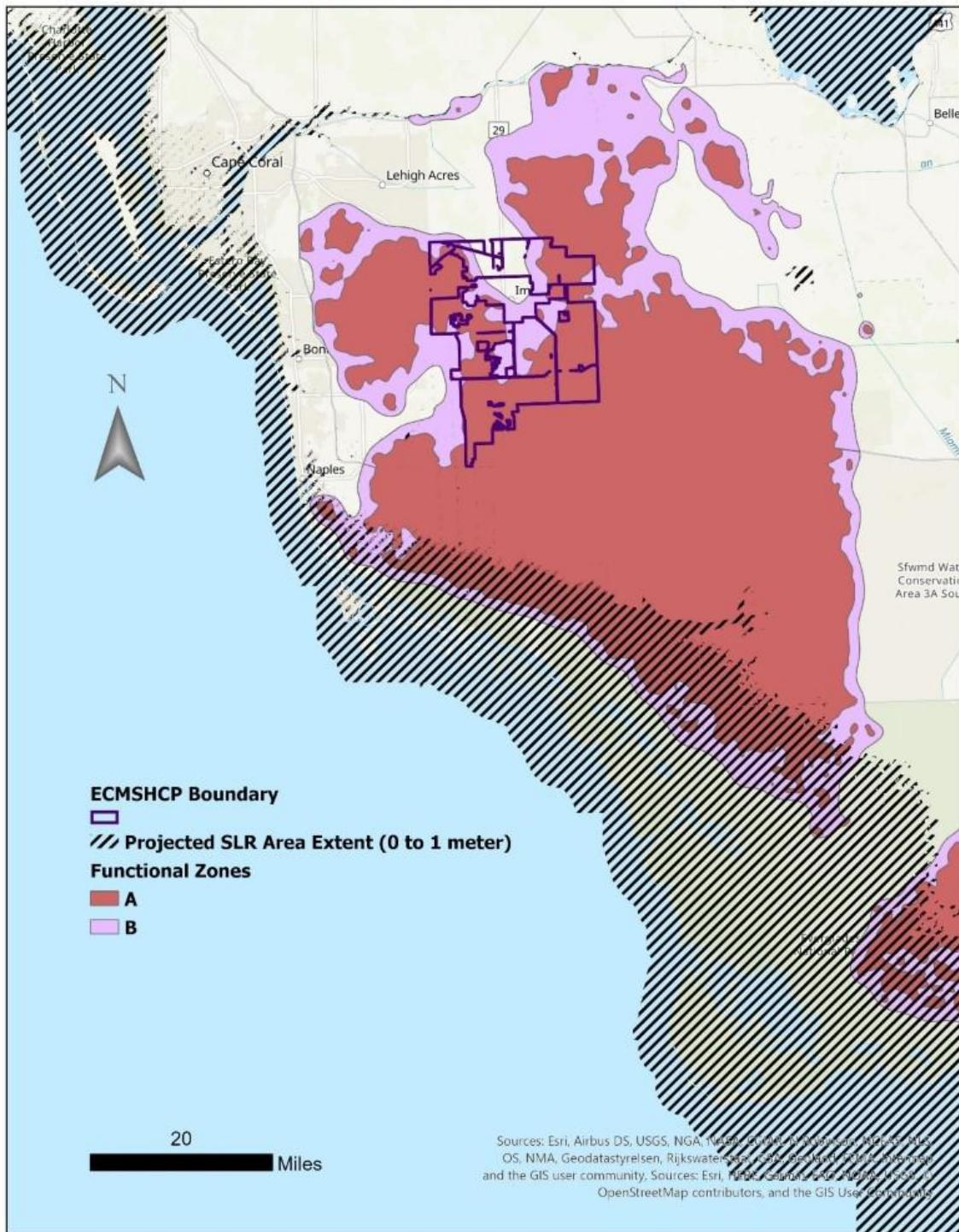
Figure 5-3. Estimated Florida panther population size between 1985 and 2015.


3507
3508

FLORIDA PANTHER MORTALITY BY CAUSE, 1972-2019



3509
3510
3511
3512
3513
3514
3515


Figure 5-4. Percentage of each cause of Florida panther mortality from 1972 through 2019.

3516
3517
3518
3519
Figure 5-5. Magnitude of each source of Florida panther mortality over time from 1972 through
3520
2019.
3521
3522

3523
3524
3525
3526 Figure 5-6. Standardized plot of Florida panther minimum annual population counts and motor
3527 vehicle mortality over time.
3528
3529

3530
3531
3532
3533
3534
3535
3536

Figure 5-7. Inundation of the Panther Functional Zone predicted to occur with sea level rise of 1 meter.

3537

3538 5.2 Environmental Baseline for Florida Panther

3539

3540 This section is an analysis of the effects of past and ongoing human and natural factors leading to
3541 the status of the panther, its habitat, and ecosystem within the Action Area. The environmental
3542 baseline is a “snapshot” of the species’ health in the Action Area at the time of the consultation
3543 and does not include the effects of the Action under review.

3544

3545 5.2.1 Action Area Population Size and Distribution

3546

3547 Panthers frequently use the Plan Area
3548 and areas immediately adjacent to it for
3549 breeding, denning, and rearing of
3550 kittens, with portions of the home
3551 range of denning females within or
3552 near the Plan Area overlapping
3553 portions of the Action Area. FWC and
3554 Service records indicate: 1 den that
3555 produced 3 kittens was located in
3556 habitat currently proposed for
3557 residential development, commercial
3558 development, and earth mining
3559 activities in the HCP; and that another
3560 8 females established dens that
3561 produced a total of 16 kittens in habitat
3562 proposed for preservation in the HCP.
3563 Additionally, 13 females established
3564 dens that produced 27 kittens within 1
3565 mile of the HCP boundary, and in
3566 nearly all cases their home ranges, the
3567 home ranges of their offspring, or the
3568 paths of their offspring during dispersal
3569 overlapped the Action Area (FWC
3570 unpublished data).

3571

3572 Panthers also regularly use the Plan
3573 Area for other purposes. Specifically,
3574 20,196 records of 181,963 total records

3575 (11.1 percent) of documented panther occurrences throughout the range are within the Plan Area
3576 (radio-telemetry, GPS, mortality, denning, confirmed observations, and confirmed depredations).
3577 24.9 percent of panthers (62 of 249) monitored by radio telemetry between 1981 and 2018 used
3578 areas of the HCP designated for future residential development, commercial development, and
3579 earth mining. 36.1 percent (90 of 249) of panthers used areas designated for future preservation
3580 in the HCP. Telemetry data from the past 10 years, for individuals that wouldn’t be older than 12
3581 years if still alive, indicates approximately 15 individuals currently or previously monitored by
3582 radio telemetry likely still use portions of the Plan Area as a part of their home range, while

Action Area: As explained in Section 2 we define the Action Area as the spatial extent of changes in the physical environment that will likely occur because of residential development, commercial development, earth mining, on-going agricultural or recreational activities, and conservation measures proposed in the HCP. Section 3 describes HCP caused changes in traffic volume and infrastructure. The location and density of development, such as the development under the HCP, directly influences the distribution and volume of traffic on existing public roads, as well as the construction of additional lanes to existing roads and entirely new transportation corridors. The distribution and volume of traffic is relevant to this BO/CO, because panther vehicle collisions are a leading cause of panther mortality. To estimate traffic volume, we used the Florida Department of Transportation (FDOT) District 1 Regional Planning Model (Figure 5-8; D1RPM). Using this model, we identified 1,825 miles of roadways within the Action Area where HCP related development is estimated to generate traffic volume increases by 100 trips/day or more by 2040. Thus, in addition to the Plan Area, our Action Area includes 1,825 miles of roadways affected by the HCP (Figure 5-9).

3583 vehicle mortality data indicates others are young adults that use the Plan Area temporarily during
3584 dispersal. Recent research has also found that panther densities in the Plan Area range between
3585 3.9/100km² and 4.03/100km² (Onorato et al. 2020). Based on the availability of habitat in the
3586 Action Area a density-estimated population size estimate ranges between 16.2 and 16.6 panthers
3587 utilizing the Plan Area (Table 5-3).

3588
3589 However, more panthers than those tracked by radio
3590 telemetry or GPS use habitat in the Plan Area.
3591 Uncollared panthers are regularly found among road
3592 mortalities in the Plan Area To estimate a more precise
3593 number of panthers likely using the Plan Area each year
3594 that includes uncollared panthers, as well as collared,
3595 we used a combination of telemetry records and
3596 mortality records in a mark/recapture method of
3597 population size estimation for small population sizes:
3598 The Chapman estimator (Chapman, 1951). For the
3599 purpose of the estimation we define “marked” as
3600 individuals tracked with radio telemetry during the
3601 sample period (the calendar year), and treated those that
3602 were not tracked as “unmarked.” We also assumed
3603 another individual quickly replaced panthers killed
3604 within the Plan Area, and that panthers that left the Plan
3605 Area were replaced by individuals entering the Plan
3606 Area (meaning rates of birth, death, immigration, and
3607 emigration did not change the annual population size of
3608 the Plan Area). To confirm that we selected the correct
3609 statistical method for the data we had available, and
3610 used the estimator correctly, we had our analysis peer
3611 reviewed by a statistician (Ross 2020a).

3612
3613 Using this method, we estimate an average of 27.6
3614 ± 5.81 adult panthers (residents inhabiting home ranges
3615 plus transient individuals) used the Plan Area, annually,
3616 in the past five years (Table 5-3, Figure 5-10). These
3617 individuals likely exploit the Plan Area because it is rich
3618 in prey, it is centrally located relative to the panther’s
3619 range, it is frequently used by females for denning, and
3620 is an area through which many young panthers disperse
3621 from their natal home range.

3622 5.2.2 Action Area Conservation Needs and Threats

3623
3624 Panthers in the Action Area face the same threats as those listed range wide. Specifically,
3625 panthers in the Action Area face impacts from human disturbance, and human-caused habitat
3626 loss, fragmentation, and degradation from residential development, commercial development,
3627 and climate change. Sources of human-caused mortality in the Action Area, such as collision

Chapman’s population size estimation for small populations:

$$N_c = \frac{(K + 1)(n + 1)}{k + 1} - 1$$

where,

N_c = Number of animals estimated in the population

n = Number of animals marked on the first visit

K = Number of animals captured on the second visit

k = Number of recaptured animals that were marked

or more precisely,

N_c = Number of panthers likely using the Plan Area in any given year

n = Number of telemetered animals that visited the Plan Area in a given year

K = Number panthers killed by vehicle collision that year

k = Number of panthers killed by vehicle collision that year that were monitored by radio telemetry

3629 with motor vehicles, illegal shootings, and increased exposures of panthers to disease and
3630 pollution also threaten growth of the panther population. Additionally, as the human and panther
3631 population both grow incidences of human-panther conflict may also occur to the detriment of
3632 panthers. Lastly, panthers confront many ecological challenges, such as genetic risks associated
3633 with small population size or declines in prey populations caused by natural processes or human
3634 activity.

3635
3636 Among human sources of threats to panthers, vehicle collisions account for the largest single
3637 cause of injury or death. Range wide, vehicle strikes have been responsible for 60 percent of the
3638 panther deaths documented from 1972 to 2018, with 22.4 percent of all documented vehicle
3639 mortalities having occurred on roadways in the Action Area. In the past 5 years an average of 22
3640 panther panthers were killed in vehicle collisions annually in the Action Area, while 5.6 ± 0.51 of
3641 these 22 panthers are killed by motor vehicle collision on roadways within and immediately
3642 adjacent to the Plan Area.

3643
3644 Other human sources of mortality, such as illegal shootings, exposure to disease, and exposure to
3645 contaminants have also been documented in the Plan Area and areas immediately adjacent to
3646 either, though the frequency with which they occur and their individual influence on the overall
3647 population trajectory is difficult to determine.

3648
3649 Some aspects of human activity in the Action Area also serve as attractants that increase the local
3650 abundance of panthers over time (FWC, unpublished data) but with detrimental effects to the
3651 panther. These include the introduction of pets, livestock, and feeders that attract prey preferred
3652 by the panther or act as targets of panther depredation. Where prey and panthers concentrate near
3653 areas of human development, the risk of human/panther conflict, interspecific aggression,
3654 disease, panther mortality from vehicle collisions or illegal shootings, and management removal
3655 increases.

3656
3657 Lastly, habitat loss and fragmentation has already occurred with the Action Area, such as
3658 through the construction and use of roads, conversion of former forest lands to agricultural use in
3659 the last century, and via the construction of the Ave Maria residential community and other
3660 smaller-scale residences.

3661
3662 In total, we believe the demographic impact of these threats to baseline panther survival,
3663 reproduction, and population size, as well as the impacts of genetic erosion due to inbreeding in
3664 the Action Area, were captured in the estimation of survivorship and fecundity performed by van
3665 de Kerk et al. (2019).

3666
3667 Because these threats are known and well understood, actions to minimize, offset, or reverse
3668 their impact on panther population viability constitute the conservation needs of the species in
3669 the Action Area. Many ongoing collaborative conservation actions by federal, state, and private
3670 partners have long since been established to address them. For example, these parties have
3671 substantially increased areas of habitat protected and managed to the benefit of the species since
3672 its listing, and facilitated the construction of numerous wildlife crossings that have reduced
3673 panther mortality at many locations. The ECMSHCP also contains measure to avoid or offset
3674 impacts to panthers, and conservation measures designed to assist recovery. Many of these

3675 measures are difficult to assess quantitatively, but they are described qualitatively throughout
3676 this assessment and are included in our jeopardy analysis.

3677
3678 As habitat loss continues and sources of mortality, such as vehicle collision, increase alongside
3679 human population growth, more habitat will need to be preserved and panther-vehicle collisions
3680 reduced for the eventual recovery of the Florida panther. Because cattle ranches contain a
3681 substantial amount of the remaining suitable habitat within the panther's range partnerships
3682 between traditional partners with regional ranching operations are likely to play a growing role in
3683 panther conservation and recovery going forward (Pienaar et al. 2015).

3684
3685 Both the RLSA and the ECMSHCP target areas for conservation, including important wildlife
3686 linkages. The HCP includes Camp Keais Strand and the Okaloacoochee Slough as part of the
3687 Preservation areas, and would permanently protect these linkages through conservation
3688 easements. This commitment provides greater assurance that these wildlife linkages will be
3689 protected than the voluntary RLSA program. The type of landscape planning in the HCP also
3690 controls where habitat fragmentation occurs, directing it away from these important habitat
3691 linkages.

3692
3693 In section 5.1.6., we explained that about 63 percent of the Functional Zone is in conservation.
3694 However, within the Action Area there are no lands currently in conservation. As mentioned in
3695 section 5.1.6., as much as 25 percent of future development projects could occur without
3696 consultation or technical assistance from the Service, and may not include minimization or
3697 conservation measures for the panther. Because of this HCP, we will consult on all development
3698 in the Plan Area. The rest of the Action Area (*i.e.*, the Plan Area and select roads outside of the
3699 Plan Area) consists of roads on which we will likely consult. Therefore, the HCP is expected to
3700 increase the number of projects that will consult or receive technical assistance from the Service,
3701 and likely increases minimization and conservation measures that are implemented in the Action
3702 Area.

3703
3704 As discussed in section 5.1.6.4, it is difficult to attribute specific additions to traffic volume to all
3705 parties responsible for the additions. Because we recognize that multiple entities are responsible
3706 for increased traffic volumes that lead to increased risk of panther vehicle mortality, we also
3707 believe that the solution will involve multiple partners working together to implement solutions.
3708 A total of 60 underpasses have been built in the Action Area, and more are anticipated to be
3709 constructed as a result of this HCP and the efforts of local, state, and Federal agencies.
3710 Underpasses implemented as a result of this HCP will not only reduce vehicle mortality
3711 associated with HCP-related increases in traffic volumes, but also those associated with other
3712 sources of increasing traffic volumes. See section 15.4.2 (Cumulative Effects) for our analysis.

3713
3714 **5.2.2.1 Habitat Loss**

3715
3716 Habitat loss within the Action Area is a significant threat to panthers that use it. The importance
3717 of various habitat types to panthers is summarized in 5.1.3, but in general, the habitat of the
3718 Florida panther is an extensive landscape of natural, semi-natural, and agricultural lands.
3719 Forested habitats are selected by and of vital importance to panthers in South Florida. These
3720 cover types provide the most important habitat for panthers to meet life cycle requirements that

3721 include selection of den sites, daytime-rest sites, and cover for hunting prey (Belden et al. 1988,
3722 Maehr and Caddick 1995, Comiskey et al. 2002, Cox et al. 2006, Kautz et al. 2006, Land et al.
3723 2008, Onorato et al. 2011). Panthers utilize forest habitat patches of any size (Kautz et al. 2006,
3724 Onorato et al. 2011).

3725
3726 Other natural habitats are also selected by panthers, but to a lesser extent than forests and usually
3727 when they are close to forest cover. Agricultural lands (e.g., croplands, improved pasture, and
3728 citrus groves) are used in proportion to availability (Onorato et al. 2010).

3729 GPS-telemetry records collected across the diel-period revealed that panthers occur in forest
3730 cover 59 percent of the time and in open habitats 41 percent of the time (Onorato et al. 2010).
3731 Although panthers may be found at distances of >1000 m from forest patches, 74 percent and 85
3732 percent of GPS-telemetry records were located within 100 m and 200 m, respectively, of forest
3733 cover (Onorato et al. 2010). White-tailed deer and wild hogs, the primary prey of panthers,
3734 would be expected to use more open cover types such as pasturelands and other agricultural
3735 lands adjacent to forest cover due to the plentiful food sources in these habitats. An analysis of
3736 panther locations in the Plan Area showed that most panther telemetry locations in agricultural
3737 areas were within 300 m of forested areas. Our own review found 95.7 percent of all panther
3738 records occur within a forest cover type or within 300 m of one. This is within the distance cited
3739 by Onorato et al. (2010). The forested areas along with the 300 m buffered area are defined as
3740 preferred panther habitat for the remainder of our analysis.

3741
3742 Under the present configuration of the HCP the Plan Area contains 77,063 acres (311.9 km²) of
3743 lands currently used for agriculture (Tables 2-1 and 2-2). The amount of agricultural land that
3744 panthers use differs based on types of agriculture (e.g., ranchland is used more than row crops).
3745 Irrespective of the value of these lands, all their value to panthers is lost when they, or the forest
3746 edges within 300 m of them, are converted from their present land use to urban and exurban
3747 development. Because of their location and relatively lower value to panthers and other wildlife,
3748 to minimize the effects of the action, the HCP proposes to primarily target agricultural areas
3749 beyond 300 m of forest edges for their proposed developments and other covered activities.

3750
3751 The Service acknowledges that future development in eastern Collier County is probable, and
3752 that any form of development will have some effect on panthers. Development in this area can
3753 happen under a variety of scenarios, including this HCP. Development and activities as
3754 proposed in the HCP will result in the loss of habitat otherwise suitable for panthers and used by
3755 them in the following way. Of the 156,763.7 acres (634.4 km²) of the Functional Zone within the
3756 Plan Area, 42,544 acres (172.2 km²) are forest cover surrounded by 59,808 acres (242.0 km²) of
3757 other habitats within 300 m of forest cover. Based on recent density estimates (3.9 panthers/100
3758 km² (1 panther per 6,336 acres) and 4.03 panthers/100 km² (1 panther per 6,178 acres)) within the
3759 Plan Area and telemetry records mentioned previously, we estimate between 9 and 16.6 panther
3760 home ranges can be supported within these 102,352 acres (414.2 km²) of preferred panther
3761 habitat, with the higher end of that range being most likely. (Table 5-3).

3762
3763 As mentioned previously, though, using the Chapman estimator determined an average of 27.6
3764 ±5.81 panthers visited the Plan Area each year for the past 5 years (Table 5-3, Figure 5-8). We
3765 believe the discrepancy, the difference between the Chapman estimated number of panthers

3766 actually using the Plan Area annually and the 9 - 16.6 home ranges the Plan Area can support, is
3767 explained by panthers which only use the Plan Area for short periods of time, such as during
3768 dispersal. A closer look at panther/vehicle collision records finds many killed on roadways
3769 within the Plan Area are uncollared, young adults of dispersal age.

3770
3771 Therefore, for this analysis, based on our estimates in Section 5.2.1 and records documenting
3772 past panther presence in the Action Area we accept the following as reasonable estimate of
3773 annual use: on average 27 panthers use the Plan Area each year, and of these, a maximum of 17
3774 likely rely on resources within the Plan Area as part of their home range, while 10 others likely
3775 use the Plan Area for dispersal or other short-term uses. If 27 panthers use the Plan Area each
3776 year, that would mean, on average, between 23 and 12 percent of the panther population
3777 (assuming a population size of 120 or 230 adults, respectively) use habitats in the Plan Area for
3778 feeding, sheltering, denning, or dispersal each year. If 17 panthers use the Plan Area as a portion
3779 of their home range, that would mean, on average, between 14.2 and 7.4 percent of the panther
3780 population use habitat in the Plan Area for that purpose.

3781
3782 **Panther Review Team Analysis:** In 2008 the Panther Review Team (PRT), composed of six
3783 scientists with expertise in Florida panther ecology and landscape- level natural resource
3784 planning, was commissioned by the Florida Panther Protection Program, a partnership of
3785 landowners/ITP-Applicants and non-governmental environmental organizations (PRT 2009).
3786 The PRT Analysis benefits our understanding of the threat of habitat loss in the Plan Area by
3787 analyzing several scenarios of development within the Rural Lands Stewardship Area (RLSA)
3788 the HCP proposes development in. Specifically, the Florida Panther Protection Program
3789 requested the PRT assess the impact of landowner proposals for development in the RLSA. The
3790 PRT analyzed the effects of habitat loss using the previously recommended Service methodology
3791 for assessing impacts to panther habitat from development. A summary of this analysis and its
3792 results can be found in Appendix E. The PRT report can also be found in the literature cited for
3793 this B.O.

3794
3795 **5.2.2.2 Habitat Fragmentation**
3796

3797 The growth of the human population and construction of roads are current sources of habitat
3798 fragmentation in the Action Area. The South Florida RFP model (Frakes et al. 2015) showed
3799 high road density to be a strong negative indicator of present habitat suitability for panthers due
3800 to the fragmentation of the landscape and the increased risk of vehicle collisions (discussed in
3801 detail in 5.2.2.7). Additional habitat fragmentation has the potential to separate/isolate habitat
3802 patches by great enough distances to the point where panthers will be unlikely to travel between
3803 them (Lindenmayer and Fischer 2006). Specifically, the Action Area contains areas of important
3804 corridors and habitat linkages necessary for the movement of panthers from their existing range
3805 to the Caloosahatchee River and beyond. Much of these have already been impacted by the
3806 conversion of native habitats to agricultural use and may be further impacted by conversion of
3807 these to development. Additionally, panthers have been and will likely continue to be deterred
3808 from crossing roadways because of increasing traffic. Panthers also have, and will continue to
3809 be, less likely to successfully cross roadways where municipal and state improvements add lanes,
3810 increase traffic speeds, and attract existing sources of traffic volume to areas of high panther use.

3811 To mitigate the impact of these, wildlife underpasses have been built to restore the functionality
3812 of these habitat linkages where they've been bisected by roadways, roadway improvements, and
3813 increasing traffic volume. Future road construction that bisects existing habitat blocks, corridors,
3814 and linkages, or traffic volumes that increase the barrier effect of existing roads, will likely
3815 require similar and additional measures to minimize the impact of present and future habitat
3816 fragmentation. At present, the Applicants for the ECMSHCP have committed \$12.5 million
3817 towards the construction of new wildlife crossings in key locations (which may be inside or
3818 outside of the HCP footprint depending on the greatest need and opportunity for installation) and
3819 indicated more may be available for the construction of wildlife crossings in the future through
3820 their administration of the Marinelli Fund. The crossing will not only offset traffic expected from
3821 HCP related development, but from other sources as well. A currently unquantifiable benefit of
3822 the HCPs is that if a crossing is proposed on HCP covered lands, we can work with ECPO
3823 landowners to ensure that habitat for panthers is maintained in perpetuity on both sides of the
3824 road, and adequate fencing and gating is installed and maintained. These features will increase
3825 crossing effectiveness and enhance wildlife corridor functionality that will be greater than what
3826 is currently estimated in the PVA. Although this coordination would be possible without the
3827 HCP, it would be probable with the HCP in place.

3828 Additionally, the Applicants' HCP establishes the intent to locate new commercial development,
3829 residential development, and earth mining activities away from these habitat corridors and
3830 linkages, and to retain at least 95 percent of current land use within them through the
3831 establishment of conservation easements.

3832
3833 **Panther Review Team Analysis:** The PRT analyzed the effect of landowner proposed
3834 development and traffic generation on landscape connectivity. A summary of their analysis and
3835 findings can be found in Appendix F. The PRT report is also included in the literature cited for
3836 preparation of this B.O.

3837
3838 **5.2.2.3 Habitat Degradation**
3839

3840 The legacy of habitat degradation and loss throughout the range of the species draws special
3841 attention to the value of remaining areas of habitat in the Plan Area. Much of the habitat most
3842 preferred by panthers is concentrated in areas designated for preservation in the HCP. Though
3843 these areas are not designated for development in the Rural Lands Stewardship program (which
3844 designates these areas as FSAs, HSAs, and WRAs), or by the Applicants, they nonetheless
3845 remain at risk of degradation through the secondary effects of new development located adjacent
3846 to them, the proliferation of invasive species, and climate change. We summarize the effect of
3847 habitat degradation on panthers and prey species below while both are discussed in more detail
3848 in Section 5.1.6.3.1.

3849
3850 Decline in Prey Abundance
3851

3852 At all phases of development (clearing, construction, use, and maintenance) human activities
3853 produce noise, dust, and smoke, and these can penetrate panther habitat by as much as 300 to
3854 1,000 meters (HCP), depending on the source. As an ongoing activity within the Action Area,

3855 these disturbances likely cause panthers or their prey to avoid areas where these are occurring, or
3856 to use them differently (e.g. changing the time of day they use these areas). Increase in
3857 construction and human occupancy in the future will likely sustain these effects on adjacent areas
3858 of otherwise suitable habitat for long periods of time.

3859
3860 When these disturbances occur, they may result in changes in prey abundance, community
3861 composition, and exposure to disease, invasive species, and domestic species maintained by
3862 residents. The presence of human development may also affect habitat management activities
3863 which benefit the panther's prey, specifically through increased restrictions on prescribed
3864 burning by agencies and the necessity of agencies to suppress naturally occurring wildfires
3865 whenever property is threatened.

3866
3867 Environmental Contaminants
3868

3869 Environmental contaminants may also originate in new areas of residential and commercial
3870 development and enter the panther's food chain, affecting panthers beyond the WUI, thereby
3871 degrading the value of habitats closer to areas of new development. Environmental contaminants
3872 have not been documented as the ultimate cause of death in a panther. However, it is likely that
3873 contamination with one or more environmental toxins could cause subclinical health effects and
3874 when combined with other stressors (environmental or physical), may reduce fitness and
3875 reproductive performance and increase susceptibility to disease. Ongoing research into the
3876 effects of environmental contaminants in panthers is required as the subtle long-term effects of
3877 exposure to environmental contaminants is often challenging to prove until population declines
3878 occur (World Health Organization and United Nations and Environment Programme 2013).
3879 FWC continues to monitor these contaminants.

3880
3881 Eight of seventeen panthers necropsied after deaths from other causes in the Action Area, and
3882 analyzed post-mortem, showed detectable amounts of Organochlorines in abdominal fat. Two
3883 had detectable amounts of PCB in abdominal fat, and 2 had detectable levels of anticoagulant
3884 rodenticide in their liver. Increasing human presence in the Action Area can increase incidences
3885 of disease and contaminant exposure affecting panthers and their prey.

3886
3887 Lastly, human activities such as hunting can increase the exposure of panthers and other species
3888 to lead via the consumption of wounded prey. There has been at least one case documented in the
3889 U.S. of a *Puma concolor* dying of lead toxicosis after consuming prey that had been previously
3890 shot by hunters (Burco et al. 2012).

3891
3892 All these effects, alone or in concert with other threats, could diminish the value of habitats to
3893 panthers within the WUI without altering the vegetative structure or other ecological features of
3894 the habitat.

3895
3896 **5.2.2.4 Motor Vehicle Mortality**
3897

3898 Vehicle collisions are a significant source of mortality and directly impact the panther population
3899 through reduction in panther numbers and potential for population expansion. Vehicle strikes
3900 have been responsible for 60 percent of the panther deaths documented from 1972 to 2018. 17.9

percent (103 of 547) of panther injuries and mortalities from all causes occurred in the Action Area. Of these, 82 were killed by collision with motor vehicles while 1 was injured. These 83 individuals represent 22.4 percent of all panthers documented as injured or killed by vehicle collision range wide. Motor vehicle mortality took an average of 22 panther mortalities/year in the Action Area, over the past 5 years, and an average of 5.6 ± 0.51 per year within the Plan Area (Figure 5-11), proper. As mentioned in Section 5.1.6.4, 60 percent of mortalities by vehicle collision are male and 40 percent are female.

Wildlife underpasses to reduce panther vehicle collisions were first constructed in South Florida beginning in 1985 and 1986. These crossings successfully allow for the safe movement of panthers and prey, including white-tailed deer and raccoons beneath busy roadways (Foster and Humphrey 1995, Land and Lotz 1996). Based on demonstrated use of wildlife crossings by panthers and prey, 60 wildlife crossings or bridges have been modified for use by panthers on Florida's roads (FWC 2020b) to facilitate safe passage of panthers that must cross roadways to reach portions of their home range, or who are in search of new home ranges during dispersal. However, roadway mortalities continue and FWC, the Service, and stakeholders have identified additional locations where panthers and other wildlife would benefit from the installation of additional wildlife crossings and wing fencing.

5.2.2.5 Illegal Shooting

Injury due to gunshot is not an uncommon finding in panthers and may result in immediate death or may be found at necropsy following the death due to other causes. Three panthers with gunshot wounds were found in the Rural Lands Stewardship Area, and we assume these individuals were shot in the RLSA or nearby. One panther survived a gunshot wound to the head and evidence of the gunshot was discovered during necropsy after the animal died from collision with a motor vehicle. Another panther died as a result of the gunshot (FWC unpublished data). A third panther was found shot within the Plan Area and later housed at the Naples Zoo. Human and panther population growth in the Action Area may increase the risk of illegal shootings, however, we do not have a way to estimate an increase and assume that current vital rates capture the majority of this threat in our modeling.

5.2.2.6 Disease

Disease prevalence is a fluid process dependent on host (panther) susceptibility (e.g., genetics, health, population density, etc.) pathogen characteristics (virulence, etc.), and environmental conditions (e.g., contaminants, hydrology, prey availability, etc.). As these factors shift, the risk of new epizootics (e.g., FeLV) and potentially catastrophic population effects can increase. As such, continual disease monitoring will be critical to track and identify known and emerging threats to the panther population.

Two panthers have been documented to die from disease within the Rural Lands Stewardship Area, representing approximately 8.7 percent of all panthers known to have died of disease, range wide (FWC unpublished data). Several environmental contaminants, namely mercury, poly-chlorinated biphenols (PCB) and dichlorodiphenyl dichloroethylene (DDE), have been documented in panther tissue and continue to be a potential threat to panther health and

3947 survivability (Facemire et al. 1995). These contaminants bioaccumulate in the aquatic food
3948 chain and reach most elevated concentrations in the upper trophic levels. Levels of these
3949 contaminants in panther tissues have fluctuated over the years of sampling, likely representing
3950 both ecological shifts that lead to variable contaminant levels in prey species, as well as changes
3951 in prey species selected by panthers.

3952
3953 Four panthers died from unknown causes within the Plan Area (5.8 percent of all panthers to die
3954 from unknown cause). We do not have a way to estimate future projections of panthers which
3955 may die from unknown causes, but we assume they are captured in the vital rates reported by van
3956 de Kerk et al. (2019).

3957
3958 **5.2.2.7 Climate Change**
3959

3960 Panthers, their prey, and their habitat are all at risk of impacts from climate change in south
3961 Florida. These include but are not limited to sea level rise and inundation of habitat, habitat
3962 degradation, mortality from extreme weather events, and vector-borne disease. Climate change
3963 will undoubtedly affect precipitation and temperature in the Action Area, likely altering
3964 vegetative community composition over time as well as seasonal water levels. We treat Sea
3965 Level Rise up to 2070 as an effect in the baseline portion of our assessment as it will have range-
3966 wide effects on demographic parameters and habitat availability for panthers within the proposed
3967 permit duration of the HCP. Sea Level Rise of 1m will affect the panther's range and roadways
3968 at the southernmost points of the Action Area, but the Plan Area isn't expected to be inundated
3969 by 2070.

3970
3971 **5.2.2.8 Small and Isolated Population**
3972

3973 Since state and federal laws afforded them legal protections, panther numbers slowly increased
3974 until genetic restoration efforts improved population health thereby allowing a rapid growth of
3975 the population. The current panther population, at least 5-fold larger in size when compared with
3976 the population 3 decades ago, has greater resiliency today than it has exhibited for likely well
3977 over 100 years. Despite these achievements, the population is still small, and models predict that
3978 it remains at risk from genetic introgression into the future (van de Kerk et al. 2019). Results
3979 from the two most recent PVA models (Hostetler et al. 2013, van de Kirk et al. 2019) reveal that
3980 the south Florida panther population is viable for the next 100 years assuming current conditions.
3981 However, these PVA models did not take into account large-scale habitat loss or other
3982 detrimental anthropogenic activities.

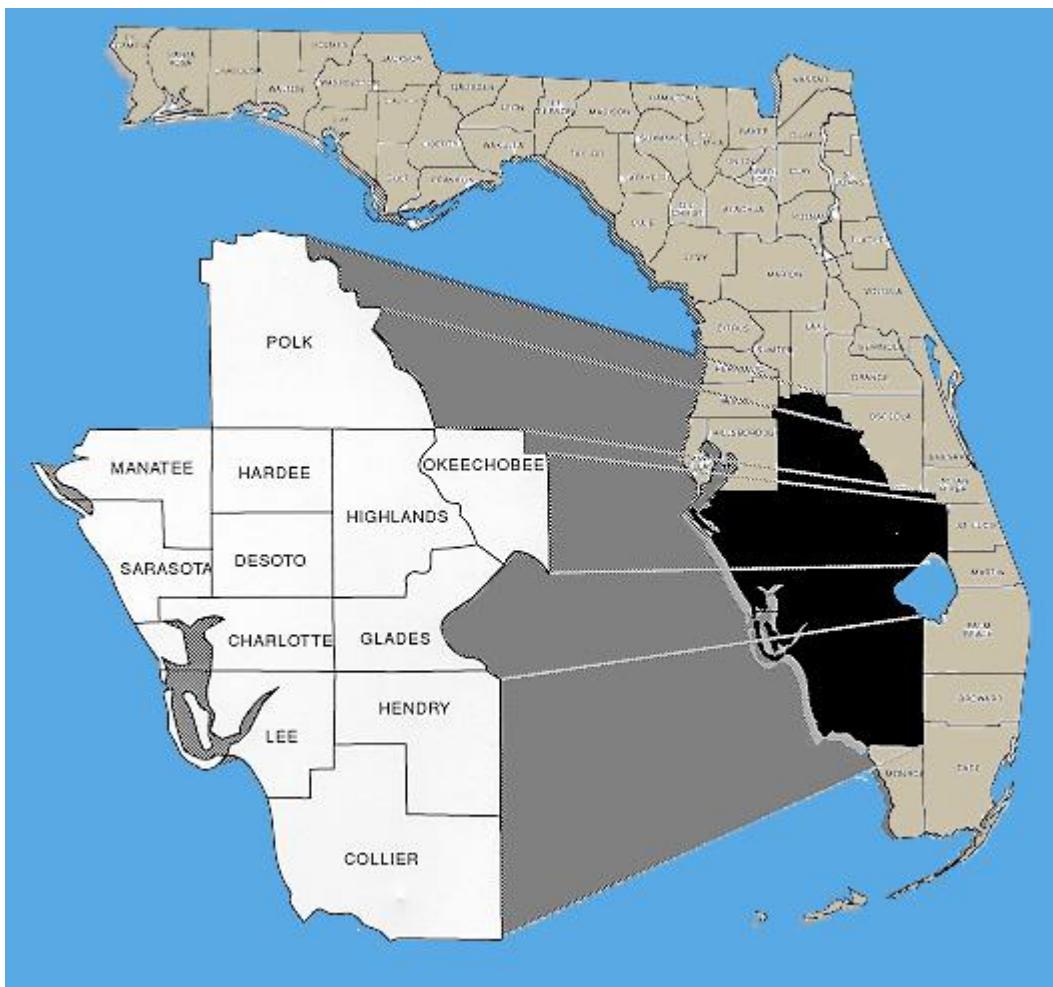
3984 **5.2.3 Tables and Figures**

3985

3986 **Table 5-3.** Observations and estimates of Florida panther use of the HCP Plan Area and Action
3987 Area Roads within the RLSA. The advantage of the Chapman's Estimate is that it estimates the
3988 abundance of panthers that weren't tracked with radio telemetry or killed in motor vehicle
3989 collisions that still used the HCP Plan Area in recent years.

3990

	N	Sum	Mean (SE)
Chapman's Estimate (2014-2019)	N/A	27.6 ±5.81	
Density Estimate	N/A	16.4±0.20	
Observed w/ Radio Telemetry (1982-2018)	97	7.9±0.65	
Documented Mortality (1980-2018)	74	5.2±0.34	
Dens (1996-Present)	9	N/A	
Kittens (1996-Present)	19	2.11±.26	


3991

3992

3993

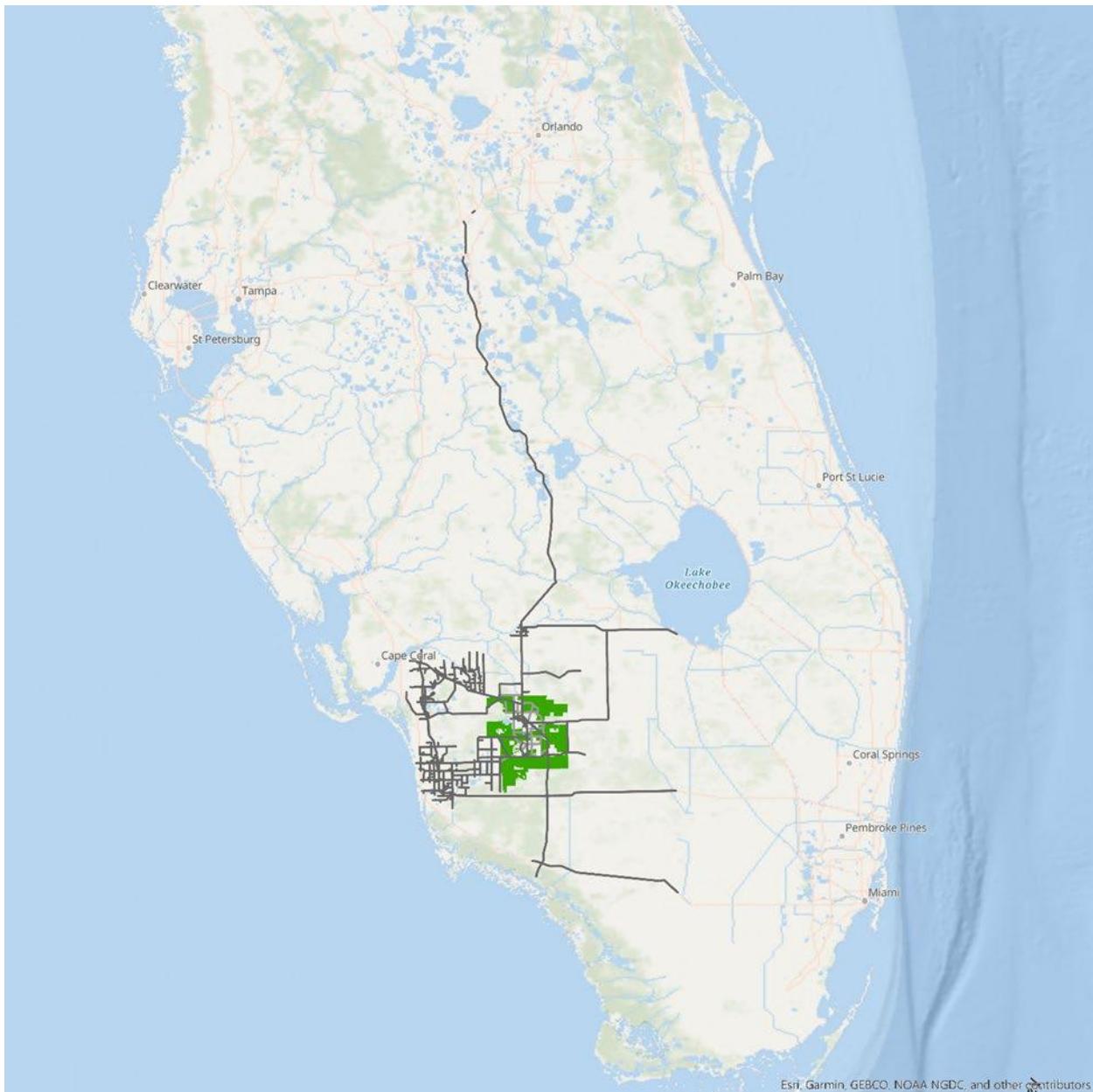
3994

3995

3996

3997

3998


3999

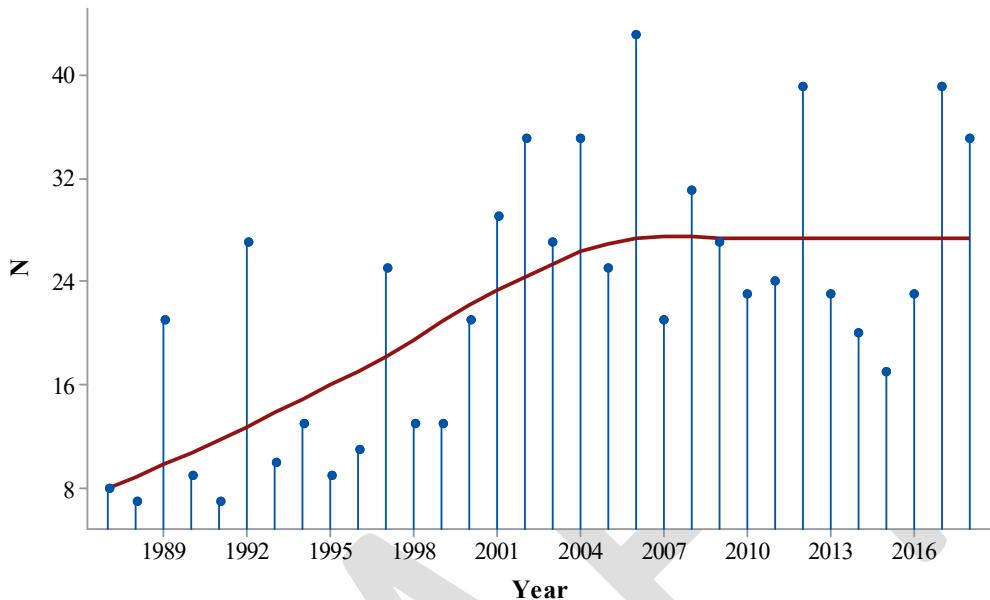
4000 **Figure 5-8.** Counties covered in the Florida Department of Transportation's District 1
4001 transportation model.

4002

4003

<https://www.fdot.gov/publications/distmap/d1map.shtml>

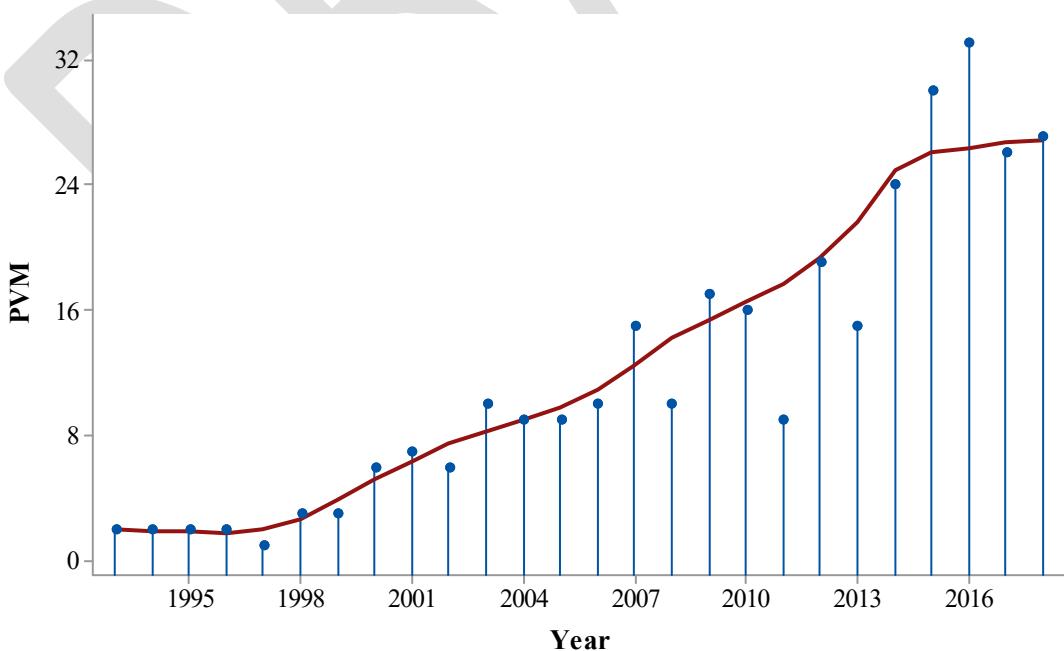
4004
4005
4006
4007
4008
4009
4010
4011
4012


Figure 5-9. Extent of the Action Area for this consultation, which includes:

- 1) the 159,489-acre Plan Area (green); and
- 2) 5,072 discrete road segments through and extending beyond the Plan Area (black).

Together the road segments equal 1,825 miles.

4013
4014


Population Size Estimate of the Plan Area

4015
4016
4017
4018
4019

Figure 5-10. Population size estimate of Florida Panthers using the Plan Area of the Eastern Collier Multiple-species Habitat Conservation Plan.

Panther/Vehicle Collisions (PVM) in the Action Area

4020

4021 **Figure 5-11.** Panther/motor vehicle mortality from 1993 to 2018.
4022
4023

4024 **5.3 Effects of the Action on Florida Panther** 4025

4026 This section analyzes the effects of the Action on the panther, which includes effects caused
4027 contemporaneously by the Action in addition to those that are reasonably certain to occur as a
4028 consequence of the Action at a later time. Our analyses are organized according to the
4029 description of the Action in Section 2 of this BO/CO.

4030 **5.3.1 Development and Mining, Base Zoning, Eligible Lands** 4031

4032 39,973 acres of commercial development, residential development, and earth-mining activities
4033 will occur within a 43,767-acre development envelope (Covered Activities Area, Base Zoning,
4034 and Eligible Lands). This development will take place within and be principally clustered in
4035 areas of habitat least valuable to the panther. The approximately 3,794 acres (43,767 acres of
4036 Applicant-owned land with 39,97-acre development cap) the Applicants do not develop will be
4037 managed in perpetuity in their current land use or become managed to the benefit of Covered
4038 Species. The addition of these 3,794 acres to areas to be preserved, and managed to the benefit of
4039 species in perpetuity, are already calculated as part of the Preserve Area.
4040

4041 **5.3.1.1 Habitat Loss** 4042

4043 The Applicants propose to develop 39,973 additional acres in the Plan Area and preserve
4044 approximately 90,576 acres in designated Preserve Areas and Very Low Density Use Areas.
4045 These two categories of use represent 130,549 of 185,935 acres within the RLSA. Because the
4046 community of Ave Maria takes 5,027 acres from Collier County's 45,000-acre development cap,
4047 development proposed by the Applicants will take the remaining balance of lands eligible for
4048 high density development in the RLSA.
4049

4050 To estimate the effect of this habitat loss on the Florida panther population we 1) estimated the
4051 population size of Florida panthers in the Plan Area; 2) relied on more recent analyses of habitat
4052 use by panthers to estimate the demographic value of habitats' contribution to overall ecological
4053 carrying capacity; and 3) subtracted habitat likely to be lost to Covered Activities to arrive at the
4054 equivalent value of carrying capacity loss for Florida panthers.
4055

4056 The HCP assumes it is likely, though not intended, that the "worst case scenario" for
4057 development in the Covered Activities Area would impact preferred panther habitat, first.
4058 Panther activity is concentrated in native forested cover types and in other habitat types within
4059 300 m around native forest. Therefore, we use the RMI method described in section 2.1.4 to
4060 estimate the extent of development in panther habitats, and assume that all panther-preferred
4061 habitat is taken first in the course of development. Native forested cover types cover 2,418, 110,
4062 and 3,505 acres of the Development and Mining, Base Zoning, and Eligible Lands designations,
4063 respectively (Sum of wetland and upland forests, Table 5-4). These 6,033 of native forest, and
4064 24,583 acres of habitat within 300 m of native forest types, equals a total of 30,616 acres. This is
4065 less than the development cap of 39,973 acres (Tables 5-5 and 5-6).
4066

4067
4068 The conversion of habitat within the development envelope from their current uses, to proposed
4069 development, will affect the ability of the Plan Area to support panthers. Specifically, 102,352
4070 acres of habitat for panther exist within the Plan Area (forest cover plus all other habitats within
4071 300 m of forest cover) (Table 5-6). As described in the HCP our analysis includes these
4072 assumptions: (1) the Applicants avoid development and earth-mining activities in the most
4073 valuable habitat for panthers whenever possible, and (2) all Lands Eligible for Inclusion do
4074 eventually join the HCP, we estimate the proposed action (Covered Activities Area, Base-Zoning
4075 Area, and Lands Eligible for Inclusion) will permanently remove approximately 2,418 acres of
4076 upland and wetland forest (Column B, Table 5-6). Additionally, 11,342 acres of land used for
4077 agriculture, 1,813 acres of marsh-shrub-swamp, 998 acres of pasture (prairie-grassland), 3,361
4078 acres of Prairie-Grasslands, and 754 acres of lands used for all other purposes within 300 m of
4079 forest will also be converted to residential development, commercial development, or be used for
4080 earth-mining. This will result in the loss of 18,872 acres of total habitat used by Florida panthers
4081 in the Plan Area (Column F, Table 5-6).
4082
4083 To quantify the value of these habitats to panthers and their ability to sustain individual panthers,
4084 based on observed use and habitat availability, we used a Panther Preference Factor, a metric of
4085 panther use of different habitat types, as opposed to the South Florida RFP model (Frakes et al.
4086 2015), which analyzes probability of panther presence on landscapes. The Panther Preference
4087 Factor is the inverse of habitat preference ratios identified by Onorato et al. (2010) (1/third-order
4088 habitat selection ratio), to weight areas of habitat impacted by the action by their value to
4089 panthers (Column D, Table 5-6). We then multiplied these weights against the available panther
4090 habitat acres in the plan area to generate a Preference-Weighted Plan Area Habitat Acres
4091 estimate for each habitat type available. Thus, we estimate the Plan Area's actual value to
4092 panthers, based on habitat use and availability is equivalent to 138,848 preference-weighted
4093 acres (Column E, Table 5-6). We then multiplied the Panther Preference Factor against the
4094 Panther Habitat Acres we expect to be developed within the Development Envelope to obtain
4095 Preference-Weighted Development Envelope Acres, a measure of the value of habitat that will
4096 be lost to panthers, based on use and availability, because of development (Column I, Table 5-7,
4097 and Appendix G). Subtracting the latter from the former gives us the Post-Development
4098 Preference Weighted Habitat Acres that will remain in the Plan Area after development is
4099 complete, which we estimate will be 117,330 Preference-Weighted Acres.
4100
4101 One method of estimating the impact of the action on panthers is identifying the proportion of
4102 area affected by development. To find the extent of area unchanged by the proposed action we
4103 divided 117,330 acres by 138,848 acres, yielding a calculated estimate of 84.5 percent of habitat
4104 that won't be affected by the action based on actual habitat use and availability. The inverse of
4105 this (1-0.845) is 0.155, the product of which indicates the area of habitat that will be affected
4106 based on use and availability. Assuming ~15 panthers use some portion of the Plan Area as part
4107 of their home range (based on past telemetry records), we would expect development and earth
4108 mining (excluding eligible lands) to reduce the population of the Plan Area from 15 individuals
4109 to 12.7 (15 x 0.84 = 12.7 panthers), meaning the action will reduce the number of panthers using
4110 the Plan Area up to the equivalent of 2.3 adult panthers (15 x 0.155 = 2.3).
4111

4112 As discussed in Section 5.2.1, recent research found that panther densities in and near the Plan
4113 Area are higher than previously estimated, elsewhere, and range between 3.9/100km² and
4114 4.03/100km² (Onorato et al. 2020). Based on the availability of habitat in the Action Area a
4115 density-based population size estimate ranges between 16.2 and 16.6 panthers utilizing the Plan
4116 Area at any given time, and that proposed development will account for decrease in this
4117 population equivalent to 2.5 - 4.4 panthers (Table 5-7). Specifically, the loss of 30,616 acres of
4118 panther habitat in the Development and Mining, Base Zoning, and Eligible Lands Envelope
4119 would incur a loss in carrying capacity equivalent to 4.3 and 4.4 panthers/year at full buildout.
4120 Similarly, 18,872 acres of estimated development in an envelope only containing developable
4121 and minable lands in the HCP Cover Activities Area and Base Zoning categories reduces the
4122 estimate of carrying capacity reduction to between 2.5 and 2.6 panthers (Table 5-7). Based on the
4123 average of these estimates (3.5) we conclude habitat necessary to fully support at least 3 panthers
4124 will be lost as a result of proposed development. Conversely restoration of 17,605 acres of
4125 agricultural lands to forest cover in the Preserve area could boost the Plan Area carrying capacity
4126 by the equivalent of 1 to 3 panthers, annually. However, although one of the purposes of the
4127 Marinelli Fund is habitat restoration, the Applicants have not provided details regarding the
4128 location or magnitude of habitat restoration that would allow us to provide a quantitative
4129 estimate of any potential offset to the projected habitat loss.
4130

4131 These decreases in carrying capacity from loss of habitat in the Plan Area will likely also have
4132 secondary effects on panthers beyond its boundary. For instance, it is likely intraspecific
4133 aggression beyond the Plan Area boundary will increase when such resources within the Plan
4134 Area are reduced. As it stands 14 panthers were killed between 1980 and 2018 within the Rural
4135 Lands Stewardship Area, which includes lands of the Plan Area and areas immediately adjacent
4136 to it, due to intraspecific aggression. These individuals make up 15.7 percent of all individuals
4137 known to have died from intraspecific aggression, range wide. Our expectation is that mortality
4138 attributable to intensified competition for resources, manifested as interspecific aggression, will
4139 increase beyond this baseline within and beyond the boundaries of the Plan Area as a result of
4140 habitat loss from HCP-proposed development. Habitat loss that sufficiently reduces the
4141 availability of resources to panthers in the Plan Area can also force panthers to abandon home
4142 ranges overlapping the Plan Area, or force young adults to disperse greater distances, which can
4143 increase their risk of injury and death from other sources (e.g., vehicle collisions).
4144

4145 As mentioned previously, we estimate between 23 and 12 percent of the panther population
4146 (assuming a population size of 120 or 230 adults, respectively) use habitats in the Plan Area for
4147 feeding, sheltering, denning, or dispersal each year. Given these represent high percentages of
4148 the total estimated population of Florida panther, it is likely habitat loss and fragmentation in the
4149 Plan Area may undermine the ability of the Plan Area to support a significant part of the overall
4150 panther population using it for a portion of their home range. It is also likely that habitat loss in
4151 the Plan Area may also reduce the resource value of the Plan Area to a substantial share of
4152 young, non-resident panthers during dispersal if adequate dispersal corridors and habitat linkages
4153 are not maintained. In both cases it is likely these will have range wide effects to the species.
4154 Two such corridors/linkages exist within the Plan Area: namely Camp Keais Strand and
4155 Okaloacoochee Slough. These secondary and tertiary effects of habitat loss in the Plan Area are
4156 discussed more fully in the appropriate, following sections.
4157

4158 **5.3.1.2 Habitat Fragmentation**

4159
4160 New developments and roads proposed by Applicants to connect new developments to each
4161 other and to main roads, as well as increasing traffic volume on new and existing roadways may
4162 contribute to habitat fragmentation. The potential impacts of habitat fragmentation to the panther
4163 are described in 5.2.2.2. The Applicants provided no information to the Service directly
4164 regarding the possible locations of new roads or an estimate of traffic volume on them, thus we
4165 will rely on the mortality estimates provided in Sections 5.3.1.3 and 5.3.1.4 to partially predict
4166 the effect these will have on population growth, if not population connectivity.

4167
4168 Due to likely increases in traffic volume in the Action Area panthers that breed, feed, shelter, and
4169 disperse in the area of the 1,825 miles of existing roads (including 91 miles that will require
4170 upgrade) and 83-87.5 miles of new roadways likely to be built in the future, will find it more
4171 dangerous to cross roads or will avoid crossing roads during peak periods of traffic. The spatial
4172 extent of these roadways, which will act as barriers to travel by panthers across the landscape,
4173 encompass the full expanse of Zone A of the Functional Zone. 94 percent of these roadways are
4174 within 25 miles of the HCP boundary, which encompasses a majority of panther habitat south of
4175 the River.

4176
4177 HCP proposed development will also contribute to habitat fragmentation affecting connectivity
4178 between the Big Cypress Core Habitat Region and Okaloacoochee Slough Core Habitat Region,
4179 and between these and Core Habitat Areas north of the Caloosahatchee River, by intensifying
4180 existing barriers. Assuming 10,000+ vehicles per day constitutes a near-complete barrier to
4181 panthers (see Section 1.1.6.2; Charry and Jones 2009) we offer the following analysis for habitat
4182 fragmentation caused by traffic. Our analysis of the Traffic Model for Action Area roadways
4183 identifies 535 miles of existing roadways that will cross the 10,000+ vehicles/day threshold by
4184 2070 (Figure 5-12). The analysis also identifies 278 miles of roadways that will move from
4185 “onset” to “peak” impacts to wildlife (<3000 vehicles/day before to 3000-6000 vehicles/day
4186 after) by 2070. Traffic volumes in this range are expected to increase risk to all wildlife,
4187 including panthers (Charry and Jones 2009). Existing roads at 10,000+ vehicles/day now and
4188 existing roads that will exceed the 10,000+ vehicles/day threshold because of future traffic from
4189 the Plan Area will decrease panther access to ~729.5 km² (180,263 acres, or 8 percent) of
4190 Functional Zone habitat within and adjacent to the Corkscrew Regional Ecosystem Watershed
4191 (CREW). These effects can be minimized with measures that include but are not limited to,
4192 installation of wildlife crossing(s) and fencing, enforcement of speed limits, and panther corridor
4193 establishment/management.

4194
4195 Presently, four wildlife crossings facilitate access to the southern portion of CREW, and one
4196 facilitates movement within it. Three of these exist on a singular corridor into and out of CREW
4197 from the south (through Camp Keais Strand), while a fourth appears to facilitate panther
4198 movement southward into Golden Gate Estates. Currently, there are no wildlife crossings on the
4199 ground to facilitate dispersal of panthers from CREW northward across SR-82 and CR
4200 876/Daniels Parkway, or across current (e.g., Lehigh Acres) or future barriers (e.g., HCP
4201 development). On January 28, 2020, the Applicants amended the HCP to add a second panther
4202 corridor north of CREW and acreage to the corridor along the Collier-Hendry county line (Figure
4203 5-13). This second corridor was designed to maintain a minimum width of 400 meters and

4204 intersects the FDOT wildlife crossing location on SR-82 at Under Canal (approximately 0.7 mile
4205 west of the intersection of SR-82 and Corkscrew Road). With the addition of this corridor, the
4206 HCP provides landscape connections through both FDOT wildlife crossings on SR-82. An
4207 additional crossing, which the county and state have designed and funded at Corkscrew
4208 Crossings, has yet to be constructed. Upon construction, though, this crossing should provide
4209 additional panther access to this area of habitat and reduce current high mortality at this location.
4210 When completed, these crossings will provide vital access to approximately 383.8 km² of habitat
4211 that facilitates dispersal of panthers from the northern boundary of the CREW habitat region to
4212 the Caloosahatchee River.

4213
4214 Existing and proposed barriers also reduce the ability of panthers to access the Okaloacoochee
4215 Slough State Forest from CREW to the west and the Big Cypress NP to the south. These
4216 corridors are bisected by SR 29 (from Immokalee to La Belle) and CR 846 (Immokalee to
4217 County Line Road). Currently there is only one crossing servicing this ~30-mile stretch of
4218 roadways. Projected increases in HCP-generated traffic will substantially reduce panther access
4219 between these locations (Figure 5-12).

4220
4221 An additional barrier already exists along ~30 miles of roadways spanning SR-80 from Labelle
4222 to where it joins with SR-27 at Whidden Corner on to Clewiston. Most stretches of the road
4223 already exceed 10,000+ vehicles/day, and there is only one wildlife crossing. The 4 miles of this
4224 route that don't exceed this threshold are likely to become areas of substantial impact (3,000-
4225 6,000 vehicles/day) as a result of proposed HCP-generated traffic, which will further intensify
4226 the impact of this barrier on panther movement across the landscape. This stretch of road is very
4227 important because it cuts across the Dispersal Zone. Local and state agencies are currently
4228 constructing an additional wildlife crossing on SR-80, which will provide additional access for
4229 panthers to move through this barrier to areas north of their present breeding range.

4230
4231 However, the most significant contribution of HCP sourced traffic volume to fragmentation is its
4232 potential to contribute to the intensification of the barrier effects along north/south series of
4233 roadways that can result in bisection of the Functional Zone, potentially splitting it into two
4234 sections of roughly ~4,500 km² each. Traffic generated by development proposed in the HCP
4235 will intensify along ~89 miles of roadways beginning on SR-29 near La Belle, extending
4236 southward to its junction with the Tamiami Trail, then eastward along the Tamiami Trail to the
4237 vicinity of the Paolita Station, which is the terminus of the District 1 traffic model.

4238
4239 Specifically, our analysis of the traffic model indicates some of SR-29 from La Belle to its
4240 intersection with I-75 is already over the threshold of 10,000+ vehicles/day that serves as a
4241 nearly complete barrier to all taxa. If projected HCP-generated traffic is realized, nearly all of
4242 SR-29 from LaBelle to I-75 will exceed the 1,000+ vehicle/day threshold. Development
4243 proposed in the Plan Area would also nearly triple AADT from the intersection of I-75 and SR-
4244 29 southwards, along SR-29 to Tamiami Trail, then eastward along it to at least Paolita Station.
4245 This increase in traffic volume will fall within the range of substantial impacts to carnivores,
4246 including *Pumas*, of 3000-and 6000 vehicles/day (as defined by Charry and Jones 2009). There
4247 are currently 6 wildlife crossings on SR-29, 4 north of I-75 and 2 south of I-75. Additional
4248 crossings will likely be needed to minimize the effects of projected increases in HCP-generated
4249 traffic (and other development activities).

4250
4251 To address the effects of new and intensifying habitat fragmentation and vehicle mortality from
4252 increasing regional traffic the Applicants have committed the first \$12.5 million from the
4253 Marinelli Fund to facilitate the construction of wildlife crossings. Based on the opinion of
4254 species biologists that have previously worked to establish wildlife crossings for panthers in the
4255 past, which estimated a cost of \$1.5 million per crossing, we estimate the amount pledged by the
4256 applicants would enable the construction of about 8 wildlife crossings and associated fencing.
4257 As part of adaptive management, the applicants will work with local, state, and Federal partners
4258 to place these crossings in areas of greatest need. SR 29 from Immokalee to I-75 and other
4259 locations identified by the PRIT Transportation Subcommittee have already been identified as
4260 areas in need of more crossings. Therefore, we expect crossings across these roadways will help
4261 ensure that important panther habitats will not become isolated. Cooperation among permittees
4262 is built into the HCP, which can help plan crossings across ownership, ensure that suitable
4263 habitat remains on either side of the crossing, and that fencing and gates are maintained and used
4264 properly. These crossing will help offset traffic from HCP projects and from other sources as
4265 well.

4266
4267 Additionally, though local, state, and Federal partners are in various phases of pre-planning for
4268 an additional 4 crossings, the Service has not yet consulted on these, so we cannot assume they
4269 are reasonably certain to occur. A fifth crossing is planned and funded for Corkscrew Road, but
4270 won't be constructed until it's been determined traffic volumes justify widening the road at this
4271 location. However, this crossing is more than 2 miles from the nearest cluster of panther
4272 mortalities and wouldn't be included in our analysis for that reason.

4273
4274 Quantifying the demographic impact of habitat fragmentation requires a more detailed analysis
4275 than we are capable of for this HCP because we lack precise information about where the
4276 developments will be built, how landscapes around them will be managed, and where future
4277 crossings will be located. We also lack information about immigration and emigration rates
4278 across roadways bisecting areas of habitat used by panthers that would serve as a starting point
4279 for analyzing the effects of increasing habitat fragmentation. Thus, our PVA (section 5.5) does
4280 not include explicitly defined estimates of demographic impacts from habitat fragmentation.
4281 However, the PVA does incorporate estimates of impacts from highly related sources of
4282 mortality identified in Moss et al. (2016a) and discussed in more detail in sections 5.3.1.3 and
4283 5.3.1.4. Therefore, we believe our estimates of mortality in each of those sections capture some,
4284 if not most, of the primary effects of increased habitat fragmentation within the immediate
4285 vicinity of the Plan Area and this is reflected the results of our PVA described in Section 5.5.

4286
4287 **5.3.1.3 Habitat Degradation**

4288
4289 Habitat degradation refers to the reduction in quality in an area of habitat for a given species. A
4290 species may still inhabit an area where habitat degradation occurs, but certain life history
4291 functions, such as reproduction, may no longer be successful.

4292
4293 Decline in Prey Abundance
4294

4295 Habitat loss discussed in Section 5.3.1.1 will affect the panther's prey as well as the panther. In
4296 addition to the reduction in prey using these habitats, we expect the establishment of new
4297 developments in the Plan Area will shift the wildland/urban interface (WUI) closer to the Big
4298 Cypress Core Habitat Region and Okaloacoochee Slough Core Habitat Region , the only Core
4299 Habitat Regions occupied by panthers (USFWS Draft 2020). When this occurs, we anticipate
4300 there will be a shift in the composition of the prey community and prey selection by panthers
4301 near the new WUI as has been observed elsewhere for cougars (Burdett 2010, Moss et al. 2016,
4302 Blecha et al. 2018, Alldredge et al. 2019, Coon et al. 2019, Kreling 2019). Specifically,
4303 numerous studies have found that urbanization results in the proliferation of cosmopolitan
4304 species such as rats and raccoons, the introduction of exotic species that compete with or prey on
4305 native species, the concentration of other species like white-tailed deer in exurban and urban
4306 areas, and the switching of *Puma concolor* to smaller prey items to reduce prey handling time
4307 where interruption by human activity becomes common. Concentration of traditional prey
4308 species like white tailed deer in exurban and urban areas increases the risk of Florida panthers we
4309 be subject to mortality or removal, while prey switching will increase the possibility panthers
4310 using lands near the WUI will contract disease or be poisoned by contaminants. The reduction in
4311 preferred prey increases the likelihood panthers near the new WUI will experience nutritional
4312 stress and engage in depredation of domestic species; more frequently engage in intraspecific
4313 aggression with, and predation of and by, other apex predators; and increase the likelihood
4314 panthers will engage in intraspecific aggression with other panthers occupying neighboring home
4315 ranges. Thus, the impact of proposed development near otherwise suitable habitat will cause
4316 additional injury or death of panthers. The decrease in prey abundance or change in prey
4317 community composition and corresponding increase of injury or mortality of panthers near the
4318 new WUI will be indicative of degraded value of otherwise suitable habitat near HCP proposed
4319 development.

4320

4321 Human Activity

4322

4323 Impacts from construction (e.g., noise, smoke, land/vegetation clearing, earth moving and
4324 grading, dewatering, construction of buildings and infrastructure) and use of completed facilities
4325 will occur in the development footprint. Specifically, we estimate that noise, dust, and pollution
4326 from development may degrade habitat up to 300 m outside the development footprint. Some
4327 activities associated with mining (e.g., blasting) may temporarily extend farther by affecting
4328 panthers up to 1,000 m away during earth mining activities (HCP). During the construction phase
4329 some of these activities could cause panthers and/or their prey to avoid these areas until
4330 construction is completed. However, effects like noise from humans working and living in newly
4331 constructed communities and commercial facilities, pollution, and exposure to disease and
4332 harassment from interactions with pets and wildlife exposed to them, and potential management
4333 removal of individuals that become problematic for residents will persist as long as human
4334 development is present on the landscape. Studies in other regions of the country have found that
4335 other populations of *Puma concolor* have switched their prey preference to cosmopolitan meso-
4336 predators and rodents because of their elevated relative abundance and shorter handling times
4337 when the possibility of interruption by human activity becomes common. We expect the
4338 movement of the WUI via HCP proposed development closer to occupied Core Habitat Regions
4339 of the Florida panther's range (USFWS Draft 2020) will have similar effects and that these

4340 changes to the panther's environment will result in a permanent reduction in the value of
4341 adjacent areas of habitat used by panthers.

4342

4343 Environmental Contaminants

4344

4345 In the Santa Monica Mountains National Recreation Area SMMNRA 83–93 percent of coyotes,
4346 bobcats, and cougars had measurable concentrations of anticoagulant rodenticides (ARs) in body
4347 tissues, with 4 cougars known to have died from anticoagulant rodenticide toxicosis (Section
4348 5.1.6.3). These poisonings have been attributed to bioaccumulation in cougars via the
4349 consumption of rodents poisoned with these near the urban/wildlands interface (Riley et al. 2007,
4350 Moriarty et al. 2012). As mentioned previously, *Puma concolor* have been documented as
4351 shifting their prey to more abundant meso-predators and rodents where development is present,
4352 meaning those with home ranges close to the new WUI are especially vulnerable to toxicosis
4353 when ARs are used. Our own spatial analysis (Appendix D) of exposure to ARs among Florida
4354 panthers, in addition to confirmed cases of lethal AR poisonings of other wildlife species in
4355 Collier County, gives us reason to expect failure to prohibit ARs in new developments proposed
4356 in the HCP will result in exposure and effects to Florida panthers similar to those observed
4357 among cougars and other species in the SMMNRA. The presence of environmental contaminants
4358 nearer the core range of the Florida panther increase the likelihood of injury or death of panthers,
4359 thereby diminishing the value of core habitat nearer to the new WUI of HCP proposed
4360 development.

4361

4362 Estimate of Effects

4363

4364 Moss et al. (2016a) examined puma foraging ecology and survival in an expanding urban–
4365 wildland system in Colorado from 2007 to 2013. For GPS-collared individuals, they related diet
4366 to age–sex class and fine-scale space use, with regard to levels of habitat development. They also
4367 examined how habitat development impacted risk of mortality, using hazards models and records
4368 of puma–human conflict. In their study, Moss et al. (2016a) found use of developed areas
4369 substantially increased risk of puma mortality; for every 10 percent increase in housing density,
4370 risk of mortality increased by 6.5 percent, regardless of sex. However, this risk is elevated
4371 compared with the management strategy in South Florida because a total of 62 percent (16 of 26)
4372 of mortalities in adult pumas were human associated. Of the human-associated mortalities, over
4373 half (n=10) were caused by lethal removal, either by a management agency or by private
4374 landowners. Other human-associated mortalities were hunting (n=3) and vehicular trauma (n=3).
4375 Natural deaths (n=5) were those caused by intraspecific conflict (n=3) or injury (n=2). The cause
4376 of death was undetermined for five individuals.

4377

4378 Since the proposed action will result 39,973 acres of new residential and commercial
4379 development within the 159,489-acre Plan Area, we estimate housing density in the Plan Area
4380 will increase by approximately 25 percent. Dividing this by 10 percent and multiplying the
4381 answer by 6.5 percent yields an estimate of 16.3 percent of panthers using the Plan Area each
4382 year potentially being taken from all causes related to the proposed development, at full buildout.
4383 In Section 5.2.1 we estimated a population size within the Plan Area was of 27.6 ± 5.81
4384 individuals using the plan area each year, meaning a maximum of 33.4 ($27.6 + 5.81 = 33.41$)
4385 panthers likely utilize the Plan Area, annually. Thus, we estimate an unadjusted likely maximum

4386 take of the equivalent to 5.2 adult panthers could occur annually as a result of lethal/injurious
4387 stressors generated by proposed development, within the Plan Area, at full buildout. When we
4388 adjust this range to account for roadways on which mortality was already estimated by other
4389 means (SEE SECTION 5.1.1.4 Motor Vehicle Mortality and [Appendix A](#)), and eliminate
4390 mortality from causes identified in the Moss et al. (2016) study that have no analog in the range
4391 of the Florida panther (e.g., hunting, lower management removal), we arrive at an adjusted
4392 estimate of the equivalent of ~1 adult panthers being lost annually, at full build out. These
4393 individuals will be taken from causes other than mortality on existing roadways and habitat loss
4394 due to residential development, commercial development, and earth mining activities. These
4395 sources of mortality may include but are not limited to:

- 4397 • Increased mortality from intra-specific aggression among panthers displaced by proposed
4398 development and human activity;
- 4399 • Increased mortality and decreased individual fitness caused by intensification of intra-
4400 and inter-specific competition;
- 4401 • Increased predation of panther kittens from other predators when preferred prey
4402 populations decline;
- 4403 • Effects to individuals from habitat loss, degradation, and fragmentation because of new
4404 roads connecting new areas of development to one another and the existing road network.
- 4405 • Increased injury and mortality from collisions with traffic on new roads;
- 4406 • Management removal because of depredation and human/panther interactions;
- 4407 • Increased exposure to disease;
- 4408 • Increased exposure to toxins

4410 The PVA incorporates this estimate and is described in more detail below (Section 5.5). This
4411 estimate is above what is captured in current vital rates in the van de Kerk et al. (2019) PVA
4412 because it relates to new development.

4413 **5.3.1.4 Motor Vehicle Mortality**

4416 Panther deaths by vehicle collision are an important human-caused mortality type and highway
4417 exposure risk varies for individual panthers and across the landscape. This is true for panthers in
4418 the Action Area (see Sections 5.1.6.4 and 5.2.2.4). Much of the Florida landscape is
4419 characterized by high road density, and the probability of adult panther presence declines
4420 precipitously as the number of people and roads per unit area increases (Frakes et al. 2015).
4421 Benson et al. (2019) suggested that extinction probabilities could be reduced by increasing
4422 connectivity among puma populations and reducing risks of vehicle collisions.

4424 Under section 7 of the ESA, the effects of a project are determined by comparing the baseline
4425 condition (in this case the current traffic volume in the Action Area) to the future condition with
4426 the project (in this case the increase in traffic volume predicted in the future due to HCP-
4427 generated traffic in the Action Area). The future traffic in the Action Area that is generated by
4428 sources other than the HCP is used for calculating cumulative effects later in Section 5.4, while
4429 traffic volume which is likely to be generated by the HCP are used for calculating future impacts
4430 of HCP-generated traffic volume on panthers in this Section.

4432 While we consider effects of the HCP, such as the increased levels of traffic on roadways that
4433 wouldn't occur but for the construction of HCP-proposed developments, we acknowledge that
4434 the Applicants are not responsible for all cars on the road or the behavior of drivers that may
4435 contribute to collisions with panthers and that other entities also influence when and where roads
4436 may be built or widened, and resulting traffic will also pose additional risks to panthers.
4437

4438 However, the Applicants do have control over locations of development within Plan Area and
4439 the design of developments, such as their size, number of development units, and internal trip
4440 capture rate. This means, though it would be impossible to assess the contribution of the
4441 Applicants' actions to specific instances of panther/vehicle collision in the future, it is possible
4442 for us to analyze the influence of HCP-generated traffic on the overall risk of panther/vehicle
4443 collisions in the Action Area.
4444

4445 The Applicants are willing to collaborate with agencies responsible for road construction or
4446 improvement, and with other panther stakeholders, to reduce the risk of panther/vehicle
4447 collisions. They have proposed conservation measures that will reduce the risk of
4448 panther/vehicle collisions throughout the range of the species. These conservation measures
4449 include facilitating the construction of additional wildlife crossings and maximizing community
4450 capture of vehicle trips through the provision of services within developments that limit the need
4451 for residents to travel outside of developments on area roadways. Measures such as wildlife
4452 crossings will reduce mortality among panthers from HCP and non-HCP sources, alike. For the
4453 purposes of the PVA, we have estimated that the effectiveness for wildlife crossings is 80
4454 percent and internal trip capture at 50 percent. A currently unquantifiable benefit of the HCP is
4455 that if a crossing is proposed on HCP covered lands, we can work with ECPO landowners to
4456 ensure that habitat for panthers is maintained in perpetuity on both sides of the road, and
4457 adequate fencing and gating is installed and maintained. These features will increase crossing
4458 effectiveness and enhance wildlife corridor functionality that will be greater than what is
4459 currently estimated in the PVA. Although this coordination would be possible without the HCP,
4460 it would be probable with the HCP in place.

4461 AADT is a common metric used for transportation planning at local, state, and federal levels and
4462 the metric we selected as an indicator of future traffic volume from HCP and non-HCP sources.
4463 We obtained estimates of future traffic from either source by using the FDOT District 1 Regional
4464 Planning Model (D1RPM) to predict traffic levels in the Action Area at full build-out based on
4465 socioeconomic projections (residents/jobs) for southwest Florida. We adjusted the regional
4466 socioeconomic projections to account for the addition of 174,000 residents and 91,480 dwelling
4467 units proposed in the HCP at a density and internal trip capture (~50 percent) comparable to that
4468 in the Ave Maria development. Then we applied these assumptions on existing roads within the
4469 Plan Area where these developments are most likely to occur. This analysis is described in more
4470 detail in Appendix H.
4471

4472 We found HCP-proposed developments will likely generate a portion of the total traffic volume
4473 in the future. Using the D1RPM and the adjustments describe above (Adjusted D1RPM Model),
4474 we estimate the proposed development in the HCP will generate 718,498 new daily trips on
4475 regional roadways that either originate in or terminate within areas proposed for development in

4476 the HCP. The range of contribution from the HCP on individual road segments in the model is
4477 between a 0 percent and 98.5 percent increase over current AADT.

4478
4479 To analyze the increased risk of this portion of traffic to panthers we do the following:

4480

- 4481 (1) determine the current panther mortality due to vehicle collisions on each road segment in
4482 the Action Area (Current Road Segment Mortality);
- 4483 (2) calculate the average current traffic volume on each road segment with a history of
4484 panther mortality in the Action Area (Current Road Segment AADT in Action Area)
4485 (both inside and outside the Plan Area);
- 4486 (3) identify the volume of predicted HCP-generated traffic for each road segment with a
4487 history of panther mortality in the Action Area (Future Road Segment HCP AADT in
4488 Action Area);
- 4489 (4) estimate the predicted proportion of future panther mortality due to HCP-generated traffic
4490 on each road segment with a history of panther mortality in the Action Area (Future Road
4491 Segment HCP Mortality in Action Area);
- 4492 (5) estimate the total predicted proportion of future panther mortality due to HCP-generated
4493 traffic (Future HCP Mortality in the Action Area).

4494
4495 The Applicants have included a plan-wide proposal (Marinelli Funds to construct wildlife
4496 crossings with fencing) to help reduce this risk. To analyze the predicted proportion of future
4497 panther mortality due to HCP-generated traffic after new crossings are constructed using these
4498 funds we do the following:

4499

- 4500 (A) review current panther mortality on high mortality road segments and select the 8 road
4501 segments with the highest total road mortality (Current Panther Mortality on High
4502 Mortality Road Segments);
- 4503 (B) estimate the current traffic volume on each road segment with a history of high panther
4504 mortality in the Action Area (Current AADT on High Mortality Road Segments);
- 4505 (C) estimate the volume of predicted HCP-generated traffic for each road segment with a
4506 history of high panther mortality in the Action Area (Future AADT on High Mortality
4507 Road Segments from HCP-generated Traffic);
- 4508 (D) estimate the predicted proportion of future panther mortality due to HCP-generated traffic
4509 on each road segment with a history of high panther mortality in the Action Area (Future
4510 HCP mortality on High Mortality Road Segments);
- 4511 (E) estimate the amount of mortality that is predicted to be reduced along each high mortality
4512 road segment when the conservation measure is implemented (Future HCP Mortality
4513 Reduction on High Mortality Road Segments);
- 4514 (F) estimate the total reduction in mortality due to HCP-generated traffic on the high
4515 mortality road segments after the conservation measure is implemented (Future HCP
4516 Mortality Reduction due to HCP Conservation Measure); and
- 4517 (G) estimate total future panther mortality due to HCP-generated traffic on road segments
4518 after implementation of the conservation measure (Future Reduced HCP Mortality in the
4519 Action Area).

4520
4521 Motor Vehicle Mortality Associated with Effects of the Action

4522
4523 The details of each step (step 1 through step 5) of this calculation can be found in Appendix H.
4524 The result is that 11 panthers per year (at full build-out) (Table 5-9) are predicted to be killed on
4525 road segments in the Action Area due to increases in traffic resulting from HCP-generated traffic
4526 (Appendix H).

4527
4528 Effect of Conservation Measures on Motor Vehicle Mortality
4529

4530 Although, wildlife crossings do not prevent every vehicle collision with a panther, every time a
4531 panther successfully uses a wildlife crossing that crossing was 100 percent effective for that
4532 panther on that day. Though we are unable to estimate the ratio of vehicle strikes per panther
4533 crossing attempt with available data, we are able to measure how many panthers were struck at a
4534 location before crossing installation and contrast that with how many were struck at the same
4535 location after.

4536
4537 To measure crossing effectiveness, we compared mortalities on a given roadway before and after
4538 crossings were installed. We created a spreadsheet listing each underpass currently existing south
4539 of the Caloosahatchee River in southwest Florida. For each underpass, GIS was used to look
4540 within $\frac{1}{4}$ mile of the underpass and determine the number of panther vehicle mortalities that
4541 occurred prior to underpass installation and after underpass installation. The goal was to
4542 determine how successful each individual underpass was in reducing mortality, and then take an
4543 average to get an average underpass effectiveness. These data did not readily lend themselves to
4544 individual underpass analyses since some underpasses had no recorded panther mortality either
4545 before or after crossing installation. Other locations had no recorded panther mortality before
4546 crossing installation and some panther mortality after.

4547
4548 These cases made it difficult to assign a percent to each individual underpass. Instead, we
4549 looked at crossing effectiveness as a function of the entire network of wildlife crossings, and
4550 compared the sum of all mortality for all underpasses prior to underpass installation to the sum of
4551 all mortality for all underpasses after underpass installation. The sum of mortalities within $\frac{1}{4}$
4552 mile of the crossing, before installation, was 15 panthers. Afterwards, panther mortality within $\frac{1}{4}$
4553 mile of crossings dropped to 3 panthers. Using the equation $(1 - (\text{after/before})) * 100$ we
4554 determined all existing underpasses were collectively responsible for reducing vehicle mortality
4555 by 80 percent. We also found that crossing effectiveness in reducing mortality was a function of
4556 distance from the crossing, with most of the benefit of a crossing decreasing substantially at one
4557 mile from its location.

4558
4559 That said, effectiveness of individual crossings varies depending on a variety of factors that
4560 include, but are not limited to: location and type of the crossing, the number of crossings per
4561 length of roadway, length of fence, surrounding habitat, and traffic volume. Specifically,
4562 crossings located close to forest edges will likely be more effective than those located farther,
4563 because 82 percent of all vehicle mortalities occur where a road intersects a forest edge or the
4564 300 m buffer around one.

4565
4566 Lastly, hurricanes can knock down fencing and there have been incidents of gates being left
4567 open. Panthers use these unintended openings to access roadways and this has resulted in

4568 panthers being trapped between fencing, causing mortality and the need for management
4569 intervention. However, our analysis doesn't include a separate analysis of these incidents as our
4570 records don't always annotate when this occurred. For these reasons we believe the actual
4571 effectiveness of crossings over the long term is less than 100 percent. Thus, we believe the
4572 "effectiveness percentage" we calculated from the record as a whole (80 percent) is a reasonable
4573 estimate of the reduction in that risk on a landscape scale due to the construction of additional
4574 wildlife crossings.

4575
4576 As mentioned previously, the Applicants have committed \$12.5 million from the Marinelli Fund
4577 to facilitate the construction of wildlife crossings. We estimate this amount would enable the
4578 construction of ~ 8 wildlife crossings and associated fencing (SECTION 5.4.2). The following
4579 steps were used to determine the reduced number of mortalities expected in the Action Area due
4580 to HCP-generated traffic once the crossings are considered.

4581
4582 (A) Current Panther Mortality on High Mortality Road Segments
4583 (B) Current AADT on High Mortality Road Segment
4584 (C) Future AADT on High Mortality Road Segments from HCP-generated Traffic
4585 (D) Future HCP mortality on High Mortality Road Segments
4586 (E) Future HCP Mortality Reduction on High Mortality Road Segments
4587 (F) Future HCP Mortality Reduction due to HCP Conservation Measure
4588 (G) Future Reduced HCP Mortality in the Action Area

4589
4590 For transparency, the details of each step in this calculation are presented in Appendix I. If the 8
4591 crossings were located on road segments with the highest mortality rates, we estimate these
4592 crossings will reduce mortality from 11 individuals to 8 annually ($11 - 3 = 8$) in 2070 from traffic
4593 originating in the Plan Area (Table 5-9).

4594
4595 The Applicants have committed to providing further funds for the construction of additional
4596 wildlife crossings as they become available during the lifetime of the HCP. However, at this
4597 time we do not know how much additional funding will be available for this purpose, how many
4598 crossings these funds will facilitate, or where they will be located. It is also important to note
4599 our estimates of effect are contingent upon the assumptions made in the original traffic model.
4600 Future changes in the actions proposed in the HCP, such as increasing or decreasing internal trip
4601 capture, improvements to crossing effectiveness, or building more or fewer wildlife crossings
4602 can substantially change our estimate of the effects of the action on the panthers.

4603
4604 One of the more important assumptions made when the traffic model was produced was that
4605 future developments proposed in the HCP would have daily internal trip capture rates similar to
4606 the community of Ave Maria, which approaches 50 percent. However, recent proposals for
4607 residential communities submitted by the Applicants to Collier County in the Plan Area indicate
4608 some communities being planned will achieve an internal capture rate of 2 percent as indicated
4609 by the Applicants' planning documents. If developments that don't achieve the internal capture
4610 rate of Ave Maria are constructed, it is likely the traffic model will underestimate future traffic
4611 volume generated by development proposed in the HCP, and thus the total impact the proposed
4612 developments may have on panthers. If the Applicants build communities with a lower internal
4613 capture rate, but still use the \$12.5 million to construct crossings (e.g., 8 crossings are

4614 constructed), we would nonetheless expect higher panther mortality due to greater traffic on
4615 existing roads (Tables 13a and 13b in Appendix I). If more than 8 crossings can be constructed
4616 with the \$12.5 M committed by the Applicants or if internal capture rates exceed the 50 percent
4617 target assumed in the traffic model, then the panther mortality in our model would be an
4618 overestimate. Our analysis of the spectrum of possible effects that could occur as a result of
4619 different decisions with regards to crossings and internal capture is provided in Appendix I.
4620

4621 How wildlife crossings are built can also have an effect on the impact of traffic generated by the
4622 HCP on panthers. For instance, the Applicants could also implement measures that improve the
4623 effectiveness of wildlife crossings. Locating crossings in areas where natural habitat provides
4624 corridors frequently used by panthers, placing multiple crossings in longer hot spot segments,
4625 extending fencing, and landscape design can all increase the survivorship of panthers after
4626 wildlife crossings are built. A currently unquantifiable benefit of the HCPs is that if a crossing is
4627 proposed on HCP covered lands, we can work with ECPO landowners to ensure that habitat for
4628 panthers is maintained in perpetuity on both sides of the road, and adequate fencing and gating is
4629 installed and maintained. An example of this occurred recently when Alico voluntarily
4630 reconfigured their land use plans to align conservation land on both sides of a planned Florida
4631 DOT wildlife crossing on S.R. 82. Depending on the location, these features could increase
4632 crossing effectiveness and enhance wildlife corridor functionality that will be greater than what
4633 is currently estimated in the PVA. Although this coordination would be possible without the
4634 HCP, it would be probable with the HCP in place.

4635 Another step that could improve the effectiveness of wildlife crossings is to plan them in
4636 aggregates that form networks for panther dispersal across the landscape. However, the HCP
4637 does not identify explicit targets for internal trip capture, a maximum number of crossings, where
4638 they will be located, or what measures they are likely to take to maximize their effectiveness.
4639 Thus, our analysis remains confined to the assumption of 50% internal trip capture in newly
4640 constructed communities and the construction of a minimum of 8 wildlife crossings.
4641

4642 In the meantime, our analysis does take into account wildlife crossings currently being
4643 constructed at the initiative of county and state authorities. To our knowledge, these parties are
4644 currently in the process of constructing 3 wildlife crossings and planning construction of 5
4645 additional crossings. However, we have not consulted on 4 of these yet, so we can't reasonably
4646 assume they will be constructed. The fifth has been consulted on and is funded, but will not be
4647 constructed until road widening is needed on Corkscrew Road. However, this crossing is more
4648 than 2 miles from the nearest cluster of panther mortalities and wouldn't be included in our
4649 analysis for that reason.
4650

4651 **5.3.2 Preservation Activities and Very Low Density Development**

4652

4653 Both the Plan and Preservation Areas are located in habitats that are regularly used by panthers
4654 for feeding, breeding, and sheltering (Section 5.2.1). The designated Preservation areas are
4655 90,576 acres in extent, and within them, we identify 69,342 acres of habitat frequently used by
4656 panthers (forested area + all other available habitat types within 300m of it, Table 5-5). This
4657 habitat makes up approximately 68 percent of all panther habitat in the Plan Area. When the
4658 effects of 1m of SLR and projected development to 2070 are applied to the South Florida RFP

4659 model (Frakes et al. 2015) (Table 7.3 in USFWS Draft 2020) the Service estimates that up to 840
4660 km² of panther habitat as it is defined by that model could be lost from the area south of the
4661 Caloosahatchee River currently supporting the only breeding population of panthers. Securing
4662 69,342 acres (280.6 km²) of panther habitat in perpetuity will help offset this loss.

4663
4664 The location of the Preservation Area is as, or more, important than simply the number of acres
4665 being preserved. The Preservation Area is part of the Okaloacoochee Slough wetland ecosystem
4666 linkage that is adjacent to agricultural lands that lie between BCNP and Okaloacoochee Slough
4667 State Forest (OSSF). This critical linkage is a broad swath of occupied panther habitat. Without
4668 the Preservation Area included in this HCP, and if current development trends persist, this
4669 linkage would likely be developed/degraded and could cease to function, or function less
4670 effectively, as a corridor connecting BCNP and OSSF. The loss or degradation of this corridor
4671 could inhibit the natural dispersal (population expansion) of panthers needed for the recovery of
4672 the species.

4673
4674 The Applicants propose a continuation of existing land uses (agriculture, silviculture, etc.) in the
4675 Preservation areas, which we listed in section 2.3. All of these uses may occur to some extent in
4676 the Preservation areas. The Applicants have agreed that the future land uses in the Preserve
4677 areas will remain mostly the same, negligible in effect of any change, or become more beneficial
4678 to panthers. The Applicants have proposed the following land use activities, some of which may
4679 improve habitat for panthers and other species in the Preservation areas:

4680

- 4681 • prescribed burning;
- 4682 • mechanical control of groundcover (*e.g.*, roller chopping, brush-hogging, mowing);
- 4683 • ditch and canal maintenance;
- 4684 • oil and gas exploration
- 4685 • mechanical and/or chemical control of exotic vegetation; and
- 4686 • similar activities that maintain or improve habitat quality.

4687
4688 Implementation of these activities may temporarily cause panthers to avoid areas while they take
4689 place. It is unlikely that any of these activities would result in injury or death of panthers.
4690 Because the Service has documented rare incidences of mortality from wildfire in the past we
4691 have developed best management practices for prescribed fire. The Applicants have committed
4692 to performing surveys for listed species prior to these actions and we believe these will reduce
4693 the potential for injury or death. The Applicants will also verify with FWC prior to burning that
4694 there are no known denning locations within the treatment area. Because documented instances
4695 of panther injury and mortality from these actions are rare, we believe that if the Applicants
4696 perform pre-action surveys and adaptively plan their activities around the results of these, the
4697 risk of injury to panthers will be discountable.

4698
4699 In Chapter 4.2.3.2 of the HCP, the Applicants propose to restore, preserve, and maintain panther
4700 habitat in the Preservation and Very Low Density use designations. The HCP does not specify
4701 performance measures (amount or extent, functional gain) for such restoration and enhancement
4702 activities. However, at minimum we expect the proposed management of Preservation areas to
4703 maintain the current numbers, reproduction, and distribution of the panthers in the Preservation
4704 areas, because these activities would, at minimum, maintain current conditions. Restoration of

4705 17,605 acres of agricultural lands to forest cover in the Preserve area could result in sustaining
 4706 the equivalent of 1 to 3 panthers, annually. However, the Applicants do not suggest habitat
 4707 restoration of this scale is planned to occur during their implementation of the HCP.
 4708
 4709 The applicants also propose to replace habitat for other species, such as the caracara, that is lost
 4710 during development. The HCP does not indicate where in the Preservation area restoration for
 4711 other species will occur. Depending what type of habitat change occurs, the change could be
 4712 beneficial or detrimental to panthers. For example, forested land that is converted to pasture
 4713 would be detrimental while row crops converted to pasture would be beneficial.
 4714
 4715 The applicants also propose to do wetland restoration, but do not explain where restoration will
 4716 occur or the type of restoration that will be done. As with the restoration for other species,
 4717 wetland restoration could be beneficial or detrimental to panthers depending on the location,
 4718 type, and magnitude of restoration.
 4719
 4720 The Very Low Density (VLD) use areas of the HCP contain 2,667 acres of panther habitat that
 4721 could support panther breeding, feeding, sheltering, and dispersal (Table 5-4). Proposed land
 4722 uses in the VLD areas are similar to the Preservation areas, but may also include isolated
 4723 residences, lodges, and hunting/fishing camps, at a density of no more than one dwelling unit per
 4724 50 acres. The Applicants would continue current ranching/livestock operations and other
 4725 management activities as described for the Preservation Areas (e.g., exotic species control,
 4726 prescribed burning). As in the Preservation areas, we do not expect adverse effects resulting from
 4727 the continuation of the existing land management regimes to exceed present. The HCP does not
 4728 specify a footprint for the isolated residences, lodges, and hunting/fishing camps, but indicates
 4729 that their construction could clear up to 10 percent of the existing native vegetation (see section
 4730 2.5). New dwelling development could occur within any of the cover types present besides open
 4731 water and existing development. It is possible that dwelling development in the VLD areas could
 4732 entirely avoid panther habitat, but we conservatively estimate a 239-acre habitat loss (10 percent
 4733 of the 2,394 acres of panther habitat). Construction within these areas may temporarily cause
 4734 panthers to avoid these areas and diminish the value of surrounding lands to panthers, but we
 4735 expect these effects to be insignificant.

4736
 4737 **5.3.3 Tables and Figures**
 4738

4739 **Table 5-4.** Acreage of Panther Habitat Categories that occur in the Plan Area

Panther Habitat Category	Development	Preservation	Very Low Density	Base Zoning	Eligible for Inclusion	Plan Area Total	Row Percent	Development Envelope Total
Agriculture	33,370	17,605	0	698	10,289	61,962	38.85%	44,357
Marsh-Shrub-Swamp	1,785	23,630	223	536	2,591	28,766	18.03%	4,913
Other	1,233	2,620	1,119	4	1,891	6,867	4.31%	3,128
Prairie-Grassland	5,446	10,544	507	1,082	1,783	19,361	12.14%	8,311
Upland Forest	1,696	9,704	309	16	1,052	12,777	8.01%	2,764
Wetland Forest	722	25,988	510	94	2,453	29,768	18.66%	3,269
Total	44,252	90,092	2,667	2,431	20,059	159,501	100.00%	66,742

4745 **Table 5-5** Panther Habitat by Category of Habitat within 300m of Upland Forest and Wetland
 4746 Forest Cover and the forest cover, itself.

Panther Habitat Category	Development	Preservation	Very Low Density		Base Zoning	Eligible for Inclusion	Plan Area	
			Panther Habitat	Development Envelope			Panther Habitat	Development Envelope
Agriculture	11,342	9,181	0	418	3,174	24,115	14,934	
Marsh-Shrub-Swamp	998	15,388	217	350	1,680	18,633	3,028	
Other	754	1,987	867	2	915	4,525	1,671	
Prairie-Grassland	3,361	7,094	491	727	862	12,534	4,950	
Upland Forest	1,696	9,704	309	16	1,052	12,777	2,764	
Wetland Forest	722	25,988	510	94	2,453	29,768	3,269	
Total	18,872	69,342	2,394	1,608	10,136	102,352	30,616	
Plan Area Total Acres	44,252	90,092	2,667	2,431	20,059	159,501	66,742	
% Plan Area that is within 300m of Forest Cover	42.6%	77.0%	89.7%	66.1%	50.5%	64.2%	45.9%	

Table 5-6. Florida panther habitat loss likely to result from development activities in the Development Envelope (Covered Activities Area, Base Zoning, and Lands Eligible for inclusion in the HCP). Irrespective of whether development occurs in the current HCP configuration, or after Eligible Lands join the HCP, the cap for future development will remain 39,973 acres.

A. Panther Habitat Category	B. Total Plan Area Panther Habitat Acres ¹	C. Panther Habitat Acres within Development Envelope ²	D. Panther Preference Factor ³		E. Preference-Weighted Plan Area Habitat Acres (B*D)	F. Preference-Weighted Development Envelope Acres (C*D)	G. Post-Development Preference-Weighted Habitat Acres (E-F)	H. Panther Habitat Acres within HCP Development/Mining Designation	I. Preference-Weighted Development/Mining Habitat Acres (D*H)	J. Post-Development Preference-Weighted Habitat Acres (E-I)
			Panther Habitat	Development Envelope	Panther Preference Factor	Weighted Plan Area Habitat Acres	Weighted Development Envelope Acres	Habitat Acres	Development/Mining Habitat Acres	Preference-Weighted Habitat Acres
Agriculture	24,115	14,934	0.962	23,210	14,374	8,836	11,342	10,916	12,294	
Marsh-Shrub-Swamp	18,633	3,028	1.252	23,321	3,789	19,532	998	1,249	22,072	
Other	4,525	1,671	0.955	4,322	1,596	2,726	754	720	3,602	
Prairie-Grassland	12,534	4,950	1.274	15,967	6,305	9,662	3,361	4,281	11,686	
Upland Forest	12,777	2,764	1.880	24,016	5,196	18,820	1,096	3,188	20,829	
Wetland Forest	29,768	3,269	1.613	48,012	5,273	42,739	722	1,164	46,848	
Total	102,352	30,616		138,848	36,534	102,315	18,872	21,519	117,330	

1. Forest cover plus the extent of all other cover categories within 300 meters.

2. Panther habitat within the Development, Base Zoning, and Eligible HCP land-use designations.

3. The inverse of habitat selection ratios reported in Onorato et al. 2010.

4760 **Table 5-7** Habitat Loss interpreted as a reduction in Carrying Capacity for Florida panthers
 Interpreting habitat loss as a long-term reduction in panther carrying capacity.

Variable	Source or Calculation	Value	Units	Measure
a	draft SSA	6,336	acres	Low panther density; 3.9/100km ² = 1 panther per 6336 acres.
b	draft SSA	6,178	acres	High panther density; 4.09/100km ² = 1 panther per 6178 acres.
c	Habitat Calculations B9	102,352	acres	Total Plan Area panther habitat acres (forest cover plus other types within 300m)
d	c/a	16.2	adult panthers	Plan Area low-density carrying capacity.
e	c/b	16.6	adult panthers	Plan Area high-density carrying capacity.
f	Habitat Calculations E9	138,848	weighted acres	Preference-weighted Plan Area habitat acres (total pre-development).
g	Habitat Calculations G9	102,315	weighted acres	Post-development preference-weighted habitat acres; capacity loss from the full development envelope.
h	Habitat Calculations J9	117,330	weighted acres	Post-development preference-weighted habitat acres; capacity loss from the Development/Mining HCP designation only.
i	(g/l)*d	11.9	adult panthers	Post-development Plan Area carrying capacity; low density; loss from the full development envelope.
j	(g/l)*e	12.2	adult panthers	Post-development Plan Area carrying capacity; high density; loss from the full development envelope.
k	(h/f)*d	13.7	adult panthers	Post-development Plan Area carrying capacity; low density; loss from the Development/Mining HCP designation only.
l	(h/f)*e	14.0	adult panthers	Post-development Plan Area carrying capacity; high density; loss from the Development/Mining HCP designation only.
m	d-i	4.3	adult panthers	Reduction in post-development Plan Area carrying capacity; low density; loss from the full development envelope.
n	e-j	4.4	adult panthers	Reduction in post-development Plan Area carrying capacity; high density; loss from the full development envelope.
o	d-k	2.5	adult panthers	Reduction in post-development Plan Area carrying capacity; low density; loss from the Development/Mining HCP designation only.
p	e-l	2.6	adult panthers	Reduction in post-development Plan Area carrying capacity; high density; loss from the Development/Mining HCP designation only.

4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769

Table 5-8. The eight high-mortality road segments selected. There is already a crossing being constructed on the shaded road segment, so this segment was not included.

Road Segment Identifier	2014-2018 AADT	2014-2018 Total PVM	2014-2018 Annual PVM	Portion of total traffic attributable to HCP	2070 HCP AADT	2070 Non-HCP AADT ¹	2070 Total AADT	2070 HCP PVM	2070 Non-HCP PVM	Total 2070 PVM
11416_11415	490	1	0.2	0.1559	1,604	5,042	6,646	0.65	2.058	2.713
27167_27202	11,860	5	1	0.6694	25,253	6,097	31,350	2.13	0.514	2.643
27369_24041	1,475	1	0.2	0.9762	19,210	268	19,477	2.60	0.036	2.641
27457_27458	3,814	2	0.4	0.9653	20,962	405	21,367	2.20	0.042	2.241
26919_26934	7,493	3	0.6	0.9719	17,772	234	18,006	1.42	0.019	1.442
27414_24845	1,762	1	0.2	0.9603	9,868	220	10,088	1.12	0.025	1.145
24039_27446	4,220	1	0.2	0.9652	20,953	401	21,354	0.99	0.019	1.012
27360_27362	10,842	1	0.2	0.9852	48,593	381	48,974	0.90	0.007	0.903
25001_25027	2,197	1	0.2	0.0242	422	9,415	9,837	0.04	0.857	0.895

4770
 4771
 4772
 4773
 4774
 4775
 4776

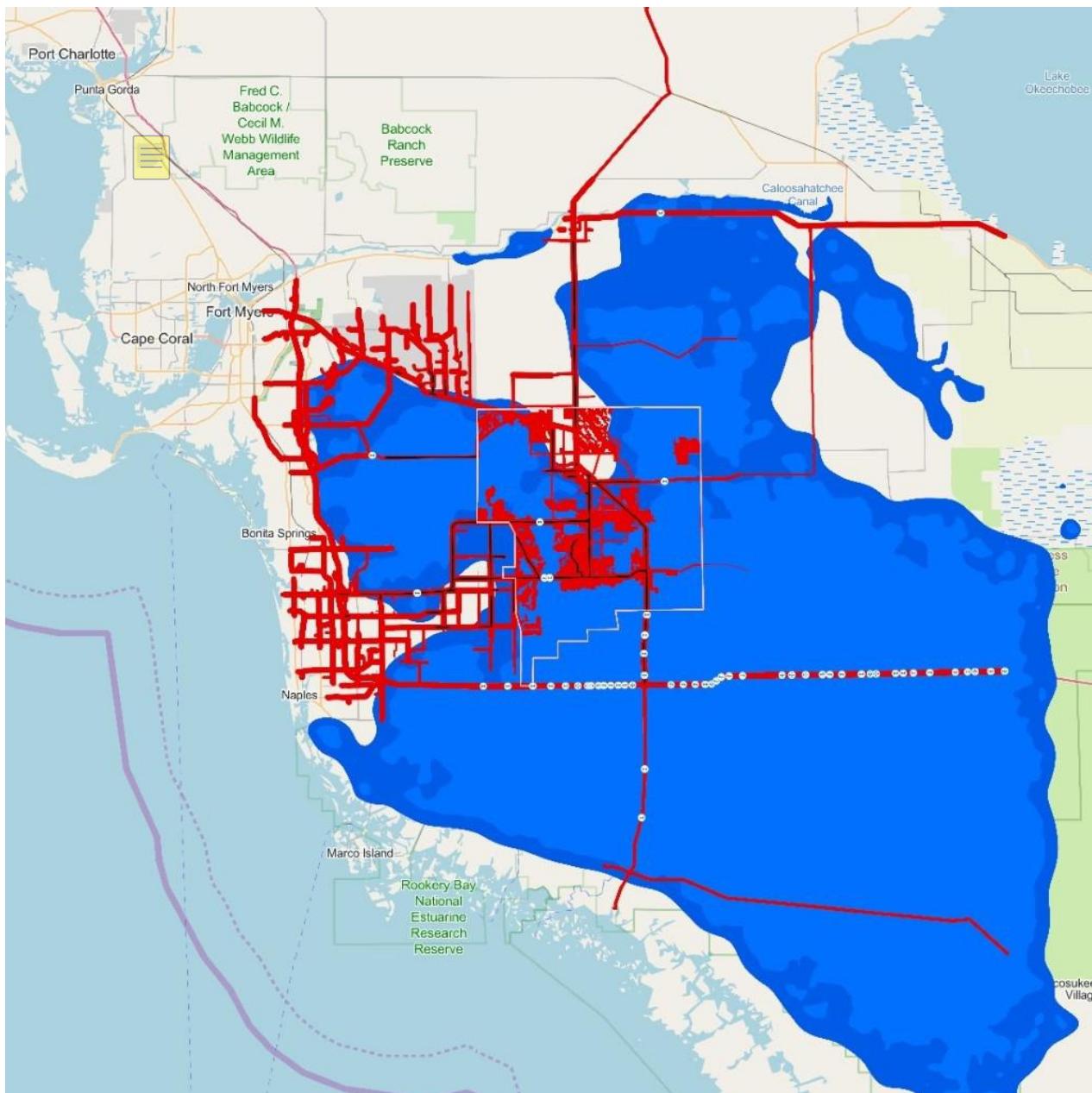
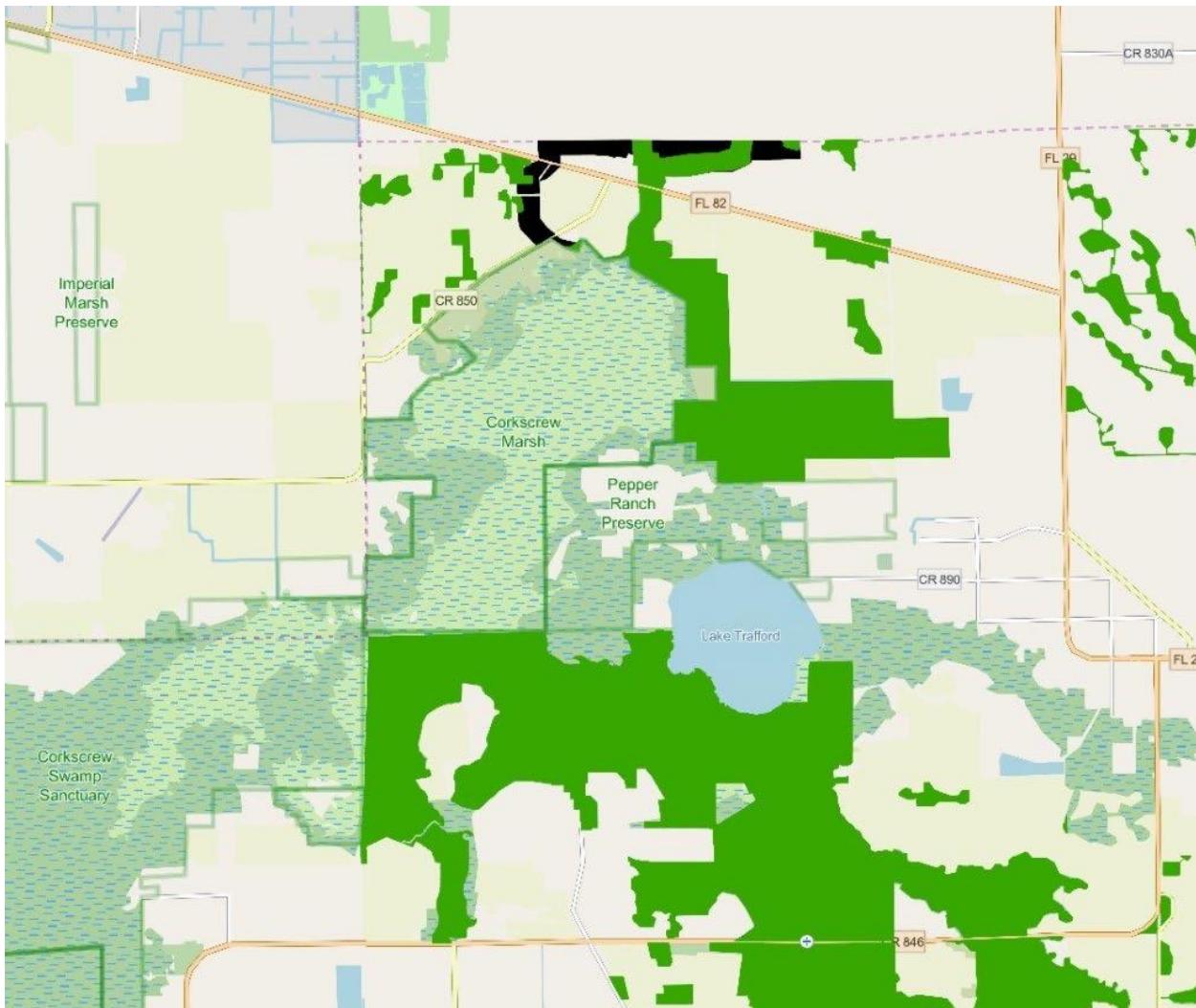

4777
4778
4779
4780

Table 5-9. Predicted Florida panther vehicle mortality due to different sources related to the Eastern Collier Multiple-species Habitat Conservation Plan.

SOURCE OF MORTALITY	NUMBER OF PANTHER MORTALITIES/YEAR
Current Action Area	22
Predicted proportion of future panther mortality due to HCP-generated traffic	11
Reduced mortality due to HCP crossings	3
Predicted proportion of future panther mortality due to HCP-generated traffic after conservation measures	8

4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792

These numbers are contingent on all assumptions laid out in section 5.3.1.4


4793

4794

4795

4796 **Figure 5-12.** Barriers caused by roads and development in the Action Area, and wildlife
 4797 underpasses can reduce the effect of the barrier. Increasing traffic on roadways and development
 4798 (in red) will increase fragmentation of panther habitat. Impermeability is denoted by weighted
 4799 lines (the thicker the line, the stronger the barrier it will be for panthers in 2070). Our analysis of
 4800 the Traffic Model for Action Area roadways identifies 535 miles of existing roadways will cross
 4801 the 10,000+ vehicles/day threshold by 2070, and 278 miles of roadways that will move from
 4802 “onset” to “peak” impacts (<3000 vehicles/day before to 3000-6000 vehicles/day) by 2070.
 4803 Roadways outlined in black will cross this threshold because of traffic generated by proposed
 4804 development in the HCP. Small white symbols identify the locations of wildlife crossings
 4805 constructed as of 2019.

4806

4807

4808

4809

4810

4811

4812 **Figure 5-13.** Close-up of the second Florida panther corridor and additional acreage in the first
 4813 corridor that Applicants added north of the Corkscrew Regional Ecosystem Watershed on
 4814 January 28, 2020. The green area represents the previous Preserve configuration, and the area
 4815 shaded in black represents the addition of the new corridor configuration.

4816

4817

4818 **5.4 Cumulative Effects on Florida Panther**

4819

4820 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
 4821 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
 4822 Federal actions that are unrelated to the proposed action are not considered, because they require
 4823 separate consultation under §7 of the ESA. This definition applies only to section 7 analyses and

4824 should not be confused with the broader use of this term in the National Environmental Policy
4825 Act or other environmental laws.

4826
4827 The Action Area was extended beyond the Plan Area to include roads impacted by traffic
4828 generated by the HCP (Figure 5-9). Within this Action Area our cumulative effects analysis
4829 analyzes the impact of increases in traffic volume from future, non-Federal, non-HCP sources we
4830 believe are reasonably certain to occur on the same roadways. Based on our review of past
4831 developments in the region we estimate approximately 25.3 percent of future, possible
4832 developments are pursued without review by the Service. Thus, we assume that 25.3 percent of
4833 traffic volume identified in the D1RPM would likewise originate from developments the Service
4834 would not have opportunity to review.

4835
4836 Because the requested duration of the ITPs is 50 years during which we anticipate full build-out,
4837 we used estimates of future traffic volumes in the year 2070. Specifically, we analyzed
4838 cumulative effects by:

4839
4840 (1) determined the current panther mortality due to vehicle collisions on each road segment
4841 in the Action Area (Current Road Segment Mortality).
4842 (2) calculated the average current traffic volume on each road segment with a history of
4843 panther mortality in the Action Area (Current Road Segment AADT in Action Area)
4844 (both inside and outside the Plan Area);
4845 (3) estimated the volume of predicted non-HCP generated traffic in 2040 for each road
4846 segment with a history of panther mortality in the Action Area (2040 Road Segment Non-
4847 HCP AADT in Action Area).
4848 (4) estimated the volume of non-HCP generated traffic in 2070 for each road segment with a
4849 history of panther mortality (2070 Road Segment Non-HCP AADT in Action Area)
4850 (5) estimated the 2070 panther mortality per segment due to non-HCP traffic (2070 Road
4851 Segment non-HCP Mortality in the Action Area).
4852 (6) estimated the total non-HCP mortality in 2070 (2070 non-HCP Mortality in the Action
4853 Area).
4854

4855 The Applicants have included a conservation measure (wildlife crossings with fencing) to reduce
4856 this risk. Because the applicants' conservation measure will also reduce mortality due to non-
4857 HCP generated traffic, we will analyze the amount of non-HCP generated mortality reduced by
4858 the conservation measure. We also need to determine the panther mortality from non-HCP
4859 generated traffic after it is reduced by the conservation measure because we will consider that
4860 mortality in making our jeopardy determination.

4861
4862 Steps A through F represent how we predicted the proportion of future panther mortality due to
4863 non-HCP generated traffic after the conservation measure is implemented. Step G represents
4864 how we determined the panther mortality from non-HCP generated traffic after it is reduced by
4865 the conservation measure. The steps are as follows:
4866

4867 (A) review current panther mortality on high mortality road segments and select the 8 road
4868 segments with the highest total road mortality (Current Panther Mortality on High
4869 Mortality Road Segments);

4870 (B) calculate the current average traffic volume on each road segment with a history of high
4871 panther mortality in the Action Area (Current AADT on High Mortality Road Segments);
4872 (C) estimate the volume of predicted non-HCP generated traffic for each road segment with a
4873 history of high panther mortality in the Action Area (2070 AADT on High Mortality
4874 Road Segment from non-HCP generated Traffic);
4875 (D) estimate the predicted proportion of future panther mortality due to non-HCP generated
4876 traffic on each road segment with a history of high panther mortality in the Action Area
4877 (Future non-HCP mortality on High Mortality Road Segments);
4878 (E) estimate the amount of mortality related to non-HCP generated traffic that is predicted to
4879 be reduced along each high mortality road segment when the conservation measure is
4880 implemented (Future non-HCP Mortality Reduction on High Mortality Road Segments);
4881 (F) estimate the total reduction in mortality due to non-HCP generated traffic on the high
4882 mortality road segments after the conservation measure is implemented (Future non-HCP
4883 Mortality Reduction due to HCP Conservation Measure); and
4884 (G) estimate total future panther mortality due to non-HCP generated traffic on road segments
4885 after implementation of the conservation measure (Future Reduced non-HCP Mortality in
4886 the Action Area).

4887

4888 Motor Vehicle Mortality Associated with Cumulative Effects

4889

4890 For the purposes of transparency, the detailed calculations for this analysis may be found in
4891 Appendix J. Based on this analysis we estimate approximately 5 panthers per year will be killed
4892 by vehicle collision from non-HCP related traffic in the Action Area in 2070.

4893

4894 Effects of Conservation Measures on Motor Vehicle Mortality

4895

4896 As mentioned previously, the Applicants have committed \$12.5 million from the Marinelli Fund
4897 to facilitate the construction of wildlife crossings as a conservation measure. Based on the
4898 opinion of species biologists that have previously worked to establish wildlife crossings for
4899 panthers in the past, which estimated a cost of \$1.5 million per crossing, we estimate the amount
4900 pledged by the applicants would enable the construction of about 8 wildlife crossings and
4901 associated fencing. The following steps were used to determine the reduced number of
4902 mortalities expected in the Action Area due to non-HCP generated traffic once the crossings are
4903 considered.

4904

4905 (A) Current Panther Mortality on High Mortality Road Segments
4906 (B) Current AADT on High Mortality Road Segments
4907 (C) 2070 AADT on High Mortality Road Segment from non-HCP generated Traffic
4908 (D) Future non-HCP Mortality on High Mortality Road Segments
4909 (E) Future non-HCP Mortality Reduction on High Mortality Road Segments
4910 (F) Future non-HCP Mortality Reduction due to HCP Conservation Measure
4911 (G) Future Reduced non-HCP Mortality in the Action Area

4912

4913 The detailed calculations for this analysis are presented in Appendix K for transparency. As
4914 mentioned in Section 5.3.1.4., conservation measures implemented by the applicants on the 8
4915 road segments with highest mortality, mortality of panthers associated with HCP-generated

4916 traffic is reduced by 3 panthers (from 11 to 8, Table 5-10). We estimate that panther mortality
4917 from non-HCP traffic will also be reduced by 3 (from 5 to 2). Therefore, the total predicted net
4918 reduction in panther mortality from 8 wildlife crossings is 6. The number of HCP and non-HCP-
4919 generated traffic panther mortalities predicted to occur after the conservation measure is
4920 considered is 10 panthers total (16 panthers from future traffic – 6 panthers saved from any
4921 source (HCP or non-HCP) due to the conservation measure) if 8 crossings are constructed (Table
4922 5-10). If more than 8 crossings are constructed, fewer panthers are expected to be killed by
4923 vehicle collisions. For example, if 12 crossings are constructed the total reduction is predicted to
4924 be 10 panthers with a future annual mortality of individuals in the Action Area of 6.

4926 **5.4.1 Tables and Figures**

4928 **Table 5-10.** The number of Florida panther mortalities estimated from Eastern Collier Multiple-
4929 species Habitat Conservation Plan (HCP)-generated and non-HCP generated traffic anticipated in
4930 2070. The number is given in total panthers with female only numbers in parentheses, where
4931 females represent ~ 40 percent of mortalities documented rounded to the nearest higher whole
4932 number.

EFFECT OF TRAFFIC VOLUME AND CONSERVATION MEASURES IN THE ACTION AREA	HCP-Generated Traffic Mortality (Females)	Non-HCP Generated Traffic Mortality/Cumulative Effects (Females)	Total Mortality (Females)
Future Mortality in the Action Area before Conservation Measure	11 (5)	5 (2)	16 (7)
Future Mortality Reduction due to HCP Conservation Measure (8 crossings)	3 (1)	3 (1)	6 (2)
Future Mortality in the Action Area after Conservation Measure	8 (4)	2 (1)	10 (5)

4934 **5.5 Population Viability Analysis**

4935 **5.5 Population Viability Analysis**

4936 Population Viability Analysis (PVA) is a widely utilized, species-specific method of structured
4937 risk assessment that allows wildlife and fisheries managers to compare the potential effects of
4938 different proposed courses of action, and manners of carrying out proposed actions, on the
4939 viability of populations over time. For example, state-level wildlife resource agencies often use
4940 PVAs to inform many of the management decisions they make routinely, such as comparing the
4941 impact of different proposed harvest limits for game species, the likely effects of different habitat
4942 management proposals on affected populations, or developing initiatives from a range of
4943 alternatives aimed at conserving rare or declining species.

4949 Federal agencies such as the Service, National Park Service, and National Marine Fisheries
4950 Service also regularly use PVAs as a tool of conservation decision making. The U.S. Fish and
4951 Wildlife Service specifically uses PVAs for environmental review, management of trust
4952 resources on Refuges, listing, and recovery - such as 5 Year Reviews, Species Status
4953 Assessments (SSAs), and Recovery Plans. Throughout the history of the Service's efforts to
4954 recover the panther, the Service has relied on the results of 8 PVAs to inform conservation
4955 measures and management actions and continues to do so. Platforms used to run peer-reviewed,
4956 published, panther-specific PVAs include freely and commercially available packages such as
4957 VORTEX, RAMAS GIS, and RAMAS LANDSCAPE, as well as those developed independently
4958 by academic researchers (Root 2004, Beier et al. 2003, USFWS 2008, USFWS Draft 2020).
4959

4960 Though PVAs are useful tools, the outcome of PVA does not represent the entire jeopardy
4961 analysis. This is because there are a number of measures committed to by the applicants that will
4962 help offset effects or that will provide benefits but that cannot be quantified at this time because
4963 of the programmatic nature of the HCP. These measures have been discussed throughout this
4964 document, and will be summarized again in a more comprehensive way in our jeopardy analysis.
4965 However, the PVA does inform us as to whether the effects of the action are likely to result in a
4966 measurable decrease or increase in the probability of survival and recovery over time.
4967

4968 **5.5.1 The Model**

4969

4970 We chose to analyze the action with PVA to remain consistent with these past and current
4971 practices and methods used to articulate conservation needs and threats identified earlier (Section
4972 5.1.6). We also used PVA as a structured decision tool to compare different possible courses of
4973 action with respect to Service issuance of ITPs to the applicants participating in the Eastern
4974 Collier Multiple Species Habitat Conservation Plan. Specifically, we used PVA to analyze the
4975 impact of the proposed action on the abundance and probability of the panther's persistence for
4976 100 years after full build-out. We chose the 100 year time horizon for our model to remain
4977 consistent with Shaffer's (1978, 1983, and 1987) definition of a minimum viable population,
4978 criteria for recovery defined in the Florida panther Recovery Plan (3rd Revision, 2008), other
4979 published PVAs, and the IUCN Vulnerability Assessment Criteria articulated by Mace and
4980 Lande, (1991) and Mace et al. (2008). Our PVA takes into account a wide range of assumptions
4981 regarding population size and resource availability south of the Caloosahatchee River to account
4982 for uncertainty in estimates used for inputs and the spatial and temporal variability in those
4983 estimates (accounting for stochasticity).
4984

4985 The PVA published by van de Kerk et al. (2019) is the most recent and robust of the panther
4986 PVAs produced to date. However, it was not spatially explicit and assumed current vital rates
4987 would remain constant over time. To account for the possibility of future changes in habitat
4988 availability, new sources of mortality, and changes in existing sources of mortality, we started
4989 with the van de Kerk et al. (2019) PVA inputs. We chose to bring these into a commercially
4990 available platform (RAMAS Landscape) for ease of replicability in a platform familiar to Service
4991 biologists. To ensure the RAMAS Landscape would faithfully reproduce the results of van de
4992 Kerk et al (2019), we loaded their inputs into RAMAS Landscape and validated against the
4993 outputs of the original model. Once satisfied the two platforms produced consistent results with

4994 the same inputs, we added predicted changes to current conditions, survivorship, and fecundity
4995 likely to be caused by:

4996

- 4997 • the proposed HCP (Effects of the Action); and
- 4998 • future non-federal actions that are reasonably certain to occur (Cumulative
4999 Effects); and
- 5000 • Sea Level Rise of 1m by 2070.

5001 Each of these inputs are discussed in more detail in each section below.

5002 **5.5.2 Model Inputs and Assumptions**

5003 Because panthers are polygynous, the survival and reproductive success of female panthers
5004 control population dynamics; therefore, like other panther models, our model also focused on the
5005 female portion of a single closed population in south Florida. We acknowledge that one or more
5006 females have been documented north of the Caloosahatchee River recently, and that those
5007 female(s) have produced kittens. However, we do not have confirmation that these kittens
5008 survived to independence or that they are contributing to population expansion. Therefore, we
5009 assumed a closed population south of the Caloosahatchee River for this analysis.

5010 Because we have a range of population size estimates, we assumed the true N_0 could be either
5011 120 or 230 individuals, or some value in between. For the initial population size function (N_0) we
5012 used the low, midpoint, and high ends of the estimated current population size (FWC and Service
2017; $N_0=120, 176, 230$ adult panthers OR 60, 88, 115 females).

5013 Similarly, because the true carrying capacity is unknown but Service and FWC biologists infer
5014 the population may be at or near carrying capacity (K), we also used variable values of K to
5015 represent conditions when panthers are utilizing all available resources south of the
5016 Caloosahatchee River or some portion of resources less than that. Thus, we assumed it is
5017 possible N_0 (the current population size) represents 100 percent, 80 percent, and 60 percent of
5018 carrying capacity. Specifically, for an initial population size of 60 females, we used 60, 75, or
5019 100 as possible values of K. For an initial population size of 88 females, we used 88, 110, and
5020 147 as possible values of K. For an initial population size of 115 females, we used 115, 144 and
5021 192 as possible values of K.

5022 For the PVA we assumed build-out would occur gradually over a 50-year period and that the
5023 severity of impacts would increase, accordingly. Based on our analysis in SECTION 5.3.1.1 we
5024 determined habitat likely to be developed in the Development Envelope was enough to support 1
5025 female panther home range, and that the loss of this habitat would result in the loss of 1 adult
5026 female to the population. To input this effect of habitat loss over a 50 year build-out into the
5027 PVA, we divided the maximum developable acreage by 50 years, and scaled 0 buildout to equal
5028 1 female panther and full buildout to result in 0 female panthers in the Development Envelope
5029 after build-out was complete. We input this gradual change into the carrying capacity function of
RAMAS Landscape by reducing overall carrying capacity by 1 female panther in annual
increments, over the course of 50 years, to account for the impact of habitat loss on the panther
population attributable to development proposed in the HCP.

5040
5041 In addition to habitat loss caused by development in the HCP, sea level rise (SLR) of 1m by
5042 2070 is projected under NOAA's Intermediate-High, High, and Extreme Scenarios and the
5043 CARSWG Highest scenario (Noss et al. 2014, Hall et al. 2016, Sweet et al. 2017, USGCRP
5044 2017, USGCRP 2018). SLR this magnitude will inundate 405,006 acres (18 percent) of the
5045 panther's current range (Figure 5-6, USFWS Draft 2020). Recent observations indicate SLR rise
5046 in the Southeastern United States, and South Florida in particular, is accelerating at a faster rate
5047 than previously estimated (Boon et al. 2012, Ezer 2019, Boon et al. 2018, VIMS 2020). If so, the
5048 amount of panther habitat lost through SLR may exceed 18 percent in 2070. Conversely, if steps
5049 are taken to reduce greenhouse gas emissions in the near future, the effects of SLR may be
5050 reduced. If so, the amount of panther habitat lost through SLR may be less than 18 percent in
5051 2070. To input SLR in the PVA we assumed SLR would accumulate linearly and only to 1 m by
5052 2070, and divided the acreage by 50 years with
5053 0 acres lost to SLR being equivalent to a
5054 proportion of individuals represented by a given
5055 N_0 (see below), and to 18 percent of habitat loss
5056 to SLR being equivalent to 18 percent of N_0 .
5057

5058 We next input these data into a commercially
5059 available platform (RAMAS Landscape) to
5060 incorporate and analyze the impact of the
5061 proposed action on the species. We replicated
5062 each possible N_0 and K combination 100 times,
5063 for a duration of the ITP (50 years) and 100
5064 years beyond, and compared the probability of
5065 extinction and final population size (N_{150}) of the
5066 following three scenarios to one another:
5067

- **Baseline with Future SLR (BSLR).** A reduction in the carrying capacity (K) of Florida panther habitat by 1m of SLR forecast for 2070 (reduction in 405,006 acres or 18 percent all available habitat equivalent to K of 11 females where $N_0=60$, 16 females where $N_0=88$, and 21 where $N_0=115$). Otherwise, all other vital rates were held constant as estimated in van de Kerk et al. (2019).
- **BSLR plus HCP Development Effects (BSLR+HCP).** The Baseline with Future SLR scenario with the following additional effects:
 - Panther highway mortality due to HCP-generated traffic in the Action Area increases as a function of panther population size and annual traffic volume (beginning with 0 mortality due to vehicle collisions from HCP-generated traffic in the present (no buildout) and incrementally

The scenarios we compare under section 7 of the ESA and NEPA are different. Under NEPA, we compare the future with the project scenario (BSLR + HCP) to a future without the project scenario. This comparison is captured in our EIS document for the HCP. Under section 7 of the ESA, we compare the future with the project scenario (BSLR + HCP) to the Baseline condition (BSLR) to help us determine whether the effects of the action are likely to result in an appreciable decrease or increase in the probability of survival and recovery over time. In addition, under section 7 of the ESA, we consider the cumulative effects, and compare the future with the project and cumulative effects scenario (BSLR+HCP+CE) to the Baseline condition (BSLR) to help us determine whether the effects of the action along with other actions that are reasonably certain to occur in the future without consultation with the Service are likely to result in an appreciable decrease or increase in the probability of survival and recovery over time. We consider both of these comparisons when we make our jeopardy determination.

5086 up to 5 additional females above present in year 2070 (at full buildout), where 5 is the
5087 maximum when N=K), assuming developments proposed in the HCP will have an
5088 internal trip capture rate of 50 percent (SECTION 5.2.2.4).
5089 ○ The impact of increased traffic volume from the HCP are minimized by the
5090 construction of 8 wildlife crossings of 80 percent effectiveness in reducing
5091 panther/vehicle collisions within $\frac{1}{4}$ mile, on road segments with the highest mortality,
5092 from 5 to 4 females/year (A savings of 1 females/year from HCP generated traffic)
5093 (SECTION 5.3.1.4).
5094 ○ The loss in carrying capacity from covered activities within the Development
5095 Envelope equivalent to 1 female/year in 2070 (the amount computed from the 300 m
5096 buffering analysis in SECTION 5.3.1.1). We simulated this by incrementally reducing
5097 K annually until it equaled 1 female in 2070.
5098 ○ The loss of panthers from all other sources of mortality associated with proposed
5099 development in the HCP (1 female/year by 2070) (SECTION 5.3.1.3).
5100 ○ The sum of the above effects (-5 +1 -1-1) equals a reduction of 6 females/year at full
5101 buildout from HCP related causes such as vehicle collisions in the Action Area, loss
5102 of habitat within the Development Envelope, and the loss of panthers to collisions
5103 with vehicles on new roads, illegal shootings, management action, increased
5104 interspecific aggression, and other causes.
5105 • **BSLR+HCP plus Cumulative Effects (BSLR+HCP+CE).** The B SLR +HCP scenario with the
5106 following additional effects:
5107 ○ We project 2 females/year above present will be taken by traffic generated by non-
5108 HCP sources, that 1 of these will be saved due to crossings proposed by the
5109 applicants, leaving 1 female/year to be taken by non-HCP sources of traffic
5110 (SECTIONS 5.4.1 and 5.4.2)
5111 ○ The combined mortality from all sources (HCP and CE) will be equivalent to 7
5112 females/year at full build-out (-5+1-1-1-1) (Table 5-10).
5113

5114 Lastly, as a tool for conservation planning we analyzed conditions under which change in
5115 abundance and viability would not statistically differ from baseline. Specifically, we ran PVA
5116 scenarios in which fewer or more panthers were taken per year at full buildout than estimated in
5117 our effects analysis. For these PVAs we assessed population abundance and viability when 4, 6,
5118 8, 10, and 12 females were taken per year at full buildout.
5119

5120 **5.5.3 Model Results**

5121

5122 For each of the three scenarios above, we simulated a 150-year population trajectory (50-year
5123 build-out plus 100 years beyond) and compared the predicted change in population viability for
5124 the panther. Our PVA found that in the presence of sea level rise and current conditions (BSLR),
5125 the average probability of extinction across all possible initial population sizes and carrying
5126 capacity combinations was approximately 1.1 ± 0.8 percent, and that the population size at 150
5127 years would average approximately 75 females, or 150 adults of both sexes. When we applied
5128 the effects of the action to this model (BSLR+HCP), the average probability of extinction
5129 increased to 5.7 ± 3.5 percent with an average final abundance of approximately 33 females, or 66
5130 adults of both sexes. Lastly, when we added the impact of cumulative effects to the effects of the

5131 action ($B_{SLR}+HCP+CE$) the probability of extinction increased further to an average of 6.6 ± 4.3
5132 percent with an average final abundance of 32 females, or 64 adults of both sexes (Table 5-11).
5133

5134 As one means to evaluate whether the increase or decrease of the abundance and probability of
5135 extinction were significantly different compared with B_{SLR} , we ran a Moods Median Test. To
5136 ensure that this was the appropriate test, we consulted with a USGS statistician (Ross 2020b). $B_{SLR}+HCP$ had a significantly different (higher) probability of extinction than B_{SLR} ($P=0.004$).
5137 Likewise, $B_{SLR}+HCP+CE$ also had a significantly different (higher) probability of extinction
5138 than $B_{SLR}+HCP$ ($P=0.0001$). Similarly, final abundance at the end of the time horizon analyzed
5139 (N_{150}) for B_{SLR} was significantly different (higher) than $B_{SLR}+HCP$ ($P = 0.0001$), and
5140 $B_{SLR}+HCP+CE$ ($P = 0.0001$).
5141

5142 The PVA output of final abundance 100 years
5143 after full build-out of the HCP is sensitive to
5144 scenario, initial population size (N_0), and initial
5145 carrying capacity (K_0) ($P = 0.084, 0.002, 0.0001$,
5146 Fully Nested ANOVA). Scenario explained
5147 38.15 percent of the variance in final abundance,
5148 while N_0 and K_0 , and error explained 33.09
5149 percent, 17.8 percent, and 10.98 percent of the
5150 variance, respectively.
5151

5152 Lastly, we note our estimate of final panther
5153 abundance, at B_{SLR} (Baseline with SLR,
5154 Duration of ITP + 100 years) of 48, 75, and 100
5155 females (96, 150, and 200 total adults and
5156 subadults), respectively, are not significantly
5157 different from the findings of van de Kerk et al.
5158 (2019) (95 percent CI of 142 – 216 adults and
5159 subadults, Mood's Median Test, $P = 0.414$). van
5160 de Kerk et al. (2019) recommended repeating
5161 genetic introgression by releasing 5–10
5162 individuals from other puma populations every
5163 20–40 years. Because we assume the Service will
5164 implement this recommendation, we believe our
5165 PVA is consistent with the results of matrix
5166 PVAs performed by them that didn't contain
5167 genetic information.
5168

5169 Additionally, during the development of the
5170 panther SSA (USFWS Draft 2020) the Service
5171 estimated the effects of sea-level rise on the
5172 panther population reported by the van de Kerk et al. (2019) PVA. The results of our B_{SLR}
5173 scenario and the Service's estimates by other means for the SSA are similar. From this we
5174 conclude that we have captured the effects of SLR on habitat availability over the next 50 years
5175 in a reasonable manner that is consistent with the results that would have been obtained by van
5176

Our estimated probability of extinction for B_{SLR} , 1±0.8 percent probability of extinction within 100 years of project completion (duration of proposed ITP + 100 years = 150 years beyond present), falls within the range predicted by van de Kerk et al. (2019) when genetic information isn't included (the cumulative quasi-extinction probabilities within 100 years were 1.4 percent (Individual Based Model (IBM); 0–0.8) and 1.3 percent (matrix model; 0–0.6) with probabilities increasing to 2.0 percent (IBM; 0–1.7) and 1.9 percent (matrix model; 0–1.6) within 200 years). If recommendations of introducing 5–10 individuals from other Puma populations every 20–40 years aren't adopted, van de Kerk et al (2019) predicted probability of quasi-extinction would increase to 13 percent (0–99) at 100 years and 23 percent (0–100) at 200 years (Minimum Population Count Scenario) or to 10 percent (0–99) at 100 years and 12 percent (0–99) at 200 years (Motor Vehicle Mortality Scenario). If the van de Kerk et al. (2019) recommendations aren't adopted, it would mean our estimates of extinction probability and abundance would change similarly.

5177 de Kerk et al. (2019), had they included information about habitat loss from SLR in their PVAs.
5178 Our results were also similar to van de Kerk et al.'s (2019) despite the fact their model did not
5179 consider the impact of sea level rise, while ours did. We infer from this result that SLR as we
5180 modeled it here does not influence probability of extinction as much as small population size and
5181 genetic variation might.

5182
5183 Finally, we modeled scenarios prefaced on the assumption the Applicants are able to further
5184 reduce the effects of their action (e.g., “through adaptive management”) or further minimize and
5185 mitigate them through use of the Marinelli Fund, as well as scenarios that included the possibility
5186 our effects analysis resulted in an underestimate of annual take at full buildout. This exercise
5187 found that whenever no more than 10 adult panthers (4 female adult panthers) per year were
5188 taken above present (from all causes) the probability of extinction falls from 5.7 percent to 1.4
5189 percent, and that this latter result is within the confidence interval of population viability should
5190 not further development occur in the RLSA.

5191
5192 To confirm that our statistical comparisons were made using the appropriate statistical tests for
5193 the data we were comparing, we had our analyses peer reviewed by a statistician (Ross 2020b).

5194 5195 **5.5.4 Uncertainty in the Analysis**

5196
5197 We acknowledge our estimate of possible effects of the Action to panthers contains uncertainty.
5198 For example, whether the full effects we estimate are realized to the magnitudes described above,
5199 or not, significantly depends upon how the HCP is implemented by the Applicants and by
5200 external factors independent from the Applicants. To address unknowns, assumptions, and
5201 uncertainties, the Service and permittees will periodically review the action, and confer on
5202 adaptive management measures whenever necessary, in accordance with the process described in
5203 Section 2.2 of this Biological Opinion. By doing so we should have early warning of unexpected
5204 changes to the panther population and avoid the possibility of an appreciable reduction in
5205 population viability.

5206 5207 Panther Monitoring and Impact Thresholds for Further Service Action

5208
5209 Presently, the Service and FWC estimate the current range-wide population size of panthers is
5210 between 120 and 230 adults (FWC and Service 2017), while the range-wide mean and standard
5211 error of roadway mortality of panthers, from 2014 through 2019, is 28 ± 1.51 individuals/year
5212 (11.33 ± 0.72 females). Internal population viability analysis contingency modelling, and
5213 statistical comparison of possible thresholds found that the probability of extinction 100 years
5214 after ITP expiration of B_{SLR} , $B_{SLR} + HCP$, and $B_{SLR} + HCP + CE$ scenarios do not differ
5215 significantly (1.38 percent Pr_{ext} versus the 1.1 ± 0.8 percent Pr_{ext} estimated for B_{SLR}) if fewer than
5216 10 adult panthers (4 female panthers) total are taken annually, above present. Over time it is
5217 likely this threshold will be modified as the panther population grows or declines. Whatever
5218 threshold is deemed appropriate at the time of the Service's review, the Service will take all
5219 actions within its authority to ensure the present viability and future recovery of panthers is not
5220 compromised by implementation of the HCP.

5221 5222 Qualitative Assessment of the Beneficial Effects of the HCP

5223
5224 As required by section 7 regulations, we also considered the potential for measures proposed in
5225 the ECMSHCP to further lessen/offset the impact of development to panthers under the RLSP.
5226 These measures include: delineation of development and preserve lands to minimize habitat loss
5227 and to maintain wildlife movement corridors, and project-level best management practices to
5228 minimize effects originating in the “Covered Activities Area” that might otherwise impact
5229 adjacent areas to be set aside for preservation. The ECMSHCP also identifies habitat restoration
5230 and enhancement needs for certain covered species. These habitat improvements, along with
5231 future wetlands mitigation, would likely occur on a local scale, either in preserve lands or on
5232 project sites, and in some cases would also benefit panthers. In addition to project-level actions,
5233 we considered how the creation of the Marinelli Fund might also benefit panthers.

5234 Conservation measures will provide offsets to projected impacts, and the Marinelli Fund could
5235 result in substantial conservation lifts. Conservation measures for which we had data to evaluate
5236 quantitatively in the PVA are summarized in Table 5-12. Conservation measures for which we
5237 lacked sufficient data to include in the PVA are summarized qualitatively below.

5238 The first benefit of the ECMSHCP is that it requires landowner participation in the RLSP as a
5239 condition of an ITP permit. This in itself provides a level of certainty about the extent and
5240 general placement of development that didn’t exist when participation in the RLSP was strictly
5241 voluntary. Specifically, of the 178,868 acres of the RLSA not in public ownership, ECPO owns
5242 151,442 acres of these. Participation of ECPO landowners in the HCP (and by extension the
5243 RLSA) limits all development on these properties to a 45,000-acre maximum with no possibility
5244 of development at base zoning densities on the approximately 106,442 acres of remaining ECPO
5245 lands. This will largely preclude the possibility of approximately 180,000 acres of RLSA land
5246 being converted from their present use (predominantly agriculture plus 102,352 acres of native
5247 habitats used by panthers) to rural residential use. Incentives provided by Collier County also
5248 encourage the designation of the remaining 27,426 acres of non-ECPO lands as SSAs by
5249 requiring this designation to entitle the full 45,000 acres of rural compact development.

5250 Yet this cap only applied to lands they own and this offered no protection from development on
5251 lands they don’t. This meant without changes to the RLSA the 45,000 acre cap proposed in the
5252 HCP would have only provided a maximum development footprint within approximately 78
5253 percent of the RLSA (the 139,442 acres owned by the Applicants) but that further development
5254 could still have occurred at any density within the 39,426 acres the Applicants don’t own
5255 (approximately 22 percent of lands within the RLSA). Recently, the Collier County Board of
5256 Commissioners approved Amendments to the RLSP, a step in the approval process that will
5257 make a 45,000 acre development cap apply to all properties within the RLSA and provide
5258 incentives to ensure these are the only acres developed within the RLSA. Requiring landowner
5259 participation in the RLSP ensures this 45,000-acre cap on total development in the RLSA will
5260 not be exceeded as long as the amendment makes it through the final approval process.

5261
5262 HCP participation and implementation by landowners also addresses specific recovery actions
5263 listed in the species recovery plan’s outline and implementation schedule. These include:
5264 • Initiating and encouraging landscape-level HCPs where proposed non-Federal actions or
5265 projects will impact panthers or their habitat;

5266 • securing Camp Keais Strand;
5267 • securing a corridor between Big Cypress National Preserve and Okaloachoochee Slough;
5268 • maintaining the spatial extent and arrangement of habitat on a landscape scale;
5269 • securing habitat adjacent or contiguous to areas of high risk for panther/vehicle collisions
5270 • Providing education and outreach to residents living in, and adjacent to, panther habitat
5271

5272 Use of the Marinelli Fund may also accomplish the following recovery actions listed in the
5273 recovery action outline and implementation schedule:

5274 • Develop and expand funding mechanisms and other incentives for habitat restoration and,
5275 • Secure funding for the installation of wildlife crossings and fences in high risk areas or
5276 to retrofit roadways with wildlife crossings and fencing to promote connectivity and
5277 dispersal.

5279 Specifically, the Marinelli Fund, is expected to be governed by the Marinelli Foundation Board
5280 consisting of 4 NGO partners, 2 ECPO representatives, and 1 at-large member selected by the
5281 other 6 board members. The Marinelli Foundation Board will focus its spending on actions that
5282 benefit panthers (ECMSHCP chapter 9.3). Possible actions include, but are not limited to, the
5283 construction of additional wildlife crossings, habitat acquisition for preservation, habitat
5284 restoration, habitat improvement, habitat management, public outreach, education, and research.
5285 The fund has the potential to generate in excess of \$150 million through 2050 with revenues
5286 deriving from the sale and resale of residential housing, and voluntary donations (PRT 2009).
5287 This program, if it achieves these levels of funding, is likely to facilitate substantial benefits
5288 towards the conservation and recovery of the panther. However, without specificity regarding
5289 the number and location of improved acres, and the original and final condition of those acres,
5290 we are unable to quantify the amount of improvement and the conservation benefit for species.
5291 That said, we fully acknowledge that habitat improvements will have benefits on species and
5292 ecological functions and that these benefits are more likely to be realized under the HCP than
5293 other scenarios. A notable exception to this quantification difficulty is the inclusion of 8 wildlife
5294 crossings in the PVA based on the applicants' commitment to allocate \$12.5 M of the first \$13 M
5295 if the Marinelli Fund for this purpose. Even in this instance, because we were required to make
5296 assumptions on the number, location, and effectiveness of wildlife crossings, we may have over-
5297 or under-estimated the amount of offset for panthers.

5298 Finally, the HCP also creates a framework for regular review of individual project proposals,
5299 impacts, and conservation measures whether or not they would otherwise be subject to
5300 consultation with the Service under Section 7(a)(2) of the Endangered Species Act. Specifically,
5301 developments pursued in accordance with the HCP will be checked to ensure best management
5302 practices and conservation measures proposed in the HCP are implemented at project-specific
5303 levels. Furthermore, as best management practices evolve, the regulations allow the Service to
5304 update and negotiate the inclusion conservation practices used at project-levels with ITP holders
5305 during project-level reviews. Lastly, the HCP provides a framework for ongoing collaboration
5306 between ITP holders, the Service, and other stakeholders involved in panther conservation.
5307

5308 **5.5.5 Tables and Figures**

5309

5310 **Table 5-11.** The probability of extinction and predicted population size of the Florida panther
5311 under Baseline with Future Sea Level Rise (B_{SLR}), B_{SLR} plus HCP Development Effects
5312 (B_{SLR}+HCP), and B_{SLR}+HCP plus Cumulative Effects (B_{SLR}+HCP+CE) scenarios given three
5313 different beginning female panther population sizes. B_{SLR} = Baseline (Current conditions + 1m
5314 SLR by 2070) and the end time is 100 years after HCP full build-out in 2070.

N_0	B _{SLR}		B _{SLR} + HCP		B _{SLR} + HCP +CE	
	P_{ext}	N_{150}	P_{ext}	N_{150}	P_{ext}	N_{150}
60	0.027	48	0.121	18	0.15	16
88	0.004	75	0.042	32	0.037	32
115	0.001	100	0.0008	50	0.012	47
Average	0.01	75	0.057	33	0.066	32

5315

5316

5317

5318
5319

Table 5-12. ECMSHCP conservation measures included in the PVA.

Effect Component of PVA	Effect in PVA	Delta female panthers at $N_0=60$	HCP-attributable reductions in panther loss described in PVA ^a	Location in BO
Baseline	SLR	-11	NA	5.5.2
HCP	HCP-generated traffic	-5	50% internal capture led to fewer panthers killed on roads	5.2.2.4
HCP	HCP funded underpasses	1	8 underpasses reduced road mortality	5.3.1.4
HCP	Loss in carrying capacity	-1	Preserve/VLD areas reduced the loss of carrying capacity	5.3.1.4
HCP	All other sources	-1	Lighting, pet/pesticide restrictions, etc. reduced the loss of panthers to "other sources"	5.3.1.3
Cumulative	Non-HCP-generated traffic	-2	NA	5.4
Cumulative	HCP funded underpasses	1	8 underpasses reduced road mortality from both the HCP- and non-HCP attributable traffic	5.5.2

5320 a. Without these measures, the change in female abundance would be greater than listed in
5321 "Delta female panthers at $N_0=60$ ".

5322

5323 5.6 Conclusion for Florida Panther

5324

5325 In this section, we summarize and interpret the findings of the previous sections for the panther
5326 (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO
5327 under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to
5328 jeopardize the continued existence of a species. This analysis is a weight of evidence approach
5329 that includes both quantitative and qualitative estimates of both impacts, offsets, and beneficial
5330 effects of the action.

5331
5332 **Status**
5333
5334 Panthers are opportunistic predators that consume primarily white-tailed deer, feral hog, raccoon,
5335 and nine-banded armadillo. However, panthers will opportunistically select other prey when
5336 these are not available. Panthers prefer forested landscapes with sufficient edge habitat, and
5337 habitats within 300 m of forested habitat in proportion of availability. Panthers are polygynous.
5338 Female panthers establish home ranges in proximity of closely related females, while males
5339 compete for territories that overlap the ranges of several females. When suitable home ranges
5340 are strongly contested or unavailable, juvenile males and females may disperse great distances in
5341 search of alternative areas.
5342
5343 FWC documented a female panther north of the Caloosahatchee River for the first time in over
5344 40 years in 2017. Subsequent documentation of additional female(s) with kittens create
5345 optimism that the South Florida population will expand their breeding range to include areas
5346 north of the Caloosahatchee River in the future. However, as of June 2020, there is no evidence
5347 that successful recruitment, i.e., offspring born and surviving to enter the breeding population as
5348 adults, has occurred north of the Caloosahatchee River (Kelly and Onorato 2020), and until that
5349 evidence is documented, we do not conclude that the breeding range of Florida panthers has
5350 expanded beyond South Florida (USFWS 2020).
5351
5352 Panthers in the Action Area face the same threats as those listed range wide. Specifically,
5353 panthers in the Action Area face impacts from human disturbance, and human-caused habitat
5354 loss, fragmentation, and degradation from residential development, commercial development,
5355 and climate change. Sources of human-caused mortality in the Action Area, such as collision
5356 with motor vehicles, illegal shootings, and increased exposures of panthers to disease and
5357 pollution also threaten growth of the panther population. Additionally, as the human and panther
5358 population both grow incidences of human-panther conflict may also occur to the detriment of
5359 panthers. Lastly, panthers confront many ecological challenges, such as genetic risks associated
5360 with small population size or declines in prey populations caused by natural processes or human
5361 activity.
5362
5363 Conservation needs that address the most substantial threats listed above include the following.
5364
5365 (a) to conserve remaining panther habitat, restore new panther habitat, and enhance existing
5366 habitat to support growth of the population and the range of panthers;
5367 (b) Maintain a permeable landscape that provides connectivity between existing habitat;
5368 (c) to reduce mortality from anthropogenic sources; and
5369 (d) to ensure genetic variation remains sufficient to minimize the potential impact of
5370 inbreeding depression on survival and recovery.
5371
5372 **Baseline**
5373
5374 Documented use of the Plan Area by panthers is extensive. Panther observations within the Plan
5375 Area make up 10 percent of the record of all panther observations in the wild. Approximately 36
5376 percent of all panthers tracked by radio telemetry have been documented as using some portion

5377 of the Plan Area. Thus, we conclude it is likely between 10 percent and 36 percent of the
5378 panther population may use a portion of the Plan Area at some point in their lifetime, even if
5379 only transiently. The Plan Area contains 102,352 acres of habitat used by panthers for feeding,
5380 breeding, sheltering, or dispersal. Plan Area conservation needs and threats parallel the range-
5381 wide needs and threats.

5382
5383 Van de Kerk et al. (2019) found that individual-based population models predicted that the
5384 probability that the population would fall below 10 panthers within 100 years (quasi-extinction)
5385 was 1.4 percent, but when the effect of genetic erosion was considered, the probability of quasi-
5386 extinction within 100 years increased to between 13 and 17 percent. They also found that when
5387 genetic introgression was implemented every 10 years via the translocation of 5 females from
5388 Texas populations of *Puma concolor* to South Florida, the probability of quasi-extinction fell
5389 from 13 to 17 percent to a range between 6 and 10 percent.

5390
5391 **Effects**
5392

5393 When quantifying the effects of the action, we had to make a series of assumptions, and address
5394 uncertainties. In doing so we used information and data as presented in the HCP as required
5395 under section 7 regulations at 402.14(g)(8). We selected data (or a data range) that was
5396 consistent with other published or accepted literature. We avoided using “best case” or “worst
5397 case” scenarios in an effort to provide a thoughtful, reasonable assessment of the effects. When
5398 we were unable to quantify the effects of the action, we provided a qualitative assessment and
5399 described the range of uncertainties whenever possible.

5400
5401 Proposed development and mining in the Plan Area include various activities that will
5402 permanently eliminate up to 18,337 acres of panther habitat if forest cover is developed last, but
5403 could take up to 30,616 acres of habitat if forest habitat in the covered activities, base zoning,
5404 and lands eligible for inclusion are taken first. Because the HCP states that one of the goals of
5405 the plan is to avoid development in panther habitat, we assume the best available panther habitat
5406 will be avoided during development and that the equivalent of 3 panthers/year will be lost at full
5407 buildout.

5408
5409 The designated Preservation areas of the HCP contain 69,342 acres, or 69 percent, of forest cover
5410 and habitats within 300 m of it in the Plan Area that we consider likely panther habitat. The
5411 Applicants propose to preserve existing habitats, and to potentially restore, enhance, or create
5412 such habitats to mitigate for permanent losses associated with the Covered Activities. The HCP
5413 does not specify performance measures (amount or extent, functional gain) for such restoration
5414 and enhancement activities. Nonetheless, at minimum we do not expect the proposed
5415 management of Preservation areas to reduce the numbers, reproduction, or distribution of the
5416 panther in the Preservation areas, because these activities would at least maintain current
5417 conditions. Special attention to this species in the long-term management of the Preservation
5418 areas under conservation easements and habitat restoration could increase the number of panthers
5419 the Plan Area supports, though. For example, restoration of 17,605 acres of agricultural lands to
5420 forest cover in the Preserve area could boost the Plan Area population by the equivalent of 3
5421 panthers, annually. Thus, habitat restoration on this scale could fully offset the impact of habitat

5422 loss from proposed development. However, though the HCP makes allowance for the possibility
5423 of habitat restoration, the HCP does not explicitly propose habitat restoration of this scale.

5424
5425 The HCP mentions wetland restoration and habitat mitigation for other species will occur in the
5426 Preservation areas. Because locations and types of restoration are not described, we are unable
5427 to determine if the changes will be beneficial for panthers.

5428
5429 The Very Low Density use areas of the HCP contain 2,394 acres of panther habitat.

5430 Development of some portions of these for residences, lodges, hunting/fishing camps could
5431 reduce such habitat by up to 239 acres, but we do not expect significant adverse consequences to
5432 panthers resulting from such displacement.

5433
5434 We also estimate up to 1 panther may be lost annually from other effects of HCP proposed
5435 development, such as panther mortality on new roads, management removal to address
5436 human/panther conflict, new exposure to disease and toxins, and sub-lethal and lethal effects of
5437 declining prey populations (such as intra- and inter- specific aggression and malnutrition).

5438
5439 Additionally, assuming communities proposed in the HCP have a 50 percent internal capture
5440 rate, and that the Applicants will facilitate the construction of 8 wildlife crossings, and these
5441 crossings are at least 80 percent effective in reducing roadway mortality, we estimate traffic
5442 volume generated from the HCP on existing roads will take 8 more panthers/year than present.

5443
5444 In summary we expect development proposed in the HCP to lead to the taking of 8 panthers per
5445 year above present from collisions with motor vehicles on existing roads, the equivalent of 3
5446 panthers/year from the reduction in habitat, and 1 panther/year from all other causes for a total of
5447 12 panthers/year above present at full buildout.

5448
5449 **Cumulative Effects**

5450
5451 Traffic on public roads, which is the sole source of cumulative effects we have identified for this
5452 Action, is likely to take up to 2 panthers/year above present in 2070 if developments contributing
5453 to projected 2070 traffic levels that will likely not consult with the Service (about 25 percent of
5454 projects) take no action to avoid, minimize, or mitigate their effects.

5455
5456 The cumulative effects (2 panthers/year) and the effects of the HCP (12 panthers/year) combined
5457 will result in the taking of 14 panthers above present levels/year at full buildout.

5458
5459 **PVA**

5460
5461 The results of our baseline PVA are consistent with the results of the van de Kerk et al. (2019)
5462 PVA. Simulation results with the effects of Sea Level Rise, the effects of the HCP, cumulative
5463 effects, and the combination of these added to the baseline predict the presence of development
5464 proposed in the HCP will result in a smaller population size: from an average of ~150 adults
5465 persisting 100 years after expiration of the ITP under baseline conditions to an average of ~64-66
5466 adults when the effects of the HCP and cumulative effects are added. The results of our
5467 simulations also found a lower probability of persistence when the effects of the action and

5468 cumulative effects are added to the baseline: from a baseline average of 1 ± 0.8 percent
5469 probability of extinction (BSLR) to 5.7 ± 3.5 percent (BSLR + HCP) and 6.6 ± 4.3 percent (BSLR +
5470 HCP + CE) 100 years after full implementation of the actions proposed in the HCP and
5471 manifestation of cumulative effects, respectively. Additionally, our analysis of conditions under
5472 which change in abundance and viability would not statistically differ from baseline found that if
5473 the Applicants are able to further reduce the effects of their action (e.g., “through adaptive
5474 management”) or mitigate them through use of the Marinelli Fund such that the net effect is a
5475 loss no more than 10 adult panthers (4 female adult panthers)/year above present (from all
5476 causes) the probability of extinction falls from 5.7 percent to 1.4 percent. This latter result is not
5477 statistically different from scenarios in which no further development occurs in the RLSA.
5478

5479 Because we do not have evidence that kittens produced by female panthers north of the
5480 Caloosahatchee River have survived to an age where they can contribute to population growth,
5481 the PVA was based on a closed population south of the River. It is likely over the 50-year course
5482 of the HCP and the additional 100 years modeled by the PVA that a breeding population will be
5483 established north of the River. If expansion occurs and all else remains as input into the PVA,
5484 then the effect would be to lessen the negative influence of the HCP on the panther population by
5485 increasing the overall abundance and reducing the probability of extinction.
5486

Effects on Recovery

5489 Implementation of the HCP could substantially contribute towards the first Recovery Objective
5490 listed in the Florida Panther Recovery Plan (2008), which is to “To maintain, restore, and
5491 expand the panther population and its habitat in south Florida and expand the breeding portion of
5492 the population in south Florida to areas north of the Caloosahatchee River.” Specifically, the
5493 required participation of ITP holders in the RLSP ensures the protection of 69,342 acres of
5494 habitat frequently used by approximately 27.6 ± 5.81 panthers. These panthers use this habitat for
5495 home ranges or linkages between areas of habitat suitable for use as home ranges. Other recovery
5496 actions that are advanced by the HCP include: initiating and encouraging landscape-level HCPs
5497 where proposed non-Federal actions or projects will impact panthers or their habitat; securing
5498 Camp Keais Strand; securing a corridor between Big Cypress National Preserve and
5499 Okaloachoochee Slough; maintaining the spatial extent and arrangement of habitat on a
5500 landscape scale; and securing wildlife crossings with habitat adjacent or contiguous to crossings
5501 in areas of high risk for panther/vehicle collisions.
5502

5503 These qualitative benefits from the HCP are not immediately quantifiable but may be able to be
5504 quantified in the future. Regardless, they likely also provide administrative, analytical, or other
5505 efficiencies in both the short and long term. While these benefits or offsets may not be species
5506 specific, most provide some direct or indirect conservation for panthers. These are summarized
5507 in Table 5-13. Qualitative benefits are considered in addition to those we were able to quantify
5508 when conducting our jeopardy analysis.
5509

5510 Table 5-13. Comparison of project by project consultation vs the programmatic HCP approach.

Project-by-Project (Without HCP)	With HCP
Project-by-project review and authorization via section 7 exemption or section 10 ITP	Programmatic authorization, via section 10 ITPs, of projects within limits prescribed by HCP
Repeated negotiation/consultation, permit actions for each project	Project consistency check. Partial permit transfer to project-specific developer
Mitigation based in RLSP, negotiated, planned project-by-project, traffic effects negotiated, planned, and funded project-by-project	Mitigation, as based in RLSP, defined across the HCP area, project-specific BMPs, traffic effects addressed via Marinelli Fund and via cooperative framework of check-ins. Effects addressed via Marinelli Fund, cooperative framework of check-ins, and the option of course corrections.
Layout of RLSP sending areas would result in habitat corridors.	Proposed HCP habitat corridors expand on the RLSP sending areas adding assurance of functional corridors in perpetuity. Estimate an additional 26,000 acres of habitat conserved under HCP compared with RLSA only.
Range-wide initiatives are needed and are an appropriate way for landowners to participate with other panther stakeholders to address jointly-responsible impacts to panthers.	Range-wide initiatives like the Marinelli Fund would be more certain under the HCP. Periodic check-ins provide a new venue for ECPO and other stakeholders to cooperate on conservation issues.
Habitat corridors and crossing sites could be planned on a regional basis (e.g., Wild Blue corridor), but would be built one-by-one [independently, individually, piecemeal].	Habitat corridors and crossing sites identified up front, funded and installed commensurate with development area. Coordinated plan, certainty of region-wide conservation planning, framework for cooperation with other stakeholders, provides a framework to build cooperation among panther stakeholders.
In the current individual project approach, effects analysis, including jeopardy, would be repeated.	Programmatic approach consolidates impacts analysis and permitting to one action versus

<p>A threshold of jeopardy may be reached beyond which no new actions could be contemplated or permitted.</p>	<p>numerous individual actions accumulating through time.</p> <p>Under the proposed programmatic approach, an expedited individual project review, consistency check, would occur and serve the same function to alert of an impending threshold of jeopardy.</p>
<p>Project-specific conservation lands are often committed up front and protected with a conservation easement, management plan, and management funding in perpetuity, but are smaller in size because they are only for the one project. Lands of less value to panthers are rarely included in conservation lands offered by applicants.</p> <p>Potential future conservation lands (opportunities) could be lost before obligated as mitigation for a specific project if they are converted to agriculture, used for a project that does not require section 7 consultation and did not consult under section 10, or part of a section 7 consultation that does not offer compensation.</p> <p>Cost of management for preservation lands born by property owners rather than by public agencies or easement holders.</p> <p>Land that is conserved is at no cost to public of conservation lands, public conservation money can go to other objectives.</p>	<p>Range-wide preservation lands obligated by permit condition, not at risk of competing land uses. Conservation easements are placed on preserves as part of individual project approval. It is unclear if a management plan will be created. Lands of lesser value are included in the preserve areas.</p> <p>Cost of management for preservation lands born by property owners rather than by public agencies or easement holders.</p> <p>No cost to public of conservation lands, public conservation money can go to other objectives.</p>
<p>Covered species determined project-by-project. All listed species on or in the vicinity of a project are considered. Species identified as at-risk by the Service are considered, but there are not many in the HCP area. Because projects are smaller in size than the HCP, there are generally fewer</p>	<p>Many covered species addressed, long term planning for species that are not normally addressed in [project review] regulatory planning.</p>

considered per consultation. State-listed species are not considered.	
County RLSP delineates high-density development areas, cumulative impacts (including Ave Maria) of 45,000 acres throughout 71,000 acres of open lands.	High-density development area consistent with, and more limited than, RLSP (reduced development envelope of 49,000 acres). Cumulative impacts (including Ave Maria) of 45,000 acres.
	Designates the Summerland Swamp landscape linkage as a Preservation Area (currently RLSA Open Lands), providing additional panther habitat protection and improved landscape functionality.
Planning crossings complicated if different ownerships involved.	Cooperation among permittees built-in, can plan crossings across ownerships. Secures landscape linkages that will preserve functionality of FDOT-planned wildlife crossings on SR82 and connect existing conservation lands in the Plan Area (e.g., CREW) to designated conservation and agricultural lands in Sector Plans proposed in Hendry County.

5511

5512

Opinion

5513

5514

5515 Measures included in the HCP have the potential to aid in accomplishing several recovery
 5516 actions listed in the Florida Panther Recovery Plan (3rd edition 2008). These could aid in
 5517 maintaining the overall quality, quantity, and functionality of habitat within areas of the Plan
 5518 Area, ensure that equivalent habitat protection and restoration are provided, and compensate for
 5519 both the quantity and functional value of the lost habitat. Additionally, measures proposed in the
 5520 HCP meet recovery actions of securing Camp Keais Strand to maintain connectivity from
 5521 Florida Panther National Wildlife Refuge to Corkscrew Regional Ecosystem Watershed;
 5522 securing a corridor between Big Cypress National Preserve and Okaloachoochee Slough;
 5523 maintaining the spatial extent and arrangement of habitat on a landscape scale; and securing
 5524 wildlife crossings with habitat adjacent or contiguous to crossings in areas of high risk for
 5525 panther/vehicle collisions.

5526

5527 Best management practices proposed in the HCP also encourage habitat management on private
 5528 lands to adequately provide for panthers and their prey; provide incentives and assistance to
 5529 willing landowners to manage their lands for panthers and their prey using tools such as
 5530 prescribed fire and invasive plant control, and provide incentives that encourage them not to

5531 convert a portion of their lands to less suitable habitat. Measures proposed by the Applicants may
5532 also minimize and prevent injuries and mortalities by modifying conditions on existing roads and
5533 implement appropriate actions to protect panthers during the planning, permitting, and
5534 construction of new roads and highway expansion projects, and facilitating the securing of
5535 funding for the installation of wildlife crossings and fencing in high risk areas.

5536
5537 However, the benefits of HCP proposed measures must be balanced against the demographic
5538 effects of the action on the population. Specifically, the loss of approximately 18,337 acres of
5539 panther habitat will reduce range-wide carrying capacity by the equivalent of ~3 panthers,
5540 annually at full buildup. Converting the majority of cropland in the Preserve Area to forests
5541 could offset most if not all of this impact, but such enhancement is not explicitly proposed or
5542 guaranteed within the HCP. Additionally, the loss of 1 additional panther/year at full buildup is
5543 predicted from other causes (such as mortality on new roads, reduction in prey habitat, increased
5544 exposure to disease and toxins, increased likelihood of management intervention to address
5545 depredation and human/panther conflict etc.). The applicants have committed to an adaptive
5546 management strategy that includes some BMPs that will partially address some of these threats.
5547 For the purpose of our analysis, we assumed communities built in accordance with the HCP will
5548 maintain a 50 percent rate of internal capture; the applicants will facilitate the construction of at
5549 least 8 wildlife crossings; and that the wildlife crossings will be 80 percent effective at reducing
5550 mortality. We also assumed the panther population would remain at, or greater than, its current
5551 size until impacted by development projected by the HCP. Based on these assumptions and
5552 considering the conservation measures proposed by the Applicants, we estimate traffic
5553 attributable to HCP associated development will increase the rate of panther mortality by up to 8
5554 panthers/year (at full build-out) above the present rate.

5555
5556 We additionally recognize that increasing traffic on roadways from development proposed in the
5557 HCP will extend across much of the panther's present range and these increases will increase the
5558 effect of roadways as barriers to movement to panthers and may intensify the effects of habitat
5559 fragmentation. We acknowledge measures proposed by the applicants to maintain existing
5560 corridors and construct additional wildlife crossings will reduce the impact of roadway mortality
5561 and habitat fragmentation.

5562
5563 We were only able to partially quantify the conservation measures in demographic terms that
5564 could be incorporated into our traffic or PVA models. This is a result of both the adaptive nature
5565 of many of the conservation measures (i.e., because we do not know where or when the
5566 measure(s) will be implemented they are not currently quantifiable) and assumptions built into
5567 the PVA. As a result, we cannot demonstrate a full offset of the predicted effects of traffic and
5568 development expected from the activities described in the HCP. For example, a likely total
5569 mortality of panthers from development proposed in the HCP (12 individuals above present)
5570 remains after panther/vehicle mortality has been reduced by 6 panthers/year because of the
5571 construction of 8 additional wildlife crossings (built using Marinelli Funds) with 80 percent
5572 efficacy, and maintenance of an internal capture rate of at least 50 percent in newly built
5573 communities. It is possible the construction of additional wildlife crossings, fencing,
5574 acquisitions, as well as habitat restoration and management facilitated by the Marinelli Fund
5575 could offset much, if not most or all, of these predicted effects. Other proposed Marinelli Funded
5576 conservation measures are not quantifiable at this time. For example, habitat is proposed to be

5577 managed in a way that increases the value for panthers. At this we do not know how many acres
5578 may be improved, to what extent the habitat value may be increased, or where on the landscape
5579 those improvements might be made. Undoubtably such actions will reduce the overall predicted
5580 effect of the Action, but the magnitude of the reduction is unknown and cannot be included in the
5581 PVA at this time.

5582
5583 The HCP's requirement of landowner participation in the RLSP for an ITP to cover their
5584 proposed development creates certainty around the future of development in the RLSA and
5585 guarantees protection of habitat necessary for the recovery of the panther. The establishment of
5586 the Marinelli Fund through implementation of the HCP creates additional benefit to panther
5587 recovery that exceeds the substantial benefit conveyed through landowner participation in the
5588 RLSP. However, our effects analysis is predicated on the assumption that community (internal)
5589 trip capture averages 50 percent at full build-out. Because we were required to make assumptions
5590 on the number, location, and effectiveness of wildlife crossings, we may have under- or over-
5591 estimated the amount of offset for panthers.

5592
5593 Additionally, our PVA indicates the implementation of the HCP, in the absence of further actions
5594 to reduce the impact of the action to the panther, will reduce the abundance of panthers across
5595 their range such that the probability of extinction is predicted to increase from 1 percent (95
5596 percent C.I. 0.2 to 1.8 percent) to 5.7 percent (95 Percent C.I. 2.2 to 9.2 percent). When
5597 cumulative effects are added to the effects of the HCP the probability of extinction further
5598 increases to 6.6 percent (95 percent C.I. 2.3 to 10.9 percent). The probability of extinction after
5599 implementation of the HCP is statistically significantly different than baseline conditions. If the
5600 Applicants are able to achieve a greater than 50 percent community (internal) capture rate,
5601 further reduce the effects of their action, or mitigate them through use of the Marinelli Fund for
5602 habitat restoration to the extent that the net effect is a loss of no more than 10 adult panthers (4
5603 female adult panthers)/year above present (from all causes) our analysis finds the probability of
5604 extinction falls from 5.7 percent to 1.4 percent. This probability of extinction is within the 95
5605 percent C.I. of scenarios where no additional panthers are taken above present (i.e., not
5606 significantly different from baseline).

5607
5608 Based on our analysis of all factors influencing the effects of the action on panthers we conclude
5609 this further net reduction of effects to fewer than 10 panthers per year at full build-out **will/will**
5610 **not** be accomplished through the maintenance of high community (internal) trip capture, adaptive
5611 management, and the mitigative effects of actions facilitated by the Marinelli Fund. Thus, we
5612 conclude the proposed action **is/is not** likely "...to reduce appreciably the likelihood of both the
5613 survival and recovery of a listed species in the wild" (50 CFR §402.02).

5614
5615 After reviewing the status of the species, the environmental baseline for the Action Area, the
5616 effects of the Action and the cumulative effects, it is the Service's biological opinion that the
5617 Action **is/is not** likely to jeopardize the continued existence of the panther.

5618
5619
5620 **6 Big Cypress Fox Squirrel**
5621

5622 This section provides the Service's conference opinion of the Action for the Big Cypress fox
5623 squirrel.

5624

5625 **6.1 Status of Big Cypress Fox Squirrel**

5626

5627 This section summarizes best available data about the biology and current condition of the Big
5628 Cypress fox squirrel (*Sciurus niger avicennia*; BCFS) throughout its range that are relevant to
5629 formulating an opinion about the Action. At this time, the BCFS is not protected under the ESA.
5630 The Service has not reviewed the species' status relative to the ESA definitions of "endangered"
5631 and "threatened." The State of Florida protects the BCFS as a threatened species under its
5632 Endangered and Threatened Species Rule. For purposes of this Conference Opinion, we
5633 summarize the *Species Action Plan for the Big Cypress Fox Squirrel* (FWC 2013), the *Species*
5634 *Conservation Measures and Permitting Guidelines for the Big Cypress Fox Squirrel* (FWC
5635 2018), and other available data to describe the species' status.

5636

5637 **6.1.1 Species Description**

5638

5639 The BCFS is a large tree squirrel that is highly variable in color and patterning. The most
5640 common pattern includes a black head and dorsal fur, buff sides and belly, buff and black tail,
5641 and white nose and ears. Darker and lighter color patterns have been documented as well. The
5642 BCFS is the smallest of the four eastern fox squirrel subspecies that occur in Florida.

5643

5644 **6.1.2 Life History**

5645

5646 Although considered a tree squirrel, the BCFS spends a lot of time on the ground. The BCFS diet
5647 consists of a variety of seeds, nuts, fruits, berries, flowers, insects, and fungi that vary in seasonal
5648 availability. Cypress trees support most documented nests, with some in pines and cabbage
5649 palms. Nest materials are variable, but most consist of bark stripped from cypress placed on
5650 sticks or bromeliads.

5651

5652 Fox squirrels can mate at any time of the year, but BCFS have two breeding seasons: winter/dry
5653 season, from December to April, and summer/wet season, from July to October. Females
5654 generally mate with more than one male and the average litter size is typically 2 or 3 offspring.
5655 Gestation is about 6 weeks and weaning around 12 weeks after birth. Pups may remain with their
5656 mother through their first winter before dispersing. FWC (2011) reported that BCFS captured in
5657 Naples and released in Big Cypress National Preserve exhibited inconsistent site fidelity and
5658 movements of up to 32 km (about 20 miles) from the release locations.

5659

5660 BCFS use a variety of habitats including tropical hardwood forest, live oak forest, mangrove
5661 forest, cypress swamp, pine flatwoods, pastures, parks, and golf courses. In urban environments,
5662 BCFS use parks and golf courses where large trees and food sources are retained and the
5663 groundcover is open and low. Food availability significantly influences the size of the area used
5664 by BCFS, especially by females. In natural areas, mean home range size is 187 acres for males
5665 and 26 acres for females. Individual home ranges typically overlap substantially without
5666 observed territoriality; however, adults, especially females, often defend a core area of
5667 approximately 3 acres. The difficulties of surveying cypress swamps and gaining access to

5668 private ranchlands have constrained the collection of BCFS distribution and abundance data.
5669 Available density estimates are 0.09 and 1.92 squirrels/km² (3.6 and 78 squirrels/10,000 acres) in
5670 cypress swamps and wooded ranchlands, respectively (FWC 2011).

5672 **6.1.3 Numbers, Reproduction, and Distribution**

5674 The BCFS occurs in the southwestern tip of peninsular Florida, where FWC (2011) reports an
5675 area of occupancy of 1,677–3,840 km² (414,396–948,885 acres), and an estimated abundance of
5676 “well below” 10,000 squirrels. Applying the density estimates cited in the previous section to
5677 this range of occupancy estimates yields a population range of 151–7,373 squirrels, but FWC
5678 considered the population size greater than 1,000 mature individuals in its 2011 Biological Status
5679 Review Report. The status of BCFS in the core of the species’ range, Big Cypress National
5680 Preserve and the Everglades, is largely unknown, but is considered declining due to extirpation
5681 from several historically occupied locations. FWC (2011) estimated a zero probability of BCFS
5682 extinction in the next 100 years, but a 50% probability of a 95% population decline in the next
5683 100 years.

5684 **6.1.4 Conservation Needs and Threats**

5685 The BCFS requires areas with open ground cover and mature trees for food availability and
5686 nests. Habitat loss, degradation, and fragmentation are the main threats. Rapid urbanization in
5687 western Lee and Collier counties has isolated local BCFS populations within fragmented habitat
5688 patches. An insufficient use of prescribed fire has contributed to a degradation of BCFS habitat
5689 conditions on some conservation lands and private rural lands. In urban areas, mortality due to
5690 vehicles, pets, and other causes (e.g., feeding squirrels with inappropriate human foods, exposure
5691 to rodenticides and other toxic chemicals) is a growing concern. Munim (2008) documented 10
5692 BCFS road-kills in suburban areas in 2006–2007. Loss of native bromeliads (used as nest sites)
5693 caused by a non-native weevil, and various diseases, pose threats of an unknown magnitude to
5694 BCFS. The species’ primary conservation need is the protection and management of open
5695 understory woodlands. FWC (2018) provides recommendations to address this need and others
5696 in its *Species Conservation Measures and Permitting Guidelines for the Big Cypress Fox*
5697 *Squirrel*.

5700 **6.2 Environmental Baseline for Big Cypress Fox Squirrel**

5701 This section describes the current condition of the BCFS in the Action Area without the
5702 consequences to the listed species caused by the proposed Action.

5703 **6.2.1 Action Area Numbers, Reproduction, and Distribution**

5704 The Plan Area contains 63,849 acres of land cover classes that may provide BCFS habitat,
5705 including forested wetlands, forested uplands, rural open lands, and improved pasture (Table 2-
5706 1). The Applicants did not conduct BCFS surveys of the Plan Area during the development of
5707 the HCP. The Biological Assessment for the 4,000-acre Rural Lands West Project, which is
5708 within the Plan Area, documented one BCFS on site in 2008 (Passarella & Associates, Inc.
5709 2017). A University of Florida and FWC web-based survey of the public and natural resource

5714 professionals (August 2011–April 2012) received reports of 3 BCFS sightings within the Plan
5715 Area and of about 100 sightings on lands within 25 miles of the Plan Area (FWC 2013).

5716
5717 Based on these reports, the species' ability for relatively long-distance movements, and a
5718 substantial acreage of habitat types associated with the species, we are reasonably certain that
5719 BCFS occupy the Plan Area. We have no data that indicates the Plan Area supports a
5720 disproportionate share of the range-wide population, which does not occur at high densities
5721 anywhere. The lack of historic records in the Plan Area suggests a relatively lower density and
5722 patchy distribution. Lacking abundance data specific to the Action Area, we conservatively use
5723 the average of the densities reported for BCFS in cypress swamps and wooded ranchlands (40.8
5724 squirrels/10,000 acres) to estimate that the Plan Area supports about 260 BCFS.

5725
5726 **6.2.2 Action Area Conservation Needs and Threats**

5727
5728 The range-wide conservation needs and threats we described in section 6.1.4 are relevant in the
5729 Action Area. With respect to the threat of exposure to toxic chemicals, at least three eastern grey
5730 squirrels have died of suspected rodenticide poisoning in Collier and Lee counties since 2011 (J.
5731 Fitzgerald, von Arx Wildlife Hospital, personal communication).

5732
5733 **6.3 Effects of the Action on Big Cypress Fox Squirrel**

5734
5735 This section describes all reasonably certain consequences to the BCFS that we predict the
5736 proposed Action would cause, including the consequences of other activities not included in the
5737 proposed Action that would not occur but for the proposed Action. Such effects may occur later
5738 in time and may occur outside the immediate area involved in the Action.

5739
5740 **6.3.1 Development and Mining, Base Zoning, and Lands Eligible for Inclusion**

5741
5742 The BCFS uses many land cover classes and most commonly uses forested wetlands for nesting.
5743 These characteristics are consistent with our criteria for applying the Proportional method
5744 described in section 2.1.4 to estimate the spatial extent of development impacts. By this method,
5745 we estimate that development and mining activities within the development envelope of the Plan
5746 Area would result in the loss of 9,284 acres of suitable habitat for the BCFS (the sum of acreages
5747 in Table 2-3 column "G" for those cover classes associated with the BCFS).

5748
5749 FWC (2018) permitting guidelines for the BCFS do not require pre-construction surveys,
5750 because it is difficult to locate BCFS nests, and the Applicants do not propose such surveys.
5751 Where BCFS nest or shelter within a construction footprint, the use of heavy equipment to
5752 remove vegetation and grade land surfaces during the construction (horizontal) phase of
5753 development activity (see Table 2-5) is likely to kill or injure most pups in nests and an
5754 undeterminable percentage of adult BCFS.

5755
5756 BCFS occupy areas year-round. Female BCFS forage within a 575-foot radius (24 acres) of their
5757 nests. Habitat modification resulting in a loss of more than 25% of plants providing food
5758 resources, more than 10% of trees providing other potential nest sites, or that alters the timing,
5759 quantity, or quality of water availability, would impair essential foraging and nesting behaviors

(FWC 2018). Such modifications are likely to displace entirely or shift the home range of individuals that avoid death or injury caused by construction activity. Displacement would expose individuals to an increased risk of predation, roadkill, and other lethal/injurious hazards during dispersal. Human habitation of the developed areas following construction would introduce various stressors that increase the risk of death and injury caused by pets, pesticides, and vehicles on roads. Due to the relative abundance of BCFS habitat in the Plan Area and low densities, a percentage of animals displaced by construction activity would survive and persist in adjacent areas, but we are unable to estimate this percentage.

By the direct and indirect effect pathways described in the previous two paragraphs, and using the average of reported BCFS densities (40.8 squirrels per 10,000 acres, see section 6.2.1), we expect an estimated 9,284 acres of development of BCFS habitat to harm up to 38 BCFS.

6.3.2 Preservation Activities

The designated Preservation areas of the HCP contain 47,811 acres of land cover that we consider as BCFS habitat (Table 2-1), including 11,550 acres of cypress forest and 7,599 acres of improved pasture (the two most extensive cover classes). Using the average of reported BCFS densities (40.8 squirrels per 10,000 acres, see section 6.2.1), we expect the Preservation areas to support about 195 BCFS. Activities in these areas would include prescribed burning, mechanical control of groundcover, mechanical and chemical control of exotic vegetation, and other activities that maintain or improve land quality and existing agricultural uses.

Although many of these activities maintain habitat for BCFS, some can also kill, injure, or disrupt the normal behaviors of BCFS that are present at the time. For example, prescribed burning maintains open ground cover that BCFS require for foraging. Burning may also cause squirrels to leave the burn zone or take refuge in their nests, which temporarily disrupts feeding behavior, and may kill or injure some squirrels through heat or smoke inhalation. Nests and nest trees may be destroyed during prescribed burns or by heavy equipment during exotic vegetation control; however, we consider these events rare and discountable.

The activities described above are a continuation of current land management practices, which we do not expect to alter the numbers, reproduction, or distribution of the BCFS in the Preservation areas. BCFS would experience occasional disturbances from land management practices conducted near nest trees.

We expect BCFS to persist in the Preservation areas, because the preservation and management activities under the HCP will, at minimum, maintain current conditions. Special attention to this species in the long-term management of the Preservation areas under conservation easements could increase BCFS densities and the Plan Area population. However, lacking more detailed information about BCFS in the Plan Area, and about how habitat management under easements may specifically benefit this species, we are unable to reasonably estimate the extent of potential BCFS benefits.

6.3.3 Very Low Density Development

5806 The Very Low Density (VLD) use areas of the HCP contain 1,561 acres of land cover that we
5807 consider as BCFS habitat (Table 2-1), including 357 acres of freshwater forested wetlands and
5808 502 acres of improved pasture (the two most extensive cover classes). Using the average of
5809 reported BCFS densities (40.8 squirrels per 10,000 acres, see section 6.2.1), we expect the VLD
5810 areas to support about 6 BCFS.

5811
5812 Land uses in the VLD areas are similar to the Preservation areas, but may also include isolated
5813 residences, lodges, and hunting/fishing camps, at a density of no more than one dwelling unit per
5814 50 acres. Croplands and orchards are not present in the VLD, but the Applicants would continue
5815 current ranching/livestock operations and other management activities as described for the
5816 Preservation Areas (e.g., exotic species control, prescribed burning). As in the Preservation
5817 areas, we expect any adverse effects resulting from the continuation of the existing land
5818 management regimes as rare and discountable.

5819
5820 The HCP does not specify a footprint for the isolated residences, lodges, and hunting/fishing
5821 camps, but indicates that their construction could clear up to 10% of the existing native
5822 vegetation (see section 2.5). New dwelling development could occur within any of the cover
5823 types present besides open water and existing development. Clearing up to 10% of the cover
5824 types that we consider as BCFS habitat would reduce such habitat by 156 acres. It is possible that
5825 dwelling development in the VLD areas could entirely avoid BCFS-occupied areas, but we
5826 conservatively estimate an impact that is proportional to the maximum extent of the habitat
5827 modification, which is 10% of 6 BCFS, or the loss of 1 individual. The pathways for this effect
5828 are the same as we described for construction activity in the Development areas in section 6.3.1.
5829

5830 **6.4 Cumulative Effects on Big Cypress Fox Squirrel**

5831
5832 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
5833 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
5834 Federal actions that are unrelated to the proposed action are not considered, because they require
5835 separate consultation under §7 of the ESA.

5836
5837 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
5838 sole source of effects that are consistent with the definition of cumulative effects for this Action.
5839 Roadkill is a documented cause of BCFS mortality in suburban areas (Munim 2008). We expect
5840 an increase in traffic on Action Area roads to increase roadkill rates for BCFS where roads cross
5841 or adjoin occupied areas; however, we have no data upon which to develop a reasonable
5842 relationship between traffic volume and BCFS mortality.

5843 **6.5 Conclusion for Big Cypress Fox Squirrel**

5844
5845 In this section, we summarize and interpret the findings of the previous sections for the BCFS
5846 (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO
5847 under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to
5848 jeopardize the continued existence of a species.

5849
5850
5851 **Status**

5852
5853 The BCFS occurs in the southwestern tip of peninsular Florida, where FWC (2011) reports an
5854 area of occupancy of 414,396–948,885 acres, and an estimated abundance of 1,000–7,373
5855 squirrels. The status of BCFS in the core of the species' range, Big Cypress National Preserve
5856 and the Everglades, is largely unknown, but is considered declining due to extirpation from
5857 several historically occupied locations.

5858
5859 Threats to the BCFS include habitat loss, degradation, and fragmentation; mortality from roads,
5860 pets, disease, and toxic substances; and reduction of nesting sites (bromeliads and large trees).
5861 The species' primary conservation need is the protection and management of open understory
5862 woodlands.

5863
Baseline
5864
5865 The Plan Area contains 63,849 acres of land cover classes that may provide BCFS habitat,
5866 including forested wetlands, forested uplands, rural open lands, and improved pasture. Based on
5867 reports of the BCFS within the Plan Area and adjacent areas, the species' ability for relatively
5868 long-distance movements, and a substantial acreage of habitat types associated with the species,
5869 we are reasonably certain that BCFS occupy the Plan Area. Lacking abundance data specific to
5870 the Action Area, we use the average of the densities reported for BCFS in cypress swamps and
5871 wooded ranchlands (40.8 squirrels/10,000 acres) to estimate that the Plan Area supports about
5872 260 BCFS.

5873
5874 The range-wide conservation needs of and threats to the BCFS are relevant in the Action Area.

5875
Effects
5876
5877 We expect an estimated 9,284 acres of development of BCFS habitat to harm up to 38 BCFS.
5878 Due to the relative abundance of BCFS habitat in the Plan Area and low densities, a percentage
5879 of animals displaced by construction activity would survive and persist in adjacent areas, but we
5880 are unable to estimate this percentage.

5881
5882 The designated Preservation areas of the HCP contain the majority (47,811 acres, or 74.9%) of
5883 land cover that we consider as BCFS habitat within the Plan Area. We expect BCFS to persist in
5884 the Preservation areas, because the HCP preservation and management activities will, at
5885 minimum, maintain current conditions. Special attention to this species in the long-term
5886 management of the Preservation areas under conservation easements could increase BCFS
5887 densities and the Plan Area population.

5888
5889 Clearing up to 10% of the cover types that we consider as BCFS habitat within the Very Low
5890 Density use areas would reduce such habitat by 156 acres. We conservatively estimate an impact
5891 that is proportional to the maximum extent of the habitat modification, which is 10% of 6 BCFS,
5892 or the loss of 1 individual.

5893
Cumulative Effects
5894
5895
5896
5897

5898 We expect an increase in traffic on Action Area roads to increase roadkill rates for BCFS where
5899 roads cross or adjoin occupied areas; however, we have no data upon which to develop a
5900 reasonable relationship between traffic volume and BCFS mortality.

5901

5902 **Opinion**

5903

5904 BCFS are likely to occur in the Plan Area at a low density and with a patchy distribution.
5905 Conservatively applying the average of reported densities (40.8/10,000 acres) to habitats of the
5906 Plan Area associated with the BCFS indicates that the development activities would harm up to
5907 39 squirrels, with an undeterminable percentage of displaced individuals reestablishing territories
5908 in undeveloped areas. Precluding further development in the Preservation areas, and limiting
5909 development in the Very Low Density (VLD) areas, would maintain habitat for the remaining
5910 260 – 39 = 221 BCFS that the Plan Area may support.

5911

5912 The loss of up to 39 BCFS would represent a 0.5–3.9% reduction to the range-wide population
5913 size of 1,000–7,373. We consider this range a worst-case scenario due to our conservative
5914 attribution of an average BCFS density to a portion of the range that is not likely to support a
5915 disproportionate share of the range-wide population. Population increases in the Preservation
5916 areas, and possibly the VLD use areas, could wholly or partially offset this loss. Such increases
5917 would depend on the success of habitat improvements in these areas, which we anticipate are
5918 likely, but not guaranteed. An increasing rate of BCFS mortality on Action Area roads is a
5919 logical outcome of increasing traffic volume, due to both regional population growth and the
5920 new developments of the proposed Action, but present mortality rates are unknown and future
5921 rates are unpredictable.

5922

5923 Habitat types that may support BCFS in the Plan Area are relatively abundant and could support
5924 a much higher BCFS density with management. The species has demonstrated an ability to
5925 colonize non-traditional habitats, including pastures and open rural land, which occur throughout
5926 the Plan Area. Both agricultural lands and native habitats will receive protection from further
5927 development in the Preservation areas and undeveloped portions of the VLD use areas as other
5928 portions of the Plan Area are developed. We believe the following factors support a view that the
5929 likely net impact of the Action on the species is substantially less than the worst-case scenario of
5930 a 0.5–3.9% population reduction:

5931 • our application of an average BCFS density to Plan Area habitats likely overestimates
5932 BCFS numbers;

5933 • increases in habitat quality in the Preservation areas through management under
5934 conservation easements are likely; and

5935 • the survival of animals displaced from construction areas is undeterminable, but possibly
5936 substantial, due to the abundance of potential habitat and low densities.

5937 Therefore, we believe the net impact of the Action on the BCFS is within the species' ability to
5938 sustain.

5939

5940 After reviewing the current status of the species, the environmental baseline for the Action Area,
5941 the effects of the Action and the cumulative effects, it is the Service's conference opinion that
5942 the Action is not likely to jeopardize the continued existence of the BCFS.

5944 **7 Florida Sandhill Crane**

5945
5946 This section provides the Service's conference opinion of the Action for the Florida sandhill
5947 crane.

5948
5949 **7.1 Status of Florida Sandhill Crane**

5950
5951 This section summarizes best available data about the biology and current condition of the
5952 Florida sandhill crane (*Antigone canadensis pratensis*) throughout its range that are relevant to
5953 formulating an opinion about the Action. At this time, the Florida sandhill crane is not protected
5954 under the ESA. The Service has not reviewed the species' status relative to the ESA definitions
5955 of "endangered" and "threatened." The State of Florida protects the Florida sandhill crane as a
5956 threatened species under Florida's Endangered and Threatened Species Rule. For purposes of
5957 this Conference Opinion, we summarize the *Species Action Plan for the Florida Sandhill Crane*
5958 (FWC 2013), the *Species Conservation Measures and Permitting Guidelines for the Florida*
5959 *Sandhill Crane* (FWC 2016), and other available data to describe the species' status.

5960
5961 **7.1.1 Species Description**

5962
5963 Sandhill cranes are long-legged, long-necked, heavy-bodied, gray birds with a patch of bald, red
5964 skin on top of their heads. Adults average 4 feet in height with a wingspan of 6.5 feet. They fly
5965 with their necks outstretched and their distinctive, rattling calls can be heard from far away.
5966 Males and females appear identical except the male is slightly larger. Two subspecies of sandhill
5967 crane are found in Florida. The Florida sandhill crane (*Antigone canadensis pratensis*) is non-
5968 migratory and the greater sandhill crane (*A. c. tabida*) winters in Florida, arriving in October and
5969 leaving for breeding grounds in the Great Lakes region in March. Although the two subspecies
5970 are indistinguishable, those observed in the peninsula from April to September are most likely
5971 the resident Florida subspecies. The two subspecies are not known to interbreed.

5972
5973 **7.1.2 Life History**

5974
5975 Florida sandhill cranes mate for life and are long-lived, averaging 20 years. Although some start
5976 breeding at 3 years old, they are rarely successful until age 5. Florida sandhill cranes nest
5977 primarily from February through April, but may begin as early as December and extend through
5978 August. Nests are built of plant stems in shallow marshes where water depths average 5 to 13
5979 inches. Although they lay eggs in only one nest, pairs may build accessory nests or platforms.
5980 Nesting success is a function of water levels during the nesting season and predation. Pairs can
5981 re-nest after a nest failure.

5982
5983 Clutch size can range from one to three eggs, but is usually two. The average incubation period
5984 is 30 days and the average brood size is 1.32 chicks. Both members of the pair incubate the eggs
5985 and raise the young. The chicks can fly within 65 to 70 days. Flightless young may forage up to
5986 1,500 feet away from the nest site within weeks of hatching. Young sandhill cranes stay with
5987 their parents about 10 months before becoming independent and gaining the featherless red
5988 crowns. Male and female Florida sandhill cranes disperse a mean distance of 2.4–7.2 miles from

5989 their natal territory, respectively. The maximum observed female dispersal distance was 29.8
5990 miles.

5991
5992 Sandhill cranes are omnivorous, feeding on seeds, grain, berries, insects, earthworms, mice,
5993 small birds, snakes, lizards, frogs, and crayfish. Florida sandhill cranes forage in a variety of
5994 open habitats, including shallow herbaceous wetlands, improved pastures, prairies, open pine
5995 forests, croplands, golf courses, airports, sod farms, and road rights-of-way. A pair's average
5996 home range is about 1,100 acres, which includes some amount of shallow-water non-forested
5997 wetlands for nesting and roosting. Home ranges may overlap, but core nesting areas are defended
5998 from other cranes, which varies from 300–635 acres.

5999
6000 **7.1.3 Numbers, Reproduction, and Distribution**

6001
6002 Florida sandhill cranes occur from the Okefenokee Swamp, in southern Georgia, to the
6003 Everglades. However, most of the population is in peninsular Florida from Alachua County to
6004 the northern edge of the Everglades (FWC 2013, Figure 2). The Florida sandhill crane population
6005 was estimated at 4,000–6,000 individuals in 1992, and just under 4,600 individuals in 2003
6006 (FWC 2011). Based on inferences from habitat analyses, the population declined by 35.7% from
6007 1974 to 2003 (an average of 1.23% per year). If that trend has continued at the same rate, the
6008 population has declined another 20% to around 3,680 in 2019.

6009
6010 **7.1.4 Conservation Needs and Threats**

6011
6012 Sandhill cranes rely on shallow marshes for roosting and nesting and use open upland and
6013 wetland habitats for foraging. Major threats to Florida sandhill cranes are habitat loss and
6014 degradation. Most of the remaining habitat is on private lands (e.g., urban areas, improved
6015 pastures), which are not a priority for conservation. Cranes abandon areas that lack a
6016 management regime or natural conditions that maintain low-stature vegetation (e.g., prescribed
6017 fire, cattle grazing). Dense vegetation may harbor predators, such as bobcats (*Lynx rufus*).
6018 Cranes displaced from habitats that become unsuitable are exposed to an increased risk of
6019 mortality from predators and collisions with vehicles, utility lines, and fences. Human presence
6020 can increase abundance of predators such as raccoons (*Procyon lotor*) and domestic dogs (*Canis*
6021 *lupus familiaris*). Non-native predators such as coyotes (*Canis latrans*), red fox (*Vulpes vulpes*),
6022 feral hogs (*Sus scrofa*), and fire ants (*Solenopsis invicta*) are also a threat. Exposure of cranes
6023 and their prey to pesticides and other toxic substances that are commonly used in urban, rural,
6024 and agricultural areas is a growing concern (FWC 2013).

6025
6026 Changes in water quantity or timing due to drought, storms, ground water withdrawal, ditching,
6027 draining, or flooding can cause nest failures. Low water levels can make nests and young more
6028 vulnerable to predators and rapid rises in water levels can flood nests. The effects of climate
6029 change on rainfall amounts and timing may exacerbate water-related nest failures. FWC (2016)
6030 reports that human activity within 250 feet of nests can cause adults to flush and leave eggs
6031 exposed to extreme temperatures, predation, and may cause nest abandonment. More severe and
6032 sustained disturbance within 400 feet of nests, such as construction activity, can interrupt nesting
6033 behavior and cause nest abandonment. Land conversion within 1,500 feet of nests may
6034 significantly impair the ability of flightless young to forage.

6035
6036 The primary conservation need for the Florida sandhill crane is to maintain or increase the area
6037 of suitable habitat in order to stabilize or increase the population (FWC 2013). Florida sandhill
6038 cranes use a variety of land cover types that have an open aspect, as long as a suitable wetland
6039 exists nearby for roosting and nesting. Practices that maintain the open aspect include prescribed
6040 fire and cattle grazing.

6041 6042 **7.2 Environmental Baseline for Florida Sandhill Crane**

6043
6044 This section describes the current condition of the Florida sandhill crane in the Action Area
6045 without the consequences to the listed species caused by the proposed Action.

6046 6047 **7.2.1 Action Area Numbers, Reproduction, and Distribution**

6048
6049 The Plan Area contains 77,760 acres of land cover classes that may provide Florida sandhill
6050 crane habitat, including 28,773 acres of non-forested wetland types (marshes, prairies and bogs,
6051 isolated freshwater march, and freshwater non-forested wetlands), improved pasture, rural open
6052 land, and cropland/pasture (Table 2-1). The Applicants did not conduct Florida sandhill crane
6053 surveys of the Plan Area during the development of the HCP. The Biological Assessment for the
6054 Rural Lands West Project, which is within the HCP Development area, documented several
6055 Florida sandhill cranes on site during May and June of 2007 (Passarella & Associates, Inc.
6056 2017). eBird (2019) reports substantial numbers of adult and juvenile sandhill cranes during the
6057 months of April through September within and near the Plan Area, which is when migratory
6058 sandhill cranes have left to breed in the Great Lakes region. Therefore, we are reasonably certain
6059 that a breeding population of Florida sandhill cranes occupies the Plan Area.

6060
6061 To estimate the size of the breeding population (not including juveniles), we use the mid-point in
6062 the range of core nesting area size that breeding pairs defend (300–635 acres, or 467.5 acres).
6063 Dividing the extent of non-forested wetland types in the Plan Area (28,773 acres) by 467.5 acres
6064 yields habitat for about 62 breeding pairs, or 124 adults with a 1:1 sex ratio. Using the average
6065 clutch size of 2 eggs and the average brood size of 1.32 chicks, a stable population of this size
6066 would have 124 eggs and 81 chicks during the breeding season each year. At any time, the
6067 population would also include birds that are not yet reproductively active (less than 3 to 5 years
6068 old).

6069 6070 **7.2.2 Action Area Conservation Needs and Threats**

6071
6072 Threats to the Florida sandhill crane in the Action Area are the same as the range-wide threats,
6073 which include:

- 6074 • loss of non-forested wetland habitats;
- 6075 • water level extremes during the nesting season;
- 6076 • predation by native and exotic species;
- 6077 • disturbance of nesting activities by construction activities and humans;
- 6078 • collisions with vehicles, utility lines, and fences; and
- 6079 • exposure to pesticides and other toxic substances.

6081 The primary conservation need for the Florida sandhill crane in the Action Area is to maintain or
6082 increase the area of suitable habitat in order to stabilize or increase the population.
6083

6084 **7.3 Effects of the Action on Florida Sandhill Crane**

6085

6086 This section describes all reasonably certain consequences to the Florida sandhill crane that we
6087 predict the proposed Action would cause, including the consequences of other activities not
6088 included in the proposed Action that would not occur but for the proposed Action. Such effects
6089 may occur later in time and may occur outside the immediate area involved in the Action.
6090

6091 **7.3.1 Development and Mining, Base Zoning, and Lands Eligible for Inclusion**

6092

6093 The Florida sandhill crane uses several land cover classes represented in the Plan Area and relies
6094 on non-forested wetlands for nesting and roosting. These characteristics are consistent with our
6095 criteria for applying the Proportional method described in section 2.1.4 to estimate the spatial
6096 extent of development impacts. By this method, we estimate that development and mining
6097 activities within the development envelope of the Plan Area would result in the loss of 20,594
6098 acres of suitable sandhill crane habitat (the sum of acreages in Table 2-3 column “G” for those
6099 cover classes associated with the sandhill crane). The conversion to development and mining
6100 uses would involve mostly agricultural and rural open lands that provide foraging habitat (17,669
6101 acres, or 85.8%), but also 2,925 acres of non-forested wetlands that provide roosting habitat year
6102 round and nesting habitat in the breeding season.
6103

6104 As a programmatic proposal, the HCP does not specify the timing of project-level construction
6105 activities. Florida sandhill cranes are not migratory and are present in the Plan Area year-round.
6106 Human activity and noise during the nesting season (February through April) within 400 feet of
6107 nests may harm eggs and chicks by causing adults to leave the nest for the duration of the
6108 disturbance (FWC 2016). Habitat modifications within 1,500 feet of nest sites (equivalent to a
6109 162-acre circle) may impair feeding essential feeding behavior of flightless chicks (FWC 2016).
6110 We expect that construction activities (drainage, clearing, and grading operations) during the
6111 nesting season (February–April) within 1,500 feet of nest sites would harm eggs and flightless
6112 chicks and displace adults from their core nesting areas. Construction outside the nesting season
6113 would avoid harming eggs and chicks, but eliminate nesting habitat in subsequent years. Based
6114 on a core nesting area size of 467.5 acres (see section 7.2.1), and complete utilization of the
6115 available non-forested wetlands as nesting habitat, development on 2,925 acres of non-forested
6116 wetlands would directly or indirectly affect up to about 6 nesting pairs of Florida sandhill cranes.
6117 Regardless of the timing of construction, development in shallow-water non-forest wetlands
6118 would eliminate roosting habitat.
6119

6120 Development activity in uplands is unlikely to kill or injure sandhill cranes, because they
6121 generally avoid human activity, but a substantial loss of foraging habitat within a bird’s home
6122 range (average 1,100 acres) would cause the individual to forage elsewhere. Adult home ranges
6123 overlap, and multiple individuals may forage in the same areas. Following the development,
6124 cropland, pasture, and rural open land would remain relatively abundant in the potential
6125 development areas (9,633 acres; the total of these three classes from column “H” of Table 2-3)
6126 and in the other land use designations of the HCP. Native wetlands habitats for nesting, roosting,

6127 and foraging are much more likely to limit local sandhill crane numbers and reproduction, and of
6128 these, the nesting habitat requirements are the most specific, because pairs defend a core nesting
6129 area. We estimate that the development areas support nesting for up to 6 breeding pairs.
6130 Therefore, we believe that habitat loss associated with the development would reduce crane
6131 numbers by up to 6 breeding pairs.
6132

6133 Following construction, human occupancy of the developed areas that are located near wetlands
6134 that support roosting/nesting cranes could cause an increase in predation by predators attracted to
6135 garbage and an increase in exposure to pesticides and other chemicals used in the developed
6136 areas. Additional power lines and fences could increase electrocution and entanglement of
6137 Florida sandhill cranes. An increase in traffic would likely increase the incidence of vehicles
6138 striking cranes. Although these various hazards would increase the risks to individuals that
6139 occupy areas near the developed areas, we lack data with which to estimate the amount or extent
6140 of probable harm to sandhill cranes. We do not believe that these risks would substantially
6141 increase the amount or extent of harm caused by habitat loss.
6142

6143 **7.3.2 Preservation Activities**

6144

6145 The designated Preservation areas of the HCP contain 44,606 acres of land cover that we
6146 consider as Florida sandhill crane habitat (Table 2-1), including 23,693 acres of non-forested
6147 wetlands. Based on a core nesting area size of 467.5 acres (see section 7.2.1), and complete
6148 utilization of the available non-forested wetlands as nesting habitat, we estimate that these
6149 wetlands, and nearby pastures, croplands, and rural open lands, would support up to 51 breeding
6150 pairs. Activities in these areas would include prescribed burning, mechanical control of
6151 groundcover, mechanical and chemical control of exotic vegetation, and other activities that
6152 maintain or improve land quality and existing agricultural uses.
6153

6154 Many of these activities maintain habitat conditions for Florida sandhill cranes. In particular,
6155 prescribed burning can control woody encroachment into both uplands and wetlands. Grazing
6156 and mowing can maintain open areas for crane foraging. Because nesting occurs in wetlands
6157 with shallow water (5 to 13 inches deep), direct impacts to eggs and chicks caused by fire or the
6158 use of heavy equipment to manage vegetation are unlikely. Outside the breeding season or more
6159 than 400 feet from an active nest, FWC (2016) reports that the following activities are unlikely to
6160 harm or disturb cranes:

- 6161 • managing vegetation along utility and highway rights-of-way;
- 6162 • the routine use of roads, homes, and other infrastructure; and
- 6163 • routine agricultural operations.

6164
6165 The Applicants propose the following general measures in the Preservation and Very Low
6166 Density use areas for sandhill cranes (HCP chapter 7.5.1.1):

- 6167 • Preserve and maintain sandhill crane habitat in accordance with the terms of the FWC
6168 state permit for the HCP Area.
- 6169 • Mitigate permanent losses of Florida sandhill crane habitat associated with the Covered
6170 Activities through preservation, and possibly restoration, enhancement and/or creation of
6171 an equal acreage of in-kind Florida sandhill crane habitat.

6172 • Where practicable, in-kind mitigation for wetland impacts will enhance and/or restore
6173 suitable short-hydroperiod nesting habitats (shallow open marshes, wet prairies) for the
6174 Florida sandhill crane that function across a range of hydrologic conditions.

6175 We do not expect the management of HCP Preservation areas to reduce the numbers,
6176 reproduction, or distribution of the Florida sandhill crane to in the Preservation areas, because
6177 these activities would, at minimum, maintain current conditions. Special attention to this species
6178 in the long-term management of the Preservation areas under conservation easements could
6179 increase crane densities and the Plan Area population. However, lacking more detailed
6180 information about the Florida sandhill crane in the Plan Area, and about how habitat
6181 management under conservation easements may benefit this species, we are unable to reasonably
6182 estimate the extent of potential benefits.

6183 **7.3.3 Very Low Density Development**

6184 The Very Low Density (VLD) use areas of the HCP contain 966 acres of land cover that we
6185 consider as Florida sandhill crane habitat (Table 2-1), including 223 acres of freshwater non-
6186 forested wetlands. With a core nesting area size of 300–635 acres (see section 7.2.1), the extent
6187 of wetlands within the VLD use areas is unlikely to support a breeding pair of sandhill cranes,
6188 but may support roosting and foraging for non-breeding cranes and for mature cranes outside the
6189 breeding season. Pastures, cropland/pasture, and rural open lands of the VLD areas (743 acres)
6190 may also support crane foraging.

6191 Land uses in the VLD areas are similar to the Preservation areas, but may also include isolated
6192 residences, lodges, and hunting/fishing camps, at a density of no more than one dwelling unit per
6193 50 acres. The Applicants would continue current ranching/livestock operations and other
6194 management activities as described for the Preservation Areas (e.g., exotic species control,
6195 prescribed burning). As in the Preservation areas, we do not expect adverse effects resulting from
6196 the continuation of the existing land management regimes.

6197 The HCP does not specify a footprint for the isolated residences, lodges, and hunting/fishing
6198 camps, but indicates that their construction could clear up to 10% of the existing native
6199 vegetation (see section 2.5). New dwelling development could occur within any of the cover
6200 types present besides open water and existing development. Clearing up to 10% of the native
6201 cover types that we consider as crane habitat would reduce such habitat by 22 acres (Table 2-7).
6202 It is possible that dwelling development in the VLD areas could entirely avoid wetlands, but we
6203 conservatively estimate a 22-acre habitat loss. Because we do not expect the VLD area wetlands
6204 to support nests, this extent of habitat modification is unlikely to kill or injure cranes.

6205 The general measures listed in the HCP for enhancing crane habitat in the Preservation areas
6206 apply to the VLD areas as well (see previous section 7.3.2). However, the potential to increase
6207 crane numbers or reproduction is limited due to the small extent of non-forested wetlands in the
6208 VLD areas.

6209 **7.4 Cumulative Effects on Florida Sandhill Crane**

6217 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
6218 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
6219 Federal actions that are unrelated to the proposed action are not considered, because they require
6220 separate consultation under §7 of the ESA.

6221
6222 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
6223 sole source of effects that are consistent with the definition of cumulative effects for this Action.
6224 Roadkill is a known cause of Florida sandhill crane mortality. We expect an increase in traffic on
6225 Action Area roads to increase roadkill rates for cranes where roads cross or adjoin occupied
6226 areas; however, we have no data upon which to develop a reasonable relationship between traffic
6227 volume and sandhill crane mortality.

6228

6229 **7.5 Conclusion for Florida Sandhill Crane**

6230

6231 In this section, we summarize and interpret the findings of the previous sections for the Florida
6232 sandhill crane (status, baseline, effects, and cumulative effects) relative to the species-specific
6233 purpose of a BO under §7(a)(2) of the ESA, which is to determine whether the proposed action is
6234 likely to jeopardize the continued existence of a species.

6235

6236 **Status**

6237

6238 The Florida sandhill crane population is declining. The most recent population estimate (2003),
6239 inferred from habitat availability, was just under 4,600 individuals. Most of the population
6240 occurs in peninsular Florida, from Alachua County to the northern edge of the Everglades.

6241
6242 The primary conservation need for the Florida sandhill crane is to maintain or increase the area
6243 of suitable habitat in order to stabilize or increase the population. Florida sandhill cranes use a
6244 variety of land cover types that have an open aspect, as long as a suitable wetland exists nearby
6245 for roosting and nesting. Practices that maintain the open aspect include prescribed fire and cattle
6246 grazing.

6247

6248 **Baseline**

6249

6250 Based on various incidental records, we are reasonably certain that a breeding population of
6251 Florida sandhill cranes occupies the Plan Area. The Plan Area contains 77,760 acres of land
6252 cover classes that may provide Florida sandhill crane habitat, including 28,773 acres of non-
6253 forested wetland types that could support nesting, plus improved pasture, rural open land, and
6254 cropland/pasture that could support foraging. Using the average size of the core nesting area that
6255 cranes defend and the extent of non-forested wetlands, we estimate that the Plan Area may
6256 support up to 62 breeding pairs.

6257
6258 The primary conservation need in the Plan Area is the same as the range-wide need: maintain or
6259 increase the area of suitable habitat in order to stabilize or increase the population.

6260

6261 **Effects**

6262

6263 We estimate that development and mining activities within the development envelope of the Plan
6264 Area would result in the loss of 20,594 acres of suitable sandhill crane habitat. The conversion to
6265 development and mining uses would involve mostly agricultural and rural open lands that
6266 provide foraging habitat (17,669 acres, or 85.8%), but also 2,925 acres of non-forested wetlands
6267 that provide roosting habitat year round and nesting habitat in the breeding season. We estimate
6268 that these wetlands support nesting for up to 6 breeding pairs. Therefore, we believe that habitat
6269 loss associated with the HCP development would reduce crane numbers by up to 6 breeding
6270 pairs.

6271
6272 The designated Preservation areas may support up to 51 breeding pairs of cranes. We do not
6273 expect the management of Preservation areas to reduce the numbers, reproduction, or distribution
6274 of the Florida sandhill crane to in the Preservation areas, because these activities will, at
6275 minimum, maintain current conditions. Special attention to this species in the long-term
6276 management of the Preservation areas under conservation easements could increase crane
6277 densities and the Plan Area population.

6278
6279 Clearing up to 10% of the native cover types that we consider as crane habitat in the Very Low
6280 Density (VLD) use areas would reduce crane habitat by 22 acres. Because we do not expect the
6281 VLD area wetlands to support nests, this extent of habitat modification is unlikely to kill or
6282 injure cranes.

6283
6284 **Cumulative Effects**
6285

6286 We expect an increase in traffic on Action Area roads to increase roadkill rates for sandhill
6287 cranes where roads cross or adjoin occupied areas; however, we have no data upon which to
6288 develop a reasonable relationship between traffic volume and crane mortality.

6289
6290 **Opinion**
6291

6292 The loss of about 3,000 acres of non-forested wetlands to development in the Plan Area would
6293 add an increment of habitat loss in the range of the Florida sandhill crane, whose numbers have
6294 been declining due primarily to habitat loss since the 1970's. Following full build-out under the
6295 HCP, we estimate habitat losses in the Plan Area would cause a population reduction of up to 6
6296 breeding pairs. Extrapolating the rate of decline from 1974–2003, the estimated 2003 population
6297 of just under 4,600 mature cranes has possibly declined to about 3,680 in 2019. The loss of 6
6298 breeding pairs over the course of development in the Plan Area relative to either estimate would
6299 represent a 0.3% reduction to the range-wide population.

6300
6301 Precluding new development and mining activity in the dedicated Preservation areas would
6302 protect a substantial amount of sandhill crane habitat, which we estimate supports the majority
6303 (51 breeding pairs, or 82%) of the Plan Area population. As these areas are brought under
6304 conservation easements, habitat enhancements that may increase crane numbers are likely, but
6305 the amount or extent is not predictable at this time. Where practicable, the Applicants propose to
6306 implement project-level mitigation for wetlands impacts that is required for Clean Water Act
6307 permits in a manner that enhances or restores marshes and wet prairies for crane nesting. Again,
6308 such enhancements appear likely, but the amount or extent is not predictable at this time, and

6309 such permits are future federal actions that we do not evaluate in this BO/CO. Given the
6310 relatively small impact of the Development activities to crane populations (0.3%) and the
6311 likelihood of benefits in the Preservation areas, we believe the net impact of the Action on the
6312 Florida sandhill crane is within the species' ability to sustain.

6313
6314 After reviewing the current status of the species, the environmental baseline for the Action Area,
6315 the effects of the Action and the cumulative effects, it is the Service's conference opinion that
6316 the Action is not likely to jeopardize the continued existence of the Florida sandhill crane.

6317 6318 **8 Florida scrub-jay**

6319 This section provides the Service's biological opinion of the Action for the Florida scrub-jay.

6320 **8.1 Status of Florida Scrub-jay**

6321 This section summarizes best available data about the biology and current condition of the
6322 Florida scrub-jay (*Aphelocoma coerulescens*) (scrub-jay) throughout its range that are relevant to
6323 formulating an opinion about the Action. The Service published its decision to list the scrub-jay
6324 as threatened on June 3, 1987 (52 FR 20715-20719).

6325 **8.1.1 Species Description**

6326 The scrub-jay is about 10 to 12 in (25 to 30 cm) long and weighs about 3 ounces (85 grams).
6327 They are similar in size and shape to blue jays (*Cyanocitta cristata*), but differ significantly in
6328 coloration (Woolfenden and Fitzpatrick 1996a). Unlike the blue jay, the scrub-jay lacks a crest. It
6329 also lacks the conspicuous white-tipped wing and tail feathers, black barring, and bridle of the
6330 blue jay. The scrub-jay's head, nape, wings, and tail are blue, and its body is pale gray on its
6331 back and belly. Its throat and upper breast are lightly striped and bordered by a pale blue-gray
6332 "bib" (Woolfenden and Fitzpatrick 1996a). Scrub-jay sexes are not distinguishable by plumage
6333 (Woolfenden and Fitzpatrick 1984), and males, on the average, are only slightly larger than
6334 females (Woolfenden 1978). The sexes may be identified by a distinct "hiccup" call made only
6335 by females (Woolfenden and Fitzpatrick 1984; Woolfenden and Fitzpatrick 1986). Scrub-jays
6336 less than about 5 months of age are easily distinguishable from adults; their plumage is smoky
6337 gray on the head and back, and they lack the blue crown and nape of adults. During late summer
6338 and early fall, when the first basic molt is nearly done, fledgling scrub-jays are indistinguishable
6339 from adults in the field (Woolfenden and Fitzpatrick 1984).

6340 **8.1.2 Life History**

6341 The scrub-jay is endemic to peninsular Florida's ancient dune ecosystems or scrubs, which occur
6342 on well-drained to excessively well-drained sandy soils (Laessle 1958; Laessle 1968; Myers
6343 1990). This relict oak-dominated scrub, or xeric oak scrub, is essential habitat to the scrub-jay,
6344 and is adapted to nutrient-poor soils, periodic drought, and frequent fires (Abrahamson 1984). In
6345 some cases, scrub-jay habitat occurs as patches of oak scrub within a matrix of little-used habitat

6354 of saw palmetto and herbaceous swale marshes (Breininger et al. 1991, Breininger et al. 1995).
6355 This matrix of native habitats supply prey for scrub-jays.

6356
6357 Scrub-jays are non-migratory and permanently territorial, occupying multipurpose territories
6358 year-round (Woolfenden and Fitzpatrick 1978; Woolfenden and Fitzpatrick 1984; Fitzpatrick et
6359 al. 1991). Once scrub-jays pair and become breeders, generally within two territories of their
6360 natal area, they stay on their breeding territory until death. In suitable habitat, fewer than 5% of
6361 scrub-jays disperse more than 5 miles (8 km) (Fitzpatrick et al. 1991). Stith et al. (1996) believe
6362 that a dispersal distance of 5 miles (8 km) is close to the biological maximum for scrub-jays.
6363 Scrub-jays live in families ranging from two birds (a single-mated pair) to extended families of
6364 eight adults (Woolfenden and Fitzpatrick 1984) and one to four juveniles.

6365
6366 Fledgling scrub-jays stay with the breeding pair in their natal (birth) territory as "helpers,"
6367 forming a closely-knit, cooperative family group. Juveniles may stay in their natal territory for
6368 up to 6 years before dispersing to become breeders (Woolfenden and Fitzpatrick 1984;
6369 Woolfenden and Fitzpatrick 1986). Territory size average 22–25 acres (9–10 ha) (Woolfenden
6370 and Fitzpatrick 1990; Fitzpatrick et al. 1991), with a minimum size of about 12 acres (5 ha)
6371 (Woolfenden and Fitzpatrick 1984; Fitzpatrick et al. 1991). Nesting normally occurs from March
6372 1 through June 30 (Woolfenden and Fitzpatrick 1984), and clutch size ranges from one to five
6373 eggs, but is typically three or four eggs (Woolfenden and Fitzpatrick 1990). Eggs are incubated
6374 for 17–19 days (Woolfenden 1974), and fledging occurs 15–21 days after hatching (Woolfenden
6375 1978). Only the breeding female incubates and broods eggs and nestlings (Woolfenden and
6376 Fitzpatrick 1984), and the presence of helpers improves fledging success (Woolfenden and
6377 Fitzpatrick 1990; Mumme 1992).

6378
6379 The longest observed lifespan of a scrub-jay is 15.5 years at Archbold Biological Station in
6380 Highlands County (Woolfenden and Fitzpatrick 1996b). Survival of scrub-jay fledglings to
6381 yearling age class averages about 35% in optimal scrub; while annual survival of both adult
6382 males and females averages around 80% (Woolfenden and Fitzpatrick 1996b). However, data
6383 from Archbold Biological Station indicate that survival and reproductive success of scrub-jays in
6384 suboptimal habitat is lower (Woolfenden and Fitzpatrick 1991), which probably explains the
6385 extirpation of scrub-jays from unburned, late successional habitats. Similarly, Toland (1991)
6386 reported significant differences in mean annual productivity (# young fledged per adult pair) in
6387 Indian River County between:

- 6388 • contiguous optimal scrub (2.2 young);
- 6389 • fragmented moderately-developed scrub (1.8 young); and
- 6390 • very fragmented suboptimal scrub (1.2 young).

6391
6392 Scrub-jays forage mostly on or near the ground, often along the edges of natural or man-made
6393 openings. They visually search for food by hopping or running along the ground beneath the
6394 scrub or by jumping from shrub to shrub. Insects form most of the animal portion of the scrub-
6395 jays' diet (Woolfenden and Fitzpatrick 1984), but small vertebrates are also eaten when
6396 encountered. In suburban areas, scrub-jays will accept supplemental foods once the scrub-jays
6397 have learned about them (Woolfenden and Fitzpatrick 1984). Acorns are the scrub-jays'
6398 principal plant food (Woolfenden and Fitzpatrick 1984; Fitzpatrick et al. 1991). From August to
6399 November each year, scrub-jays may harvest and cache 6,500 to 8,000 oak (*Quercus* sp.) acorns

throughout their territory. Acorns are typically buried beneath the surface of bare sand patches in the scrub during fall, and retrieved and consumed year round, though most are consumed in fall and winter (DeGange et al. 1989). Other small nuts, fruits, and seeds also are eaten (Woolfenden and Fitzpatrick 1984).

8.1.3 Numbers, Reproduction, and Distribution

Historically, oak scrub occurred as numerous isolated patches in peninsular Florida, concentrated along both the Atlantic and Gulf coasts and on the central ridges of the peninsula (Davis 1967). Probably until as recently as the 1950s, scrub-jay populations occurred in the oak scrub and scrubby pine flatwoods habitats of 39 of the 40 counties south of, and including Levy, Gilchrist, Alachua, Clay, and Duval Counties. Historically, most of these counties would have contained hundreds or even thousands of breeding pairs (Fitzpatrick et al. 1994). Only the southernmost county, Monroe, lacked scrub-jays (Woolfenden and Fitzpatrick 1996a). Although scrub-jay numbers probably began to decline when European settlement began in Florida (Cox 1987), the decline was first noted in the literature by Byrd (1928).

An extensive statewide survey of scrub-jays in 1992–1993 estimated 3,961 scrub-jay family groups with 10,972 individuals (Fitzpatrick et al. 1994). The survey most likely overestimated the abundance of scrub-jays at Merritt Island National Wildlife Refuge and Cape Canaveral Air Force Station (Boughton and Bowman 2011), but underestimated the abundance of scrub-jays in Ocala National Forest, some areas in southwest Florida, and some areas in southern Brevard and northern Indian River counties (Miller and Stith 2002, Breininger et al. 2003).

The statewide survey indicated that scrub-jays were extirpated from Alachua and Clay counties, although at least one scrub-jay group was later discovered in Clay County (Bowman and Boughton 2011). Ten or fewer scrub-jay groups remained in an additional seven counties (Flagler, Hardee, Hernando, Levy, Orange, and Putnam) (Fitzpatrick et al. 1994). Population numbers in 27 of the original 39 counties had 30 or fewer breeding pairs (Fitzpatrick et al. 1994). Fitzpatrick et al. (1994) estimated that scrub-jays had declined between 25–50% in the northern third of the species' range since the surveys by Cox (1987). Woolfenden and Fitzpatrick (1996b) estimated that scrub-jay populations had declined by 90% or more since European settlement. On protected lands, scrub-jays have continued to decline due to inadequate habitat management (Stith 1999; Boughton and Bowman 2011).

Over the last several years, managers of conservation lands have taken steps to reverse the observed decline in scrub-jays on these lands, primarily by more aggressively using fire to improve habitat quality (Hastie and Eckl 1999; Stith 1999; The Nature Conservancy 2001; Turner et al. 2006). If the decline can be reversed, managed lands have the potential to support about twice the number of scrub-jays groups as in 2009 and 2010 (Boughton and Bowman 2011).

8.1.4 Conservation Needs and Threats

Threats to scrub-jays include habitat loss and fragmentation, fire suppression, predation, disease, urban development, and non-native and invasive species. Scrub-jays require a habitat type that

6446 occurs only in particular regions within Florida (Woolfenden and Fitzpatrick 1984), which have
6447 experienced a substantial alteration for agricultural and residential uses. Habitat loss and
6448 fragmentation are the major threats to the species' survival and recovery. Cox (1987) noted local
6449 extirpations and major decreases in numbers of scrub-jays and attributed them to the clearing of
6450 scrub for housing and citrus groves. Statewide, estimates of scrub habitat loss range from 70 to
6451 90% (Woolfenden and Fitzpatrick 1996a). Fernald (1989), Fitzpatrick *et al.* (1991), and
6452 Woolfenden and Fitzpatrick (1996a) noted habitat losses due to agriculture, silviculture, and
6453 commercial and residential development were continuing to play a role in the decline in numbers
6454 of scrub-jays throughout the state.

6455
6456 Habitat fragmentation increases the probability of inbreeding and genetic isolation, which is
6457 likely to increase extinction probability (Fitzpatrick *et al.* 1991; Woolfenden and Fitzpatrick
6458 1991; Stith *et al.* 1996; Thaxton and Hingtgen 1996). Dispersal distances of scrub-jays in
6459 fragmented habitat are further than in optimal unfragmented habitats, and demographic success
6460 (survival and reproduction rates) is poor (Thaxton and Hingtgen 1996; Breininger 1999).
6461 Persistent breeding populations of scrub-jays exist only where there are scrub oaks in sufficient
6462 quantity and form to provide an ample winter acorn supply, cover from predators, and nest sites
6463 during the spring (Woolfenden and Fitzpatrick 1996b). Scrub-jay dispersal behavior is affected
6464 by the intervening land uses. Protected scrub habitats will most effectively sustain scrub-jay
6465 populations if they are located within surrounding habitat types that can be used and traversed by
6466 scrub-jays. Brushy pastures, scrubby corridors along railway and road rights-of-way, and open
6467 burned flatwoods offer links for colonization among scrub-jay populations.

6468
6469 A primary cause for scrub-jay decline is poor demographic success associated with reductions in
6470 fire frequency (Woolfenden and Fitzpatrick 1984; Woolfenden and Fitzpatrick 1991; Schaub *et*
6471 *al.* 1992; Stith *et al.* 1996; Breininger *et al.* 1999). Fire suppression may exceed habitat loss as
6472 the single most important limiting factor (Woolfenden and Fitzpatrick 1991; Woolfenden and
6473 Fitzpatrick 1996a; Fitzpatrick *et al.* 1994). Fitzpatrick *et al.* (1991) reported that overgrown
6474 scrub habitats are often occupied by the blue jay; a native predator of scrub-jay nestlings and a
6475 competitor for resources. Woolfenden and Fitzpatrick (1996b) and Toland (1999) suggest that
6476 hunting efficiency for scrub-jay predators is greater in overgrown scrub habitats.

6477
6478 Predation probably causes most scrub-jay mortality (Woolfenden and Fitzpatrick 1996b). The
6479 second most frequent cause may be disease, or predation on disease-weakened scrub-jays
6480 (Woolfenden and Fitzpatrick 1996b). Known predators of scrub-jays include several species of
6481 snakes, mammals, and birds that eat eggs, nestlings, fledglings, and adults (Woolfenden and
6482 Fitzpatrick 1990; Fitzpatrick *et al.* 1991; Schaub *et al.* 1992; Woolfenden and Fitzpatrick 1996a,
6483 1996b; Breininger 1999; Franzreb and Puschock 2004; Miller 2004). Bowman and Averill
6484 (1993) noted scrub-jays occupying fragments of scrub found in or near housing developments
6485 were more prone to predation by free-roaming cats and to competition from blue jays and
6486 mockingbirds. Young scrub-jays are especially vulnerable to ground predators (e.g., snakes and
6487 mammals) before they are fully capable of sustained flight.

6488
6489 Scrub-jays host various naturally-occurring parasites that are unlikely to cause population-level
6490 impacts. However, the sticktight flea (*Echidnophaga gallinacea*; Woolfenden and Fitzpatrick
6491 1996b), which occurs on some individuals, is believed to lower fitness and potentially cause

6492 death (Boughton *et al.* 2006). The host vector for this flea was a domestic dog (*Canis familiaris*),
6493 suggesting that introduction of human pets into scrub-jay areas may increase parasite loads and
6494 reduce fitness.

6495
6496 Housing and commercial developments within scrub habitats are accompanied by the
6497 development of roads. Since scrub-jays often forage along roadsides and other openings in the
6498 scrub, they are often killed by passing cars. Research by Mumme *et al.* (2000) along a two-lane
6499 paved road indicated that clusters of scrub-jay territories found next to the roadside represented
6500 population sinks (breeder mortality exceeds production of breeding-age recruits), which persisted
6501 only by immigration from other territories. Since this species may be attracted to roadsides
6502 because of their open habitat characteristics, vehicular mortality presents a significant and
6503 growing management problem throughout the remaining range of the scrub-jay (Dreschel *et al.*
6504 1990; Mumme *et al.* 2000). The design of scrub preserves should consider proximity to high-
6505 speed paved roads (Woolfenden and Fitzpatrick 1996a).

6506
6507 Another potential problem in suburban areas supporting scrub-jays is supplemental feeding by
6508 humans (Bowman and Averill 1993; Woolfenden and Fitzpatrick 1996a; Bowman 1998). The
6509 presence of additional food may allow scrub-jays to persist in fragmented habitats, but
6510 recruitment in these populations is lower than in native habitats. Although human feeding may
6511 postpone local extirpations, it cannot substitute for protecting native oak scrub habitat that is
6512 necessary for nesting and long-term persistence. Scrub-jays in suburban settings often build nests
6513 high in tall shrubbery, which are susceptible to destruction by March winds (Woolfenden and
6514 Fitzpatrick 1996b; Bowman 1998).

6515
6516 The invasion of disturbed areas by exotic species, including Brazilian pepper (*Schinus
6517 terebinthifolius*), white cypress-pine (*Callitris glaucophylla*), and Australian pine (*Casuarina
6518 equisetifolia*), degrades scrub habitat for scrub-jays (Fernald 1989). Other biological stressors
6519 associated with human habitation in or near scrub-jay habitats include: domestic dogs and cats,
6520 black rats, greenhouse frogs (*Eleutherodactylus planirostris*), giant toads (*Bufo marinus*), Cuban
6521 tree frogs (*Osteopilus septentrionalis*), brown anoles (*Anolis sagrei*), and other exotic animal
6522 species (Fernald 1989). These exotic species may be predators of scrub-jays, or compete with
6523 scrub-jays for space and food. As with roads, the design of scrub preserves should consider
6524 proximity to housing developments (Woolfenden and Fitzpatrick 1996a, 1996b).

6525 **8.2 Environmental Baseline for Florida Scrub-jay**

6526 This section describes the current condition of the Florida scrub-jay in the Action Area without
6527 the consequences to the listed species caused by the proposed Action.

6528 **8.2.1 Action Area Numbers, Reproduction, and Distribution**

6529 The Plan Area contains only 38 acres classified as scrub and scrubby flatwoods, which alone is
6530 insufficient to maintain more than a single scrub-jay territory. However, the 1992–1993
6531 statewide scrub-jay survey located 34 families in Lee and Collier counties at the locations shown
6532 in Figure 8-1. The largest cluster of families (17 families) occurred in and around Immokalee,
6533 which the Plan Area surrounds. A survey of the Immokalee area in March and May of 2007

6538 identified a total of 15 families at the locations shown in Figure 8-2 (Service GIS data). The 2007
6539 scrub-jay detections were in the same general areas as in the 1992–1993 survey, but the 2007
6540 survey results indicate a net loss of 2 families.

6541
6542 Field inspections of areas associated with a FDOT (2014) study of the SR29 corridor in the
6543 Immokalee area recorded observations of two scrub-jays at two locations in October 2010, and
6544 two scrub-jays at three locations in April 2011. These sightings were in a patch of woodland
6545 habitat at the northern edge of developed areas within Immokalee, which the 2007 survey also
6546 identified as occupied. Otherwise, the 2007 survey represents the most recent data on the
6547 numbers and distribution of the Immokalee cluster. For purposes of this BO, we consider that the
6548 Immokalee area continues to support 15 scrub-jay family groups where they were detected in the
6549 2007 survey, of which 4 are located within the Plan Area.

6550
6551 The unincorporated town of Immokalee is not included in the Plan Area; however, we include
6552 the roads through Immokalee identified in section 3.1.1 as part of the Action Area, because these
6553 roads will experience an increase in traffic volume that would not occur but for the Covered
6554 Activities of the HCP. It is likely that one or more individuals from all 15 families of the
6555 Immokalee scrub-jay cluster cross these roads during either routine movements within their
6556 territories (average size 22–25 acres) or when dispersing to become breeders in another territory
6557 (up to about 5 miles). Such crossings would expose these individuals to an increase in vehicular
6558 traffic associated with the developments of the HCP and with other sources.

6559
6560 The scrub-jay locations shown in Figure 8-2 are each less than 5 miles from the nearest
6561 neighboring location such that dispersal (adult helpers becoming breeders) among the territories
6562 of the Immokalee cluster is feasible. The Immokalee cluster is about 7 miles southeast of the
6563 nearest isolated scrub-jay family, and 14 miles southeast of the nearest cluster of families,
6564 identified in the 1992–1993 survey. With a probable maximum dispersal range of about 5 miles,
6565 the scrub-jays of the Immokalee cluster are most likely isolated from all other scrub-jays of the
6566 Lee metapopulation defined by Stith (1999).

6567
6568 A family group consists of at least a breeding pair. In optimal habitat, family groups may include
6569 up to six additional adult helpers and one to four juveniles (a maximum of 12 birds). The 15
6570 family groups of the Immokalee area could consist of up to $15 \times 12 = 180$ birds; however, habitat
6571 conditions in this area are not optimal. Habitat with scrub characteristics is scarce, fragmented,
6572 and degraded. Survival and recruitment rates are lower in suboptimal habitat (see section see
6573 section 8.1.2). It is more likely that the Immokalee cluster is comprised of as few as 30 birds (15
6574 breeding pairs), and up to as many as 75 birds (the 15 breeding pairs plus one adult helper and
6575 two juveniles per family group).

6576
6577 Surveyors recorded scrub-jays at the 23 locations shown in Figure 8-2, five of which
6578 are within the Plan Area. Scrub-jay locations from the March survey that are less than 0.5 mile
6579 from scrub-jay locations from the May survey were most likely birds of the same family group
6580 territory. If so, the six northern-most locations in figure 8-2 (five within the Plan Area and one
6581 nearby just outside the Plan Area) represent points within four scrub-jay territories, which are
6582 wholly or partially within the Plan Area. The remaining 17 locations are wholly outside the Plan

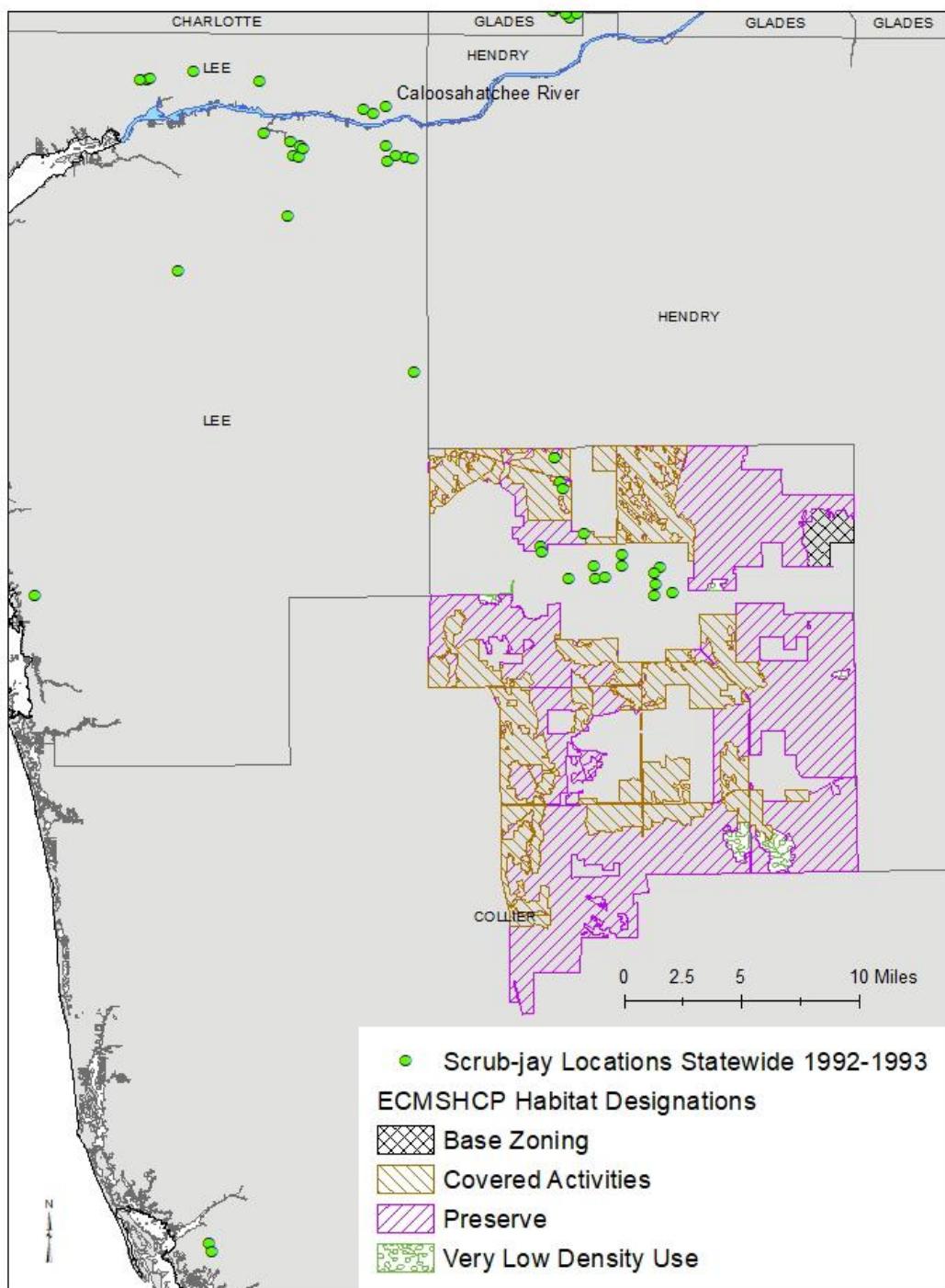
6583 Area, but the territories associated with these locations may straddle or abut road segments that
6584 we include in the Action Area.

6585
6586 Average scrub-jay territory size is 22–25 acres, with smaller territories in optimal habitat.
6587 Territories of the Immokalee cluster are likely larger than average. Using 25-acre circles centered
6588 on the five scrub-jay point locations that are within the Plan Area, the northern-most circle lies
6589 fully within a designated Development area of the HCP, and contains land cover classified as
6590 pasture/cropland and improved pasture. Circles centered on two points that are probably birds
6591 from the same family group straddle a junction of designated Development, designated Preserve,
6592 and non-Plan Area. These circles contain land cover classified as improved pasture and marshes.
6593 The other two circles around points in the Plan Area are wholly within designated Preserve areas.
6594

6595 **8.2.2 Action Area Conservation Needs and Threats**

6596

6597 The scrub-jays in the Action Area are subject to the same suite of threats described in section
6598 8.1.4 of this document. In particular, the isolated Immokalee cluster is vulnerable to inbreeding
6599 effects on reproductive success, and is exposed to the variety of stressors associated with nearby
6600 human habitation and degraded habitat conditions. The size of the Immokalee cluster based on
6601 the 2007 survey results exceeds a quasi-extinction threshold of 10 breeding pairs (Stith 1999) by
6602 only 5 pairs.

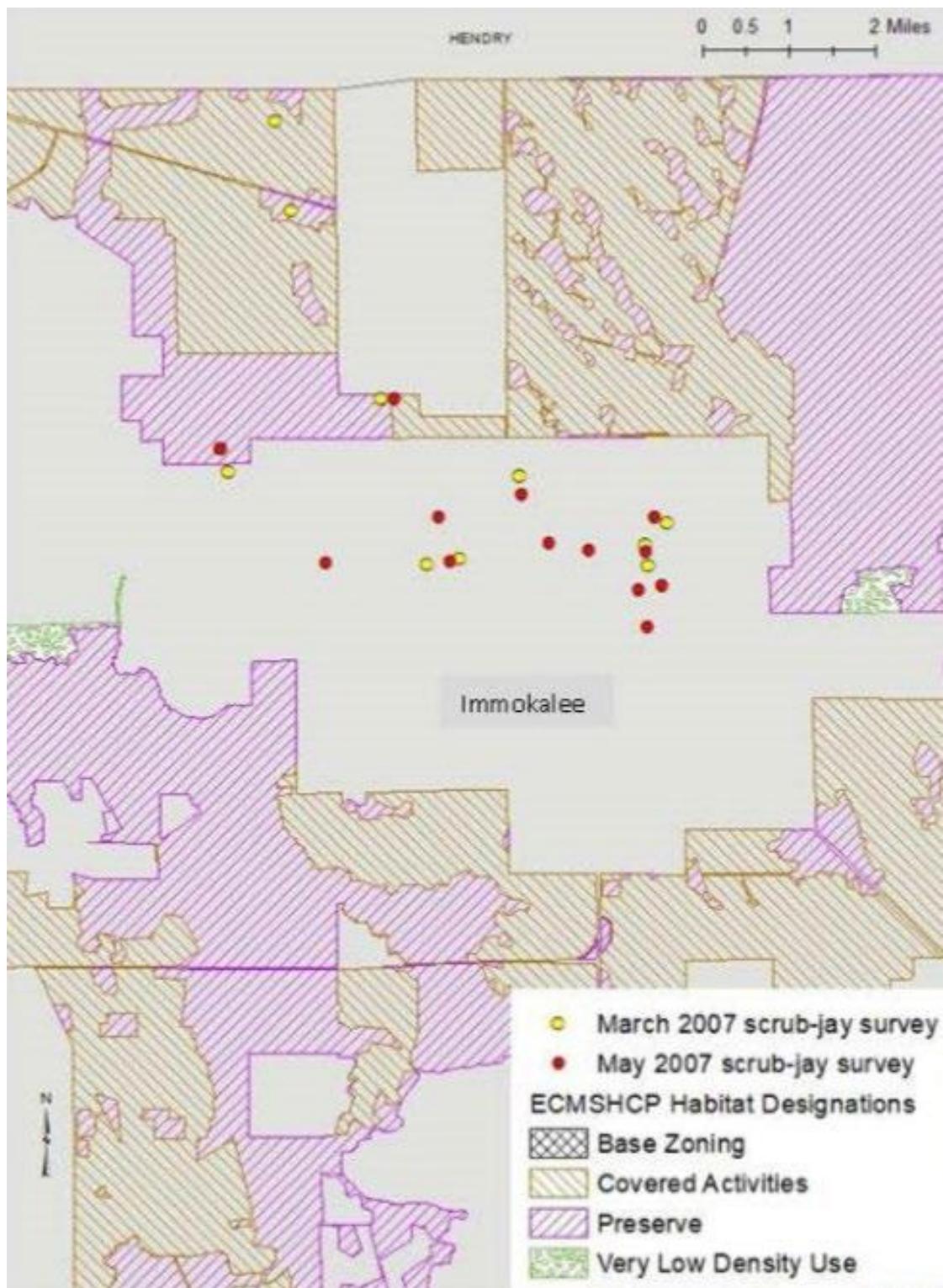

6603
6604 Stith (1999) developed a spatially-explicit individual-based model specifically to assess scrub-
6605 jay population viability. The model divided the species' range into 21 metapopulations based on
6606 apparent physical barriers to scrub-jay dispersal. A metapopulation is defined as "a set of local
6607 populations which interact via individuals moving among populations" (Hanski and Gilpin
6608 1991). Results of the model for the Lee metapopulation, comprised of three widely separated
6609 clusters of scrub-jay families in parts of Lee and Collier Counties, including the Immokalee
6610 cluster, predicted a high risk of extinction or quasi-extinction (falling below 10 breeding pairs)
6611 with existing habitat availability. Simulating the addition of the maximum possible amount of
6612 scrub habitat (through acquisition and restoration), the model predicted a moderate risk of
6613 extinction and a high risk of quasi-extinction. Without additional habitat, the model predicted
6614 that the Lee metapopulation would collapse.

6615
6616 Coulon et al. (2008) assigned the scrub-jays near the Caloosahatchee River in Lee County (in the
6617 northern part of the Lee and Northern Collier metapopulation) to genetic group K, and did not
6618 assign birds of the Immokalee cluster in Collier County to a group. Historic records of scrub-jay
6619 observations located between the Caloosahatchee River and the Immokalee clusters suggest that
6620 these two groups would likely share the group K genetic profile. Neither the Lee and North
6621 Collier metapopulation (genetic group K) or the Immokalee cluster in Collier County are in or
6622 near areas that are the focus of current recovery efforts (USFWS 2019). The substantial
6623 restoration of scrub habitat that would be necessary to increase numbers of the Immokalee
6624 cluster and prevent its eventual extirpation appears unlikely.

6626 **8.2.3 Tables and Figures**

6627

6628



6629

6630

6631 **Figure 8-1.** Scrub jay locations within and near the Plan Area from the 1992–1993 statewide
6632 survey (data source: Fitzpatrick et al. 1994).

6633

6639 **8.3 Effects of the Action on Florida Scrub-jay**

6640
6641 This section describes all reasonably certain consequences to the Florida scrub-jay that we
6642 predict the proposed Action would cause, including the consequences of other activities not
6643 included in the proposed Action that would not occur but for the proposed Action. Such effects
6644 may occur later in time and may occur outside the immediate area involved in the Action.

6645
6646 **8.3.1 Development and Mining, Base Zoning, and Eligible Lands**

6647
6648 The scarcity of scrub and scrubby flatwoods in the Plan Area (38 acres) suggests that scrub-jays
6649 are highly unlikely to occur in areas besides the locations identified in section 8.2.1, where we
6650 expect that 30–75 birds of the Immokalee cluster persist in fragmented patches of sub-optimal
6651 habitat. Therefore, our effects analyses are limited to these previously documented locations.
6652 Based on data from 2007 (see section 8.2.1), we believe the designated Development areas
6653 wholly contain one scrub-jay territory, and a portion of a second territory. We have no data that
6654 indicates scrub-jays occur within the Base Zoning and Eligible Lands designations.

6655
6656 In section 7.2.1.4 of the HCP, the Applicants propose to:

- 6657 (a) conduct scrub-jay surveys as particular development projects prepare for permitting in
6658 areas where prior occurrence data and/or the presence of potential habitats (scrub oaks,
6659 scrubby flatwoods, *etc.*) are observed;
- 6660 (b) observe a 50-meter (164-foot) buffer around any occupied “habitat/nest” until any young
6661 have fledged;
- 6662 (c) translocate “any isolated individual Florida scrub-jays or family groups” birds to a viable
6663 population, to the extent possible and in coordination with the Service, located within
6664 development project areas; and
- 6665 (d) mitigate unavoidable impacts to occupied scrub-jay habitats by:
 - 6666 a. enhancing and/or restoring an equal acreage of in-kind Florida scrub-jay habitat
6667 within the Immokalee Urban Area; OR
 - 6668 b. contributing funds commensurate with the impacts to the Florida Scrub-Jay
6669 Conservation Fund.

6670
6671 Measures (a)–(c) make it unlikely that construction activities would kill or injure scrub-jays. The
6672 translocation of birds could supplement the numbers of another population for recovery
6673 purposes, but is not a recovery action the Service would permit under ESA section 10(a)(1)(A).
6674 Translocation involves capturing and handling a listed species, which is prohibited without
6675 special authorization. To authorize an action that is intended to avoid incidental take that would
6676 otherwise occur, a section 10(a)(1)(B) ITP issued for this HCP would need to provide terms and
6677 conditions applicable to the translocation, such as personnel qualifications, capture and handling
6678 protocols, and coordination with the Service regarding sites that would receive the birds. If the
6679 occupied territories of translocated scrub-jays are developed for residential/commercial or
6680 mining uses, these areas would no longer support scrub-jays.

6681
6682 Enhancing and/or restoring an equal acreage of in-kind Florida scrub-jay habitat within the
6683 Immokalee area would partially offset the habitat loss, due to the time lag between the loss and
6684 achieving a functional habitat gain elsewhere. Service (2009) guidance for using the Florida

6685 Scrub-Jay Conservation Fund or other Service-approved conservation bank specifies the
6686 acquisition of 2 acres of scrub-jay habitat for each acre of occupied scrub-jay habitat affected to
6687 achieve a full offset of habitat impacts.

6688
6689 We expect that development will displace through translocation one family group from the Plan
6690 Area, and affect a second family group with a territory that may straddle the intersection of
6691 designated Development, Preservation, and non-HCP lands. The impacts of development on this
6692 second family group would depend on site-specific factors (e.g., which property supports
6693 nesting, the distribution and abundance of food resources between the properties, *etc.*). However,
6694 given the general scarcity of scrub-jay habitat resources in the area, we expect that resources
6695 remaining following the loss of those within the developed portion of the territory would no
6696 longer support a family group. Therefore, we expect the loss from the Plan Area of up to 4–10
6697 scrub jays (two breeding pairs and possibly one adult helper and two juveniles per family group).
6698 Development would permanently preclude scrub-jay use of the developed areas.

6699
6700 The two scrub-jay territories located in Development areas are close enough to some of the other
6701 13 territories of the Immokalee cluster for individuals to interact, but whether they do is
6702 unknown. Some degree of interaction between groups within the cluster probably contributed to
6703 maintaining until 2007, through dispersal and territory turnover, 15 of the 17 family groups
6704 identified in the 1992–1993 statewide scrub-jay survey. The loss of two more family groups and
6705 their habitat would:

- 6706 • accelerate the loss of genetic diversity within the isolated Immokalee cluster;
- 6707 • reduce the potential for dispersal to provide breeders for vacant territories; and
- 6708 • increase the cluster's vulnerability to extirpation by catastrophic events/conditions (e.g.,
6709 hurricane, extended drought, disease).

6710
6711 **8.3.2 Preservation Activities**
6712

6713 Two of the four scrub-jay family territories that we believe occur within the Plan Area (see
6714 section 8.2.1 and Figure 8-2) are wholly within designated Preservation areas. We explained in
6715 the previous section (8.3.1) that we expect the loss of scrub-jays from a third territory that is
6716 partially within a Preservation area, but likely straddles designated Development lands and non-
6717 HCP lands as well. We do not include this latter family group and its territory in our analyses
6718 of the effects of Preservation Activities.

6719
6720 Conservation easements on Preservation lands would preclude future development and mining
6721 activities, but would allow existing agricultural land uses to continue. Covered Activities in the
6722 Preservation Areas include prescribed burning, mechanical control of groundcover, ditch and
6723 canal maintenance, mechanical and chemical control of exotic vegetation, soil tillage, and other
6724 activities that maintain or improve land quality and agricultural uses.

6725
6726 Exposure to environmental changes caused by Covered Activities for the Preservation areas may
6727 cause a mix of beneficial and adverse scrub-jay responses. Prescribed burning can disrupt normal
6728 breeding, feeding, and sheltering behaviors while scrub-jays avoid smoke and heat, and impair
6729 such behaviors if an entire territory is burned at one time. However, burning also maintains the
6730 open woodland conditions that scrub-jays require. Similarly, use of mechanical equipment for

6731 groundcover control or exotic vegetation treatments can disrupt normal breeding, feeding, and
6732 sheltering behaviors while scrub-jays avoid the noise and human activity, but also maintain open
6733 conditions when fire does not. Soil tillage where scrub-jays have cached acorns, typically along
6734 the edges of wooded cover, reduces food availability. Ditch and canal maintenance that involves
6735 removing scrub oaks from the tops of canal banks would also remove a scrub-jay habitat
6736 resource, but we do not know whether such canals are present in occupied territories of the
6737 Preservation areas. Scrub-jays could become sick or die if exposed to chemicals used for
6738 agricultural or exotic vegetation control purposes in occupied portions of the Preservation areas,
6739 but we cannot determine whether such exposure and adverse responses are reasonably certain to
6740 occur.

6741
6742 We do not expect the management of Preservation areas to reduce the numbers, reproduction, or
6743 distribution of the scrub-jay in the Preservation areas, because these activities would, at
6744 minimum, maintain current conditions. Special attention to this species in the long-term
6745 management of Preserves in the Immokalee area could increase scrub-jay numbers and possibly
6746 contribute to maintaining the Immokalee cluster. However, lacking more detailed information
6747 about how habitat management under conservation easements may benefit this species, we are
6748 unable to reasonably estimate the extent of potential benefits.

6749 6750 **8.3.3 Very Low Density Development**

6751
6752 We have no evidence that suggests scrub-jays may occur in the Very Low Density (VLD) use
6753 areas. The VLD areas are not near or located between any known scrub-jay territories; therefore,
6754 any changes in these areas would not hinder scrub-jay dispersal between territories. We expect
6755 no effects to scrub-jays from Covered Activities in the VLD areas.

6756 6757 **8.4 Cumulative Effects on Florida Scrub-jay**

6758
6759 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
6760 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
6761 Federal actions that are unrelated to the proposed action are not considered, because they require
6762 separate consultation under §7 of the ESA.

6763
6764 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
6765 sole source of effects that are consistent with the definition of cumulative effects for this Action.
6766 Roadkill is a known cause of Florida scrub-jay mortality. An increase in traffic on Action Area
6767 roads could increase roadkill rates for scrub-jays where roads cross or adjoin occupied territories
6768 of the Immokalee cluster, both within and outside the Plan Area. However, we have no data upon
6769 which to develop a reasonable relationship between traffic volume and scrub-jay mortality.

6770 6771 **8.5 Conclusion for Florida Scrub-jay**

6772
6773 In this section, we summarize and interpret the findings of the previous sections for the scrub-jay
6774 (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO
6775 under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to
6776 jeopardize the continued existence of a species.

6777

6778 Status

6779

6780 Since the time of European settlement, scrub-jay numbers have declined up to 90%, depending
6781 on the location. A 1992–1993 statewide scrub-jay survey estimated 3,961 extant scrub-jay family
6782 groups comprised of 10,972 individuals. Since the survey, scrub-jays continued to decline on
6783 protected lands due to inadequate habitat management, which is likely the case on unprotected
6784 private lands as well. However, steps to reverse the decline on protected lands are ongoing.

6785

6786 The greatest threats to scrub-jays are habitat loss, fragmentation, and degradation caused by
6787 residential and commercial development, conversion of scrub lands to citrus and other
6788 agricultural uses, sand mining, displacement of scrub oaks by invasive exotic species such as
6789 Brazilian pepper, and fire suppression. Habitat fragmentation that widely separates local
6790 populations from others increases the probability of inbreeding and genetic isolation, which
6791 increases the probability of local population extirpation. Inter-specific competition for habitat
6792 resources, non-native predators, and collisions with vehicles are additional threats to scrub-jays
6793 throughout their range.

6794

6795 Baseline

6796

6797 The Plan Area contains only 38 acres classified as scrub and scrubby flatwoods, which alone is
6798 insufficient to maintain more than a single scrub-jay territory. The 1992–1993 statewide scrub-
6799 jay survey located a cluster of 17 scrub-jay families in and around Immokalee, which the Plan
6800 Area surrounds. A survey of the Immokalee area in March and May of 2007 identified a total of
6801 15 families in the same general areas.

6802

6803 For purposes of this BO, we consider that the Immokalee area continues to support 15 scrub-jay
6804 family groups where they were detected in the 2007 survey, of which 4 likely territories are
6805 located within the Plan Area. Scrub-jays of the Immokalee cluster are probably isolated from all
6806 other scrub-jays of the Lee/Collier metapopulation defined by Stith (1999). We estimate that the
6807 Immokalee cluster is comprised of as few as 30 birds (15 breeding pairs), and up to as many as
6808 75 birds (the 15 breeding pairs plus one adult helper and two juveniles per family group). Land
6809 cover within 25-acre circles centered on the 2007 survey detections located in the Plan Area
6810 consists of pasture/cropland, improved pasture, and marshes.

6811

6812 The isolated Immokalee cluster is vulnerable to inbreeding effects on reproductive success, and
6813 is exposed to the variety of stressors associated with nearby human habitation and degraded
6814 habitat conditions. The size of the Immokalee cluster based on the 2007 survey results exceeds a
6815 quasi-extinction threshold of 10 breeding pairs (Stith 1999) by only 5 pairs. Without additional
6816 habitat, a 1999 population viability model predicted that the Lee and Northern Collier
6817 metapopulation would collapse. The Lee and Northern Collier metapopulation is not in or near
6818 areas that are the focus of current scrub-jay recovery efforts (USFWS 2019).

6819

6820 **Effects**

6821 The Applicants propose to conduct project-level scrub-jay surveys where prior occurrence data
6822 and/or the presence of potential habitats are observed, observe a 50-meter buffer around active
6823 nests, translocate birds in coordination with the Service, and compensate for unavoidable impacts
6824 to habitats by enhancing/restoring habitats in the Immokalee area or contributing to the Florida
6825 Scrub-Jay Conservation Fund. We believe the designated Development areas wholly contain one
6826 scrub-jay territory, and a portion of a second territory. We expect the loss from the Plan Area of
6827 up to 4–10 scrub jays (two breeding pairs and possibly one adult helper and two juveniles per
6828 family group). Reducing the Immokalee cluster by up to 2 family groups would:

- 6829 • accelerate the loss of genetic diversity within the isolated Immokalee cluster;
- 6830 • reduce the potential for dispersal to provide breeders for vacant territories; and
- 6831 • the cluster's vulnerability to extirpation by catastrophic events/conditions (e.g., hurricane,
6832 extended drought, disease).

6833 We believe the designated Preservation areas wholly contain two scrub-jay territories. We do not
6834 expect the management of Preservation areas to reduce the numbers, reproduction, or distribution
6835 of these family groups. Preservation activities would, at minimum, maintain current conditions.
6836 Special attention to this species in the long-term management of Preserves in the Immokalee area
6837 could increase scrub-jay numbers and possibly contribute to maintaining the Immokalee cluster.

6838 **Cumulative Effects**

6839 An increase in traffic on Action Area roads could increase roadkill rates for scrub-jays of the
6840 Immokalee cluster where roads cross or adjoin occupied areas; however, we have no data upon
6841 which to develop a reasonable relationship between traffic volume and scrub-jay mortality.

6842 **Opinion**

6843 The loss of sub-optimal habitat that may still support two scrub-jay family groups (4–10
6844 individuals) in the Plan Area would add an increment of habitat loss in the range of species,
6845 whose numbers have been declining due largely to habitat loss for many decades. Translocating
6846 these individuals could augment the numbers of more viable populations elsewhere, but the
6847 success of such an effort is not guaranteed. Relative to the 1992–1993 range-wide population
6848 estimate of about 4,000 breeding pairs, the possible loss of 2 breeding pairs represents a 0.05%
6849 reduction. If current numbers are instead about 2,000 breeding pairs, the loss would represent a
6850 0.1% reduction.

6851 Precluding new development and mining activity in the dedicated Preservation areas would
6852 protect the habitat that may still support another two scrub-jay family groups. As these areas are
6853 brought under conservation easements, habitat enhancements that may increase scrub-jay
6854 numbers are possible, but not reasonably certain using data available at this time. Maintaining
6855 current conditions in the Preservation areas could maintain the resident scrub-jay groups for
6856 some time. However, the long-term persistence of the Immokalee cluster, which may include
6857 another 11 family groups outside the Plan Area, appears unlikely without substantial increases in
6858 suitable habitat. Such increases are not reasonably foreseeable. Regardless, given the relatively

6866 small effect of the Development activities in the range-wide context, and the Applicants' commitment to translocate affected birds and to compensate for unavoidable habitat losses, we believe the net impact of the Action on the Florida scrub-jay is within the species' ability to sustain.

6871 After reviewing the current status of the species, the environmental baseline for the Action Area, the effects of the Action and the cumulative effects, it is the Service's biological opinion that the Action is not likely to jeopardize the continued existence of the scrub-jay.

6874

6875

6876 **9 Florida Burrowing Owl**

6877 This section provides the Service's conference opinion of the Action for the Florida burrowing owl.

6880

6881 **9.1 Status of Florida Burrowing Owl**

6882 This section summarizes best available data about the biology and current condition of the Florida burrowing owl (*Athene cunicularia floridana*) throughout its range that are relevant to formulating an opinion about the Action. At this time, the burrowing owl is not protected under the ESA. The Service has not reviewed the species' status relative to the ESA definitions of "endangered" and "threatened." The State of Florida protects the burrowing owl as a threatened species under Florida's Endangered and Threatened Species Rule. For purposes of this Conference Opinion, we summarize the *Species Action Plan for the Florida Burrowing Owl* (FWC 2013), the *Species Conservation Measures and Permitting Guidelines for the Florida Burrowing Owl* (FWC 2018), and other available data to describe the species' status.

6892

6893 **9.1.1 Species Description**

6894 The Florida burrowing owl is a small, long-legged owl with sandy brown plumage. Adults average 9 inches in height with a mean wingspan of 21 inches. The face is accented by bright yellow, sometimes with black mottling, and a white chin. The ear tufts of the typical woodland owls are lacking on the burrowing owls. Unlike most owls, burrowing owls are active during both day and night. During the day, owls stand at the mouth of their burrow or on a nearby post. When disturbed, owls bob in agitation and utter a chattering or clucking call. In flight, burrowing owls typically undulate as if they are flying an invisible obstacle course. Foraging owls can hover midair before pouncing on prey. Burrowing owls mainly eat insects, especially grasshoppers and beetles, but also small lizards, frogs, snakes, birds, and rodents.

6904

6905 **9.1.2 Life History**

6906 Florida burrowing owls live as single breeding pairs or in loose colonies consisting of two or more families. They typically dig their own burrows, but will use gopher tortoise (*Gopherus polyphemus*) or armadillo (*Dasypus novemcinctus*) burrows and other structures, such as manholes, sewer drains, and concrete pipes. Owl family units will often use a breeding burrow and one or more satellite burrows. Burrows are typically 6 to 9 feet in length, up to 3 feet deep,

6912 and lined with grass clippings, feathers, paper, and manure. In urban areas, burrowing owls use
6913 burrows for roosting during the winter and for breeding during the nesting season. However, in
6914 rural areas, burrowing owls may have limited use of burrows outside of the nesting season.
6915

6916 The typical nesting season is from February to July. Most egg laying is in March, but may occur
6917 as early as October and as late as May. The female lays 6 to 8 eggs over a 1-week period.
6918 Incubation lasts about 4 weeks, and young start to emerge from the burrow around 2 weeks after
6919 hatching. The juveniles start learning to fly at 4 weeks, but cannot fly well until they are 6 weeks
6920 old. Juveniles continue to use their parents' burrows for 30 to 60 days after they are able to fly.
6921 After breeding, burrowing owls may remain in their breeding area or disperse (maximum
6922 documented dispersal of 46 miles) (Mrykalo 2005).
6923

6924 **9.1.3 Numbers, Reproduction, and Distribution**

6925

6926 The Florida burrowing owl occurs primarily in peninsular Florida, although isolated pairs and
6927 small colonies have been found as far west as Eglin Air Force Base and as far south as the Dry
6928 Tortugas. Burrowing owls typically inhabit open grassy habitats, with localized and patchy
6929 distribution. The dry prairies of central Florida provided habitat historically, but due to
6930 increasing development, the species' range has expanded north, south, and to the coasts.
6931 Burrowing owls now most commonly occur in pastures, golf courses, airports, school yards, and
6932 vacant lots. The highest concentrations of burrowing owls in Florida are in Cape Coral, Marco
6933 Island, and along the southeast coast.
6934

6935 The current range-wide abundance of the Florida burrowing owl is unknown. It appears that the
6936 use of native habitats has decreased and the use of urban areas has increased. The urban birds are
6937 adapted to human activity and occupy some areas at high densities. A 1996 estimate placed
6938 statewide owl abundance at 3,000–10,000, and a 2001 review of occurrence data identified 1,757
6939 unique records (FWC 2011). The latter number likely under-represents burrowing owls in rural
6940 areas due to low densities and limited access to private property. Recent population data from
6941 Marco Island and Cape Coral show that the number of burrowing owls in urban areas is
6942 increasing. As of November 2016, Marco Island had over 400 owls (Audubon of the Western
6943 Everglades 2016), and a May 2017 census of Cape Coral counted approximately 3,700 owls
6944 (Cape Coral Burrowing Owls 2019). These two areas account for at least 4,100 burrowing owls
6945 in Florida, which does not include the southeast coast and rural populations.
6946

6947 **9.1.4 Conservation Needs and Threats**

6948

6949 Burrowing owls require sufficient foraging habitat around their burrows, and loss of foraging
6950 habitat can impair essential behaviors. In rural areas, potential foraging habitat includes dry
6951 prairie, mowed grass, vegetative berms, rural open areas (with few trees), row crops and field
6952 crops (with low vegetation), improved pasture, sod farms, wet prairie, and depression marsh. In
6953 urban areas, burrowing owls forage in vacant lots, yards, cemeteries, airports, golf courses,
6954 athletic fields, and other open areas. Based upon an average foraging radius of 1,970 feet from
6955 the nest burrow for western burrowing owls in rural areas, FWC considers that Florida
6956 burrowing owls need a foraging area of 280 acres (FWC 2018).
6957

6958 The major threats to the Florida burrowing owl are loss of native habitat and the resulting
6959 reliance on human-altered habitat. In urban areas, preferred nesting habitat and burrows are
6960 destroyed by construction activities, domestic animals (e.g., dogs), and humans. FWC (2018)
6961 found that burrowing owl nests within 33 feet of construction activity had significantly lower
6962 productivity. Collisions with automobiles are a frequent cause of owl mortality in urban areas,
6963 and human disturbance can cause burrow abandonment. Domestic animals (e.g., cats, dogs) and
6964 exotic wildlife (e.g., large lizards) likely also contribute to owl mortality. Iguanas, for example,
6965 have been observed occupying burrowing owl burrows. The proximity of the largest populations
6966 of this species to coastal areas carries the increasing threat of impacts from hurricanes, tropical
6967 storms, and sea level rise due to global climate change.

6968
6969 For burrowing owls in rural areas, lack of protected habitat is a concern. Urban and agricultural
6970 areas (e.g., athletic fields, improved pastures) are not a priority for conservation, but many
6971 support burrowing owls. Management strategies for owls in such settings are lacking. No data is
6972 available about the effects on burrowing owls of contaminants, pesticides, and herbicides
6973 commonly used in urban and rural open spaces. Murray (2011) documented instances of owls
6974 and other raptors sickened or killed after eating prey that have consumed anticoagulant
6975 rodenticides, which are frequently used in both urban and agricultural areas. Conservation needs
6976 include increased habitat protection/management, as described in the *Species Conservation*
6977 *Measures and Permitting Guidelines for the Florida Burrowing Owl* (FWC 2018).
6978

6979 **9.2 Environmental Baseline for Florida Burrowing Owl**

6980
6981 This section describes the current condition of the Florida burrowing owl in the Action Area
6982 without the consequences to the listed species caused by the proposed Action.
6983

6984 **9.2.1 Action Area Numbers, Reproduction, and Distribution**

6985
6986 The Plan Area contains up to 48,988 acres of land cover that is suitable habitat for burrowing
6987 owls, which includes improved pasture, rural open land, and cropland/pasture (see Table 2-1).
6988 Unimproved pasture is included in the cropland/pasture cover type. Cultivated cropland
6989 (routinely tilled) is unlikely to support owl burrows, but may support foraging. Native dry prairie
6990 upland habitats associated with burrowing owls (e.g.,) are not present in the Plan Area.
6991

6992 The Applicants did not conduct burrowing owl surveys of the Plan Area during the development
6993 of the HCP. Available data includes five confirmed and one possible location within or very near
6994 the Plan Area (FWC 2003). Studies supporting State and Federal permitting in 2004-2005 for the
6995 Town of Ave Maria determined that 11 burrowing owls occupied the 4,466 acres of suitable
6996 habitat within the town footprint (USFWS 2005). The Plan Area surrounds, but does not include,
6997 Ave Maria.
6998

6999 Cape Coral and Marco Island contain large, well-monitored populations of burrowing owls
7000 located east of the Plan Area. Given known locations within and near the Plan Area, large
7001 dispersal distances, and the presence of suitable habitat, we are reasonably certain that burrowing
7002 owls occupy the Plan Area. Using the density of Florida burrowing owls documented in the Ave
7003 Maria studies (11 owls ÷ 4,466 acres = 0.00246 owls/acre), we estimate that 48,988 acres of owl

7004 habitat in the Plan Area supports up to 121 burrowing owls, which includes the full extent of the
7005 cropland/pasture cover type as suitable habitat.

7006 7007 **9.2.2 Action Area Conservation Needs and Threats**

7009 Threats to the Florida burrowing owl in the Action Area include predation by native and exotic
7010 species, destruction of burrows by construction activities, disturbance by domestic animals and
7011 humans, collisions with vehicles, and exposure to contaminants, rodenticides, pesticides, and
7012 herbicides. Records show at least 3 great-horned owls, 1 barred owl, and over 30 red-shouldered
7013 hawks have died of suspected rodenticide poisoning in Collier and Lee counties since 2011 (J.
7014 Fitzgerald, von Arx Wildlife Hospital, personal communication). Conservation needs include
7015 increased habitat protection/management, as described in the *Species Conservation Measures*
7016 and *Permitting Guidelines for the Florida Burrowing Owl* (FWC 2018).

7017 7018 **9.3 Effects of the Action on Florida Burrowing Owl**

7020 This section describes all reasonably certain consequences to the Florida burrowing owl that we
7021 predict the proposed Action would cause, including the consequences of other activities not
7022 included in the proposed Action that would not occur but for the proposed Action. Such effects
7023 may occur later in time and may occur outside the immediate area involved in the Action.

7024 7025 **9.3.1 Development and Mining, Base Zoning, and Eligible Lands**

7027 Because burrowing owls likely use the open agricultural cover types of the Plan Area, and it is
7028 plausible that development would occur disproportionately in these non-wetland cover types, we
7029 used the RMI method described in section 2.1.4 to estimate the extent of development in
7030 burrowing owl habitats. The extent of burrowing owl cover types (improved pasture, rural open
7031 land, and cropland/pasture) within the designated Development areas, Base Zoning, and Eligible
7032 lands is 20,356, 1,781, and 5,195 acres, respectively, or a total of 27,332 acres, which is less than
7033 the development cap of 39,973 acres. Therefore, high-density development confined entirely to
7034 the Development areas, or implemented with the maximum possible substitution of Base Zoning
7035 and/or Eligible lands in the accounting for the cap, could replace all burrowing owl habitat in one
7036 or more of these HCP land use designations.

7037 The proposed action would involve clearing, grading, vegetation removal, excavation and piling,
7038 transport of aggregate by trucks, and construction of buildings and associated infrastructure.
7039 Such substantial alterations of land that supports essential owl feeding, breeding, and sheltering
7040 behaviors would disturb, displace, injure, or kill burrowing owls that are present at the time of
7041 those actions, depending on timing and other site- and project-specific circumstances.

7044 The Applicants propose to time construction activity to avoid and minimize impacts to Florida
7045 burrowing owl nesting. Before construction at a site begins, the Applicants propose to conduct
7046 burrowing owl surveys according to FWC survey protocols (FWC 2018). Based on survey
7047 results, construction activity would maintain a buffer of at least 33 feet around burrows during
7048 the breeding season and 10 feet during the non-breeding season, as recommended by FWC
7049 (2018).

7050
7051 Burrowing owls may use their burrows year-round, and construction activities near burrows can
7052 disrupt breeding and sheltering activities. Collapsing or blocking burrows during clearing,
7053 grading, excavation, or piling can kill or injure adults, juveniles, or eggs within the burrows.
7054 Burrowing owls require approximately 280 acres of foraging habitat around their burrows, and
7055 habitat modification resulting in a loss of more than 50 percent of foraging habitat impairs
7056 essential feeding behavior (FWC 2018). Development and mining activity that overlaps the
7057 home range of an owl would eliminate foraging habitat outside the 33-foot buffers around
7058 burrows, which is a 99 percent loss from a foraging area of 280 acres.
7059
7060 A substantial loss of foraging habitat around burrows would cause burrowing owls to travel
7061 farther to find food. The use of anticoagulant rodenticides around developed areas could reduce
7062 the prey available for burrowing owls and sicken or kill any owls that consume poisoned rodents.
7063 Increased vehicle traffic during and after construction would likely increase mortality and injury
7064 caused by collisions with vehicles. The presence of humans post-construction could increase
7065 predation by both native predators attracted to garbage and introduced exotic species, and
7066 increase the destruction or disturbance of burrows by domestic animals.
7067
7068 Because 27,332 acres of the suitable burrowing owl habitat in the Plan Area are located in the
7069 Development, Mining, Base Zoning, and Eligible Lands areas, we expect that up to 67 owls
7070 (27,332 acres \times 0.00246 owls/acre) would experience the adverse effects described above. Such
7071 effects would coincide with development activity at unspecified times during the 50-year permit
7072 period. The pre-development surveys and buffers around burrows should avoid the immediate
7073 death and injury caused by burrow destruction. However, we expect that full HCP development
7074 would cause all 67 owls to experience a loss of foraging habitat and/or disturbance that would
7075 displace them to other areas of suitable habitat available within the species' dispersal
7076 capabilities. The low density of owls and the abundance of pastures and rural open lands in the
7077 Plan area suggest that a substantial percentage of owls could survive a gradual displacement
7078 caused by development activity, but some would not survive the hazards (e.g., vehicle strikes,
7079 predators, etc.) associated with relocating feeding, breeding, and sheltering activity to an
7080 unfamiliar area. Those surviving dispersal would likely experience the injury of reduced
7081 reproductive success until established in a new area.
7082
7083 Therefore, we expect take in the form of harm (habitat modification that actually causes
7084 subsequent death or injury) of up to 67 owls in the Development, Mining, Base Zoning, and
7085 Eligible Lands areas, depending on the distribution of 39,973 acres of high-density development.
7086 We have no data or reasonable basis to estimate the percentage of lethal versus injurious
7087 responses (e.g., impaired reproduction) to action-caused changes in these areas. Although
7088 burrowing owls could use open areas that remain following construction or mining until full
7089 build-out occurs, we believe owls are more likely to persist long-term in the open rural areas of
7090 the Preservation and Very Low Density Development areas (see the following sections 9.3.2 and
7091 9.3.3).
7092

7093 **9.3.2 Preservation Activities**

7094
7095 Approximately 20,913 acres of burrowing owl habitat occur within the Preservation areas (4,155
7096 acres rural open lands, 7,599 acres improved pastures, and 9,159 acres cropland/pasture), which
7097 the Applicants would place under conservation easements as development occurs elsewhere.
7098 These easements would preclude future commercial and residential development and earth
7099 mining, but would allow a continuation of the existing agricultural land uses. Activities in the
7100 Preservation areas would include prescribed burning, mechanical control of groundcover, ditch
7101 and canal maintenance, mechanical and chemical control of exotic vegetation, soil tillage, cattle
7102 grazing, pesticide and herbicide applications, and other activities that maintain or improve land
7103 quality and agricultural uses.

7104
7105 Although many of these activities maintain habitat for burrowing owls, some can also disrupt
7106 normal behaviors, injure, or kill owls that are present at the time. Prescribed burning maintains
7107 open habitat conditions that burrowing owls require. Burning may also cause owls to take refuge
7108 in their burrows, which temporarily disrupts feeding behavior, and may kill or injure some owls
7109 through heat or smoke inhalation. Heavy equipment used for groundcover control, exotic
7110 vegetation treatments, or soil tillage may crush owls in their burrows. Grazing cattle at high
7111 stocking rates may degrade foraging habitat and collapse burrows. Exposure to chemicals
7112 (pesticides, rodenticides, insecticides, fungicides and/or herbicides) associated with agricultural
7113 uses could kill or sicken owls. To minimize impacts to burrowing owls, the Applicants propose
7114 to follow FWC's recommended conservation measures in rural areas (FWC 2018), which we
7115 summarize here:

- 7116 • Avoid the use of pesticides, rodenticides, insecticides, fungicides and/or herbicides
7117 immediately around the burrow entrance. Reduce or avoid the use of these products in
7118 burrowing owl foraging habitat to the extent practicable, especially during nesting
7119 season. Use these products according to label instructions.
- 7120 • Maintain low vegetation heights beneficial for burrowing owl foraging through
7121 mowing, prescribed grazing, and/or prescribed burning.
- 7122 • Manage invasive, non-native plant species if they reduce habitat quality for
7123 burrowing owls. If invasive, non-native shrubs or trees are encroaching on a burrow,
7124 wait until after the breeding season to treat the vegetation, and remove the vegetation
7125 only if removal will not result in collapse of the burrow.
- 7126 • Reduce the amount of foraging habitat converted to more intensive agricultural land
7127 uses (e.g., row crops, silviculture).
- 7128 • Consider protecting burrows with a framing device that will allow full access for
7129 cattle to graze without collapsing the burrow. Select a low and open design that does
7130 not impede visibility for burrowing owls.
- 7131 • Follow the Agricultural Wildlife Best Management Practices (Florida Department of
7132 Agriculture and Consumer Services 2015) which recommend avoiding contact with
7133 known or visibly apparent burrowing owls year-round, locating concentrated heavy
7134 equipment operations away from known or visibly apparent active burrows, and
7135 marking and avoiding damage to burrow openings when heavy equipment operations
7136 must be located near burrows.

7138 Burrowing owls that occupy the Preservation areas are accustomed to current agricultural
7139 practices. Implementing the FWC conservation measures should avoid, or limit to a discountable
7140 probability, the death or injury of burrowing owls caused by these practices. We expect the
7141 20,913 acres of the suitable burrowing owl habitat located in the Preservation areas to support
7142 about 52 owls (20,913 acres \times 0.00246 owls/acre). All 52 owls would experience occasional
7143 disturbance from land management practices conducted near burrows.

7144
7145 We expect burrowing owls to persist in the Preservation Area, because the preservation and
7146 management activities will, at minimum, maintain the conditions that have allowed owls to
7147 colonize these areas from their historic dry prairie habitats of central Florida. Special attention to
7148 this species in the long-term management of the Preservation area could likely increase owl
7149 densities and the total population, which we expect are currently low. However, lacking detailed
7150 information about burrowing owls in the Plan Area, and about how the habitat management may
7151 specifically benefit this species, we are unable to estimate the extent of potential benefits.

7152
7153 **9.3.3 Very Low Density Development**

7154
7155 The Very Low Density (VLD) use areas (total area 2,667 acres) contain about 743 acres of
7156 burrowing owl habitat (improved pasture and rural open lands). Land uses include isolated
7157 residences, lodges, and hunting/fishing camps, limited to no more than one dwelling unit per 50
7158 acres. Otherwise, the land uses for the VLD areas are the same as for the Preservation areas.
7159 Within pastures and rural open areas, where burrowing owls may occur, the Applicants would
7160 continue current ranching/livestock operations and other management activities as described for
7161 the Preservation Areas (e.g., exotic species control, prescribed burning). The Applicants propose
7162 to implement the FWC (2018) conservation measures for burrowing owls, which should avoid,
7163 or limit to a discountable probability, the immediate death or injury of burrowing owls in their
7164 burrows caused by agricultural or low-density development activities.

7165
7166 We expect habitats of the VLD areas to support at most a single pair of owls (743 acres \times
7167 0.00246 owls/acre = 1.83 owls) that would likely share one or more burrows within a common a
7168 foraging area of about 280 acres, based on the foraging distances documented for western
7169 burrowing owls (see section 9.1.4). The HCP does not specify a footprint for isolated residences,
7170 lodges, and hunting/fishing camps, but indicates that their construction could involve clearing up
7171 to 10% of the 1,180 acres (118 acres) of existing native vegetation (see section 2.5). Native
7172 upland habitats that the burrowing uses (e.g., dry prairie) are not present in the VLD areas or
7173 anywhere else in the Plan Area. New dwelling construction in non-native cover types is not
7174 specifically proposed, but not precluded.

7175
7176 The 118-acre cap for native vegetation clearing is the only indication the HCP provides for the
7177 maximum extent of potential land alteration associated with new dwelling development in the
7178 VLD areas. This maximum footprint represents 118 acres \div 2,667 acres = 4.4% of the VLD
7179 areas. The foraging area for a single pair of owls represents 280 acres \div 2,667 acres = 10.5% of
7180 the VLD areas. The probability that dwelling development would overlap the owl foraging area
7181 is the product of these percentages (0.5%), which we consider discountable for purposes of this
7182 assessment. In the unlikely event that dwelling development overlaps the range of an owl pair,
7183 we do not expect any resulting shift in their home range to actually kill or injure either

7184 individual. The local availability of pastures and open rural lands in the VLD areas (743 acres) is
7185 substantially greater than the needs of a single pair, such that shifting foraging activity away
7186 from a new dwelling is unlikely to impair feeding behaviors.

7188 **9.4 Cumulative Effects on Florida Burrowing Owl**

7190 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
7191 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
7192 Federal actions that are unrelated to the proposed action are not considered, because they require
7193 separate consultation under §7 of the ESA.

7194 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
7195 sole source of effects that are consistent with the definition of cumulative effects for this Action.
7196 Roadkill is a known cause of Florida burrowing owl mortality, especially in urban areas. An
7197 increase in traffic on Action Area roads could increase roadkill rates for owls where roads cross
7198 or adjoin occupied areas; however, we have no data upon which to develop a reasonable
7199 relationship between traffic volume and owl mortality.

7202 **9.5 Conclusion for Florida Burrowing Owl**

7204 In this section, we summarize and interpret the findings of the previous sections for the Florida
7205 burrowing owl (status, baseline, effects, and cumulative effects) relative to the species-specific
7206 purpose of a BO under §7(a)(2) of the ESA, which is to determine whether the proposed action is
7207 likely to jeopardize the continued existence of a species.

7209 **Status**

7211 The dry prairies of central Florida provided the species' historic habitats, but development in
7212 these areas has caused a range expansion to the north and south, and to the coasts. Non-native
7213 habitats now include pastures, agricultural fields, golf courses, airports, school yards, and vacant
7214 lots in residential areas. The current range-wide abundance of the Florida burrowing owl is
7215 unknown. In 1996, estimated abundance was 3,000–10,000 burrowing owls. More recent data
7216 from Marco Island and Cape Coral document at least 4,100 burrowing owls in these two
7217 populations.

7219 A continuing loss of native habitat and the resulting reliance on non-native habitat is a threat to
7220 the species, due to the many unique hazards of the urban environment. Urban settings expose
7221 owls to foraging habitat and burrow destruction caused by construction activity, frequent
7222 disturbance by domestic animals and people, rodenticides and other contaminants, collisions
7223 with vehicles, and predation by native and exotic wildlife. The frequency and severity of these
7224 stressors are likely reduced in rural settings, but cattle grazing at high stocking densities is an
7225 additional stressor. The primary conservation need for the species is increased habitat protection
7226 and management, as described in the *Species Conservation Measures and Permitting Guidelines*
7227 for the Florida Burrowing Owl (FWC 2018).

7229 **Baseline**

7230

7231 The Plan Area contains up to 48,988 acres of land cover that is suitable habitat for burrowing
7232 owls, which includes improved pasture, rural open land, and cropland/pasture. Native upland
7233 habitats that the burrowing owl uses (e.g., dry prairie) are not present in the Plan Area. Given
7234 known locations within and near the Plan Area, large dispersal distances, and the presence of
7235 suitable non-native habitat, we are reasonably certain that burrowing owls occupy the Plan Area.
7236 Using the density of Florida burrowing owls documented in studies for the Ave Maria
7237 development ($11 \text{ owls} \div 4,466 \text{ acres} = 0.00246 \text{ owls/acre}$), we estimate that the Plan Area
7238 supports up to 121 burrowing owls.

7239

7240 Threats to the Florida burrowing owl in the Action Area are the same as the range-wide threats,
7241 and the primary conservation need is habitat protection and better land management.

7242

7243 **Effects**

7244

7245 The extent of burrowing owl cover types (improved pasture, rural open land, and
7246 cropland/pasture) within the designated Development areas, Base Zoning, and Eligible lands is
7247 27,332 acres, which is less than the development cap of 39,973 acres. High-density development
7248 confined entirely to the Development areas, or implemented with the maximum possible
7249 substitution of Base Zoning and/or Eligible lands in the accounting for the cap, could replace all
7250 burrowing owl habitat in one or more of these HCP land use designations.

7251

7252 We estimate that up to 67 owls ($27,332 \text{ acres} \times 0.00246 \text{ owls/acre}$) occupy the lands within the
7253 potential development envelope of the HCP. Pre-construction owl surveys and buffers around
7254 burrows should avoid the immediate death and injury caused by burrow destruction. However,
7255 we expect that full HCP development would cause all 67 owls to experience a loss of foraging
7256 habitat and/or disturbance that would eventually displace them to other areas of suitable habitat.
7257 A substantial, but undeterminable percentage of those that survive the hazards associated with
7258 displacement would likely experience the injury of reduced reproductive success until
7259 established elsewhere. Therefore, we expect take in the form of harm (habitat modification that
7260 actually causes subsequent death or injury) of up to 67 owls in the Development, Mining, Base
7261 Zoning, and Eligible Lands areas, depending on the distribution of 39,973 acres of high-density
7262 development.

7263

7264 The Preservation areas contain 20,913 acres of suitable burrowing owl habitat, which we expect
7265 to support 52 owls ($20,913 \text{ acres} \times 0.00246 \text{ owls/acre}$). We expect burrowing owls to persist in
7266 the Preservation areas, because the preservation and management activities will, at minimum,
7267 maintain the conditions that have allowed owls to colonize these non-native habitats. Special
7268 attention to this species in the long-term management of the Preservation Area would likely
7269 increase owl densities and the total population; however, we are unable to estimate the extent of
7270 potential benefits. We do not expect Covered Activities in the Very Low Density use areas,
7271 which may support a single pair of owls, to harm them.

7273 **Cumulative Effects**

7274

7275 An increase in traffic on Action Area roads could increase roadkill rates for owls where roads
7276 cross or adjoin occupied areas; however, we have no data upon which to develop a reasonable
7277 relationship between traffic volume and owl mortality.

7278

7279 **Opinion**

7280

7281 The possible death of up to 67 owls would represent a 0.7–1.6 percent reduction in the Florida-
7282 wide population of burrowing owls, relative to a maximum estimate of about 10,000 owls and a
7283 minimum of 4,100 in the Marco Island and Cape Coral populations, respectively. However, we
7284 believe that a substantial percentage of owls displaced by development activity would survive
7285 and then experience a temporary reduction in reproductive success, because suitable non-native
7286 habitat in the overall Plan Area is relatively abundant. Population increases in the Preservation
7287 areas could wholly or partially offset the loss of individuals and productivity caused by
7288 development activity, but would depend on the success of management in these areas, which we
7289 believe is likely, but not guaranteed. The Preservation areas could probably support a much
7290 higher owl density with management. Cumulative effects caused by an increase in Action Area
7291 traffic are possible, but not determinable.

7292

7293 The species has demonstrated an ability to colonize non-native habitats, including urban and
7294 suburban developments, pastures, and open rural lands, which occur throughout the Plan Area.
7295 Agricultural lands (and native habitats) in the Preservation areas would remain undeveloped
7296 under permanent easements while about 25% of the Plan Area is developed (39,973 of 159,489
7297 acres). The likely survival of displaced birds and possible increases in habitat quality in the
7298 Preservation areas would reduce the overall impact of the Action to the Florida-wide population
7299 to a level substantially below the worst-case scenario of a 1.6 percent loss. We believe the net
7300 impact of the Action and cumulative effects on the Florida burrowing owl is within the species'
7301 ability to sustain.

7302

7303 After reviewing the current status of the species, the environmental baseline for the Action Area,
7304 the effects of the Action and the cumulative effects, it is the Service's conference opinion that
7305 the Action is not likely to jeopardize the continued existence of the Florida burrowing owl.

7306

7307

7308 **10 Red Knot**

7309

7310 This section provides the Service's biological opinion of the Action for the red knot.

7311

7312 **10.1 Status of Red Knot**

7313

7314 This section summarizes best available data about the biology and current condition of the red
7315 knot (*Calidris canutus rufa*) throughout its range that are relevant to formulating an opinion
7316 about the Action. The Service published its decision to list the red knot as threatened on
7317 December 11, 2014 (79 FR 73705–73748). The Service has not proposed or designated critical
7318 habitat for the red knot at this time.

7319

7320 10.1.1 Species Description

7321

7322 The red knot (or “rufa red knot”) is a medium-sized shorebird about 9–11 inches in length that is
7323 named for the distinctive rufous (red) breeding plumage of its face, breast, and upper belly.
7324 Winter plumage is a pale ashy gray from crown to rump, with white underparts, a lightly
7325 streaked and speckled breast, and narrowly barred gray flanks. The red knot has a small head in
7326 proportion to its size, small eyes, and a short neck. Its straight black bill tapers from a stout base
7327 to a relatively fine tip and is slightly longer than its head. Legs are short and typically dark gray
7328 to black, but sometimes greenish in juveniles or older birds in nonbreeding plumage.

7329

7330 10.1.2 Life History

7331

7332 The red knot migrates annually between its tundra breeding grounds in the Canadian Arctic and
7333 coastal wintering regions along the Gulf of Mexico, south Atlantic U.S. states, north coast of
7334 Brazil, and Tierra del Fuego at the southern tip of South America (Argentina and Chile). The
7335 19,000-mile journey between the Arctic and Tierra del Fuego is one of the longest known animal
7336 migrations. During both the northbound (spring) and southbound (fall) migrations, red knots use
7337 key staging and stopover areas to rest and feed, primarily in coastal areas.

7338

7339 Small numbers of red knots sometimes use manmade freshwater habitats (e.g., impoundments)
7340 along inland migration routes. In Florida, red knots that are either wintering in the state or
7341 passing through on migration are most commonly found along sandy, gravel, or cobble beaches,
7342 tidal mudflats, mangroves, salt marshes, shallow coastal impoundments, and brackish lagoons
7343 (Harrington 2001; Truitt *et al.* 2001; Niles *et al.* 2008; Cohen *et al.* 2009, 2010).

7344

7345 In shoreline settings, red knot eats hard-shelled mollusks, sometimes supplemented with easily
7346 accessed softer invertebrate prey, such as shrimp- and crab-like organisms, marine worms, and
7347 horseshoe crab eggs (Piersma and van Gils 2011; Harrington 2001). On its Arctic breeding
7348 grounds (dry, slightly elevated tundra located near coasts), the red knot’s diet consists mostly of
7349 terrestrial invertebrates such as insects and other arthropods. However, early in the breeding
7350 season, before insects and other macroinvertebrates are active and accessible, the red knot will
7351 eat grass shoots, seeds, and other vegetable matter (Harrington 2001). Diets during stopovers at
7352 inland wetlands are unknown.

7353

7354 10.1.3 Numbers, Reproduction, and Distribution

7355

7356 A current, reliable, range-wide population estimate for the red knot is not available. Red knots
7357 breed across a huge and remote area of the Arctic. Regional counts of red knots in wintering
7358 areas and migration stopovers provided the primary evidence of a significant declining trend in
7359 numbers that prompted the Service’s review of the species’ status (USFWS 2014). Major coastal
7360 wintering areas include the southern tip and northern coast of South America, the Gulf of
7361 Mexico, and south Atlantic U.S. states. Delaware Bay is recognized as the primary Atlantic
7362 stopover in spring migration. The estimated passage population through Delaware Bay declined
7363 from 152,900 birds in 1989 to 48,955 birds in 2013 (USFWS 2014).

7364

7365 Information about red knot numbers and distribution along the Gulf coast of peninsular Florida is
7366 most relevant to this BO. The highest concentration of red knots wintering in Florida occurs in
7367 the greater Tampa Bay region. Annual winter aerial surveys along Florida's Gulf coast from
7368 2006 to 2010 counted an average of 1,451 red knots between Anclote Key (north of Clearwater)
7369 and Cape Romano (south of Naples) (Niles 2009; Dey *et al.* 2011). Corresponding ground counts
7370 in 2006, 2008, and 2009 were roughly comparable (within 6–11%) to the aerial counts.

7371 **10.1.4 Conservation Needs and Threats**

7372 The Service (2014) summarized threats to the red knot in our review of data for the final listing
7373 rule. Threats from habitat destruction and modification are occurring throughout its range,
7374 including climate change (especially sea level rise), shoreline stabilization, and coastal
7375 development, exacerbated regionally or locally by lesser habitat-related threats such as beach
7376 cleaning, invasive vegetation, agriculture, and aquaculture. Reduced food availability at the
7377 Delaware Bay stopover site due to commercial harvest of the horseshoe crab likely contributed to
7378 the decline of red knot populations in the 2000s.

7381 **10.2 Environmental Baseline for Red Knot**

7382 This section describes the current condition of the red knot in the Action Area without the
7383 consequences to the listed species caused by the proposed Action.

7384 **10.2.1 Action Area Numbers, Reproduction, and Distribution**

7385 Our only data for red knot use of the Plan Area are three sightings in the winter of 2016, and one
7386 in the winter of 2017, documented in eBird (2019). The 2016 sightings were in large fields (total
7387 extent about 75 acres) that were intentionally flooded to suppress weed growth. During the
7388 growing season, these fields produce tomatoes. The 2017 sighting was in an unspecified upland
7389 cover class. We believe small numbers of red knots, not large flocks, may use portions of the
7390 Plan Area occasionally when displaced inland by severe weather, disturbance, or other
7391 alterations of nearby coastal habitats, possibly following other species of shorebirds that more
7392 commonly use inland fields. Red knots red knots are well documented along the Gulf shoreline
7393 of Estero Island, Lovers Key, Long Key, Marco Island, and to a lesser extent Naples Beach.

7394 The Plan Area contains pond/lake shorelines and non-forested wetlands that may occasionally
7395 provide foraging and resting stopovers for red knots. The 2017 red knot sighting in an upland
7396 habitat was atypical, and we do not consider uplands of the Plan Area as potential red knot
7397 habitat. Lacking evidence that red knots regularly use any portion of the Plan Area, we consider
7398 the 75 acres of periodically flooded agricultural fields as the sole area that supports occasional
7399 red knot use.

7400 **10.2.2 Action Area Conservation Needs and Threats**

7401 The Action Area does not contain coastal habitats that red knots most commonly use for
7402 wintering in and migrating through Florida; therefore, the suite of threats to such habitats in the

7410 range-wide context are not relevant in the Action Area. Conserving inland non-forested wetlands
7411 would benefit red knots that occasionally use them as short-term alternatives to coastal habitats.
7412

7413 **10.3 Effects of the Action on Red Knot**

7415 This section describes all reasonably certain consequences to the red knot that we predict the
7416 proposed Action would cause, including the consequences of other activities not included in the
7417 proposed Action that would not occur but for the proposed Action. Such effects may occur later
7418 in time and may occur outside the immediate area involved in the Action.
7419

7420 **10.3.1 Development and Mining, Base Zoning, and Eligible Lands**

7422 The 75 acres of winter-flooded tomato fields in which red knots were sighted in 2016 are within
7423 a designated Development area of the HCP. As an agricultural cover type that could plausibly
7424 receive a disproportionate share of development under the 39,973-acre development cap, the
7425 “reasonable maximum impact” method described in section 2.1.4 is appropriate. The size of the
7426 only known red knot habitat within the Plan Area is substantially less than 39,973 acres;
7427 therefore, we consider that commercial/residential development would affect all 75 acres.
7428

7429 Development of these fields would eliminate seasonal flooding practices, which makes the fields
7430 attractive to shore birds venturing inland, and convert the cropland to urban cover. Development
7431 would occur necessarily when the fields are not flooded and when red knots are not present. The
7432 area would no longer support use by red knots; however, we do not expect this habitat loss to kill
7433 or injure any red knots. We believe the use of the flooded fields is opportunistic, and that
7434 sufficient lake, pond, and wetland shorelines are available in the general area to serve occasional
7435 and opportunistic use when red knots may wander inland from traditional coastal habitats.
7436

7437 **10.3.2 Preservation Activities**

7439 The 2017 sighting of a single red knot in the Plan Area was at an upland site within a designated
7440 Preservation area. As a shorebird that winters in and migrates through Florida primarily along its
7441 coastlines, the use of inland areas appears occasional and unpredictable. We do not consider
7442 uplands or wetlands of the Plan Area to provide substantial habitat value for the red knot.
7443 However, by continuing current agricultural uses and precluding future commercial/residential
7444 development and earth mining, the Preservation areas would remain available for occasional red
7445 knot use. Otherwise, we expect the Covered Activities in the Preservation areas to have no effect
7446 on the species.
7447

7448 **10.3.3 Very Low Density Development**

7450 We have no data that the red knot has used or is reasonably certain to use the areas designated
7451 for Very Low Density development. For the same reasons we provided in the previous section,
7452 we expect the Covered Activities in these areas to have no effect on the red knot.
7453

7454 **10.3.4 Cumulative Effects on Red Knot**

7455
7456 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
7457 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
7458 Federal actions that are unrelated to the proposed action are not considered, because they require
7459 separate consultation under §7 of the ESA.

7460
7461 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
7462 sole source of effects that are consistent with the definition of cumulative effects for this Action.
7463 We have no information that suggests traffic on public roads is a predictable cause of red knot
7464 injury, mortality, or significant behavioral modification.

7465 **10.4 Conclusion for Red Knot**

7466 In this section, we summarize and interpret the findings of the previous sections for the red knot
7467 (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO
7468 under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to
7469 jeopardize the continued existence of a species.

7470 **Status**

7471 A current, reliable, range-wide population estimate for the red knot is not available. The
7472 estimated passage population through Delaware Bay, the primary Atlantic stopover during spring
7473 migration, declined from 152,900 birds in 1989 to 48,955 birds in 2013. Numbers on the Gulf
7474 coast of peninsular Florida averaged 1,451 red knots in annual winter aerial surveys from 2006 to
7475 2010.

7476 Threats to the coastal habitats of the red knot include climate change (especially sea level rise),
7477 shoreline stabilization, and coastal development, exacerbated regionally or locally by lesser
7478 habitat-related threats such as beach cleaning, invasive vegetation, agriculture, and aquaculture.

7479 **Baseline**

7480 Our only data for red knot use of the Plan Area are three sightings in the winter of 2016, and one
7481 in the winter of 2017. The 2016 sightings were in large tomato fields (total extent about 75 acres)
7482 that were intentionally flooded to suppress weed growth. The 2017 sighting was in an
7483 unspecified upland cover class. We believe small numbers of red knots, not large flocks, may use
7484 portions of the Plan Area occasionally when displaced inland by severe weather, disturbance, or
7485 other alterations of nearby coastal habitats, possibly following other species of shorebirds that
7486 more commonly use inland fields.

7487 **Effects**

7488 Development of the 75 acres of flooded tomato fields that have supported previous red knot use
7489 would eliminate seasonal flooding practices, which makes the fields attractive to shore birds
7490 venturing inland, and convert the cropland to urban cover. Development would occur necessarily

7500 when the fields are not flooded and when red knots are not present. The fields would no longer
7501 support use by red knots; however, we do not expect this habitat loss to kill or injure any red
7502 knots. We expect the Covered Activities in the Preservation and Very Low Density Development
7503 areas to have no effect on the species.

7504

Cumulative Effects

7505

7506 We do not anticipate coextensive non-federal actions within the Action Area unrelated to the
7507 HCP that would affect the red knot.

7508

Opinion

7509

7510 Red knots infrequently occur in the Plan Area, likely at a very low density and a patchy
7511 distribution. The development activity could convert approximately 75 acres of tomato fields,
7512 which are periodically flooded for weed control, to residential and commercial development. Red
7513 knots have used these fields for foraging and roosting. Although this habitat conversion would
7514 permanently preclude such use in the future, we do not expect the habitat loss to kill or injure
7515 any red knots or otherwise reduce the likelihood of the species' survival and recovery.

7516

7517 After reviewing the current status of the species, the environmental baseline for the Action Area,
7518 the effects of the Action and the cumulative effects, it is our biological opinion that the Action is
7519 not likely to jeopardize the continued existence of the red knot.

7520

11 Little Blue Heron

7521

7522 This section provides the Service's conference opinion of the Action for the little blue heron.

7523

11.1 Status of Little Blue Heron

7524

7525 This section summarizes best available data about the biology and current condition of the little
7526 blue heron (*Egretta caerulea*) (LBH) throughout its range that are relevant to formulating an
7527 opinion about the Action. At this time, the LBH is not protected under the ESA. The Service has
7528 not reviewed the species' status relative to the ESA definitions of "endangered" and
7529 "threatened." The State of Florida protects the LBH as a threatened species under Florida's
7530 Endangered and Threatened Species Rule. For purposes of this Conference Opinion, we rely
7531 upon the Biological Status Review prepared by the Florida Fish and Wildlife Conservation
7532 Commission (FWC 2011) and other available data to describe the species' status.

7533

11.1.1 Species Description

7534

7535 The LBH is a small wading bird species that can reach a length of up to 29 inches, a wingspan of
7536 41 inches, and a weight of 14 ounces. Little blue herons have a grayish-blue body and a dark red
7537 head during breeding, and a purplish head and neck during non-breeding periods.

7545 **11.1.2 Life History**

7546

7547 Rodgers and Smith (2012) synthesized available data about the biology of the LBH, which is the
7548 source of information we provide here. The LBH is a colonial-nesting wading bird that forages
7549 and breeds in a variety of freshwater and marine-estuarine habitats. Northern breeding
7550 populations are migratory, and others are year-round residents.

7551

7552 Nesting usually occurs in colonies, sometimes with thousands of other wading birds, on islands,
7553 thickets near water, or emergent vegetation over water. LBHs produce one brood per season,
7554 laying clutches of three to five eggs that hatch in 20–24 days. Young fledge at 28 days. Suitable
7555 breeding sites have woody vegetation that can support nests, absence of ground-predators, and
7556 proximity to foraging habitat.

7557

7558 Typical prey items fish, insects, crustaceans, and amphibians. Foraging habitats include tidal
7559 ponds and sloughs, mudflats, mangrove-dominated pools, freshwater sloughs and marshes, the
7560 edges of rivers, streams, and lakes, and canals and impoundments. Flight distance to foraging
7561 sites from nesting colonies is variable, probably as a function of food availability. The average
7562 distance traveled from an interior (not coastal) freshwater colony to foraging sites in Florida was
7563 6.7 km (4.2 miles).

7564

7565 **11.1.3 Numbers, Reproduction, and Distribution**

7566

7567 The LBH is widely distributed in the Americas and Caribbean (Rodgers and Smith 2012). Its
7568 contiguous U.S. breeding range extends along the Atlantic coast from southern Maine to Florida,
7569 along the Gulf Coast from Florida to Texas, and inland as far north as southern Illinois and
7570 central Kentucky. Breeding also occurs on the west side of North America in California and
7571 Mexico. LBH that breed in northern portions of the range migrate south in the fall to various
7572 wintering areas, including Florida. Rodgers and Smith (2012) report that the LBH appears most
7573 abundant in Delaware, North Carolina, South Carolina, Florida, Texas, and especially Louisiana,
7574 but a range-wide population estimate is not available.

7575

7576 FWC (2011) cited an unpublished report that identified wading bird nesting colonies in south
7577 Florida that supported more than 2,000 LBH pairs in 2009. FWC believes the statewide
7578 population is between 5,000–15,000 individuals, and reports indications that LBH numbers have
7579 exhibited a slow but steady decline since the latter 1990s. The LBH occurs throughout Florida in
7580 wetland habitats of all nearly all types, but more commonly in freshwater types.

7581

7582 **11.1.4 Conservation Needs and Threats**

7583

7584 Current threats to the species are degradation or loss of habitat, hydrologic alterations to
7585 wetlands, and reductions to important prey sources. FWC (2013) suggested that prey availability
7586 is the most important factor limiting the populations of several wading birds, including the LBH.
7587 Human disturbance at nesting colonies, increased pressure from predators, oil spills, and
7588 exposure to other contaminants are additional recognized threats (FWC 2011). Rodgers and
7589 Smith (2012) cite studies that suggest that competition for nesting habitat with cattle egrets has
7590 contributed to reduced LBH productivity.

7591
7592 Conservation needs include hydrological restoration, management of suitable habitat, and
7593 removal of non-native species.

7595 **11.2 Environmental Baseline for Little Blue Heron**

7596
7597 This section describes the current condition of the LBH in the Action Area without the
7598 consequences to the listed species caused by the proposed Action.

7600 **11.2.1 Action Area Numbers, Reproduction, and Distribution**

7601
7602 The Applicants did not conduct species-specific surveys for the LBH within the Plan Area, but
7603 note in section 5.5.1.4 of the HCP that the species is routinely observed in the Plan Area. The
7604 Plan Area contains 58,543 acres of native freshwater wetlands that are potential LBH habitat
7605 (Table 2-2). In 1996, freshwater wetlands covered about 10.2 million acres of Florida, and the
7606 rate of wetlands loss in the previous decade was about 5,000 acres annually (Dahl 2005).
7607 Extrapolating this rate of loss to 2019 yields about 10 million acres statewide. The statewide
7608 LBH population of about 5,000–15,000 individuals (FWC 2011) in about 10 million acres of
7609 wetlands in Florida is a density of one bird per 667–2,000 acres of habitat. We apply this density
7610 to the wetland acreage of the Plan Area to estimate that 29–88 LBH occur within the Plan Area.

7611
7612 The Florida Fish and Wildlife Research Institute has identified two active wading bird colonies
7613 within the Plan Area that support LBH nesting (FWRI 2018) of less than 10 nesting pairs per
7614 colony. The two known colonies are located within areas designated for Preservation near the
7615 northeast corner of the Plan Area. Whether other active nesting sites for LBH occur in the Plan
7616 Area is unknown. Up to 10 pairs in only two colonies would amount to 40 adults, which is within
7617 the density-based range of 29–88 adults that we expect the Plan Area wetlands to support.

7618 **11.2.2 Action Area Conservation Needs and Threats**

7619
7620 Large areas of native wetlands habitat within the Plan Area have been altered via land clearing
7621 and drainage for agricultural uses. This loss of habitat has reduced prey availability and likely
7622 increased competition with other wading birds. Like other cattle grazing areas in Florida, the
7623 Plan Area supports a population of cattle egrets, which may compete with LBH for nesting sites.
7624 Threats to the LBH within the Plan Area include further habitat loss and degradation, and
7625 disturbance at breeding and foraging sites. Conservation needs within the Plan Area include the
7626 protection and management of existing suitable habitat, especially colonial nesting sites, and the
7627 hydrologic restoration of degraded wetlands.

7628 **11.3 Effects of the Action on Little Blue Heron**

7629
7630 This section describes all reasonably certain consequences to the LBH that we predict the
7631 proposed Action would cause, including the consequences of other activities not included in the
7632 proposed Action that would not occur but for the proposed Action. Such effects may occur later
7633 in time and may occur outside the immediate area involved in the Action.

7637 **11.3.1 Development and Mining, Base Zoning, and Eligible Lands**

7638
7639 To estimate the spatial extent of development across cover classes the LBH may occupy, we use
7640 the “Proportional” method described in section 2.1.4, which distributes 39,973 acres of
7641 development among all areas (Development and Mining, Base Zoning, and Eligible Lands) that
7642 could receive high-density development under the HCP. By this method, we estimate that the
7643 proposed Action could convert up to 4,885 acres of wetland habitats to residential, commercial,
7644 or mining uses (Table 2-3, sum of column “G” for native wetlands). The designated
7645 Development and Mining areas contain 2,442 acres of native wetlands (Table 2-2), which is the
7646 maximum loss of wetlands that could occur if development is confined entirely to these areas
7647 (*i.e.*, no substitution of Base Zoning or Eligible lands in the development cap). Using densities of
7648 one bird per 667–2,000 acres of habitat (see section 11.2.1), 2,442–4,884 acres of wetlands
7649 would support about 2–8 LBH.

7650
7651 Development and mining in wetlands would involve various activities (drainage, filling,
7652 excavation, paving, building construction, *etc.*) that would permanently eliminate the affected
7653 areas as LBH habitat. The two known LBH nesting colonies within the Plan Area are within
7654 designated Preservation areas; therefore, we do not expect development activities to directly kill
7655 or injure LBH eggs or flightless young. However, development of wetlands used as foraging
7656 areas would cause 2–8 LBH to forage elsewhere.

7657
7658 We would expect habitat alteration that causes displacement from foraging areas to harm
7659 (actually kill or injure) LBH individuals indirectly through reduced reproductive success if it
7660 substantially reduces prey availability within the typical foraging distance from colonial nesting
7661 sites (average of about 4.2 miles; see section 11.1.2). Due to the uncertain distribution of 39,973
7662 acres of development within a 66,245-acre envelope (total extent of the Development and
7663 Mining, Base Zoning, and Eligible Lands), we are unable to determine the extent of development
7664 that would occur within 4.2 miles of the two known active LBH nesting colonies. These nesting
7665 sites are located in designated Preservation areas near the northeast corner of the Plan Area about
7666 4 miles from the nearest designated Development area. This quadrant of the Plan Area contains
7667 the Base Zoning parcel and two parcels of the Eligible Lands, and these areas may substitute for
7668 designated Development areas in the development cap. However, Preservation is the designated
7669 use for most of the area surrounding the nesting sites, and the Preservation areas contain 84.9%
7670 of the native wetlands in the Plan Area (see Table 2-2). We believe it is unlikely that a potential
7671 loss of foraging habitat in the Base Zoning and Eligible Lands in this quadrant of the Plan Area
7672 would impair LBH reproductive success, but we acknowledge that prey availability is considered
7673 an important factor limiting LBH and other wading bird populations (FWC 2013).

7674
7675 The Applicants propose to mitigate for permanent losses of habitat for Covered wading bird
7676 species through “preservation, and potential restoration, enhancement and/or creation of an equal
7677 acreage of in-kind little blue heron and tricolored heron habitat” (HCP chapter 7.5.1.4). In its
7678 “Species Conservation Measures and Permitting Guidelines,” FWC (2019) considers wetland
7679 mitigation through the State’s Environmental Resource Permit (ERP) process sufficient to satisfy
7680 its permitting requirements for potential take of LBH caused by significant modification of
7681 foraging habitat. We expect that the developments of the HCP would engage the State’s ERP
7682 process.

7683

7684 11.3.2 Preservation Activities

7685

7686 The designated Preservation areas of the HCP contain 49,695 acres of native wetlands (Table 2-
7687 1) that we consider LBH foraging and nesting/roosting habitat. Using densities of one bird per
7688 667–2,000 acres of habitat (see section 11.2.1), these wetlands would support about 25–75 LBH.
7689 The two sites known to support recent LBH nesting activity within the Plan Area are located
7690 within Preservation areas.

7691

7692 The Applicants propose a continuation of existing land uses (agriculture, silviculture, *etc.*) in the
7693 Preservation areas, which we listed in section 2.3. All of these uses may occur to some extent in
7694 native wetlands of the Preservation areas except crop cultivation. Land management activities in
7695 the Preservation areas for which the Applicants seek take authorization and that may occur in
7696 wetlands include:

7697

- 7698 • prescribed burning;
- 7699 • mechanical control of groundcover (*e.g.*, roller chopping, brush-hogging, mowing);
- 7700 • ditch and canal maintenance;
- 7701 • mechanical and/or chemical control of exotic vegetation; and
- 7702 • similar activities that maintain or improve land quality.

7703

7704 In wetlands, prescribed burning is usually applied to control woody encroachment in non-
7705 forested wetlands (*e.g.*, wet prairies and bogs), which do not ordinarily support LBH nesting.
7706 Therefore, we do not expect prescribed fire to harm LBH. The other activities listed above may
7707 temporarily disrupt LBH foraging activity, but are unlikely to harm birds unless conducted near
7708 nesting sites. We believe that trees surrounded by standing water, the typical setting of a colonial
7709 wading bird rookery, are unlikely locations for these land management actions.

7710

7711 We do not expect the management of Preservation areas to reduce the numbers, reproduction, or
7712 distribution of the LBH in the Preservation areas, because these activities would, at minimum,
7713 maintain current conditions. Special attention to this species in the long-term management of the
7714 Preservation areas under conservation easements could increase LBH densities and the Plan Area
7715 population. However, lacking detailed information about the LBH in the Plan Area, and about
7716 how habitat management under conservation easements may benefit this species, we are unable
7717 to estimate the extent of potential benefits.

7718

7719 11.3.3 Very Low Density Development

7720

7721 The Very Low Density (VLD) use areas of the HCP contain 733 acres of native wetlands that we
7722 consider as LBH habitat (Table 2-2). Using densities of one bird per 667–2,000 acres of habitat
7723 (see section 11.2.1), these wetlands would support less than two LBH. No sites known to support
7724 recent LBH nesting activity within the Plan Area are located within the VLD areas.

7725

7726 Land uses in the VLD areas are similar to the Preservation areas, but may also include isolated
7727 residences, lodges, and hunting/fishing camps, at a density of no more than one dwelling unit per
7728 50 acres. The Applicants would continue current ranching/livestock operations and other
7729 management activities as described for the Preservation Areas (*e.g.*, exotic species control,

7729 prescribed burning). As in the Preservation areas, we do not expect adverse effects resulting from
7730 the continuation of the existing land management regimes.

7731
7732 The HCP does not specify a footprint for the isolated residences, lodges, and hunting/fishing
7733 camps, but indicates that their construction could clear up to 10% of the existing native
7734 vegetation (see section 2.5). New dwelling development could occur within any of the cover
7735 types present besides open water and existing development. Clearing up to 10% of the native
7736 cover types that we consider as LBH habitat would reduce such habitat by 73 acres (Table 2-7).
7737 It is possible that dwelling development in the VLD areas could entirely avoid wetlands, but we
7738 conservatively estimate a 73-acre habitat loss. Because the VLD area wetlands do not support
7739 known nesting colonies, we do not expect this extent of habitat modification to kill or injure
7740 LBH.

7741
7742 The general measures for enhancing LBH habitat in the Preservation areas apply to the VLD
7743 areas as well (see previous section 11.3.2). However, the potential to increase LBH numbers or
7744 reproduction is limited due to the small extent of wetlands in the VLD areas.

7745 7746 **11.4 Cumulative Effects on Little Blue Heron**

7747
7748 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
7749 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
7750 Federal actions that are unrelated to the proposed action are not considered, because they require
7751 separate consultation under §7 of the ESA.

7752
7753 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
7754 sole source of effects that are consistent with the definition of cumulative effects for this Action.
7755 We have no information that suggests traffic on public roads is a predictable cause of LBH
7756 injury, mortality, or significant behavioral modification.

7757 7758 **11.5 Conclusion for Little Blue Heron**

7759
7760 In this section, we summarize and interpret the findings of the previous sections for the LBH
7761 (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO
7762 under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to
7763 jeopardize the continued existence of a species.

7764 7765 **Status**

7766
7767 The LBH is widely distributed in the Americas and Caribbean. A range-wide estimate of
7768 abundance is not available. The Florida population is between 5,000–15,000 individuals, and has
7769 slowly but steadily declined since the 1990s. The LBH occurs throughout Florida in wetland
7770 habitats of all nearly all types, but more commonly in freshwater types. Current threats to the
7771 species are degradation or loss of habitat, hydrologic alterations to wetlands, and reductions to
7772 important prey sources. Prey availability is an important factor limiting the populations of
7773 several wading birds, including the LBH. LBH conservation needs include hydrological
7774 restoration, management of suitable habitat, and removal of non-native species.

7775

Baseline

7777

7778 The Plan Area contains 58,543 acres of native freshwater wetlands that are potential LBH
7779 habitat. The statewide LBH population of about 5,000–15,000 individuals in about 10 million
7780 acres of wetlands in Florida is a density of one bird per 667–2,000 acres of habitat. We apply this
7781 density to the wetland acreage of the Plan Area to estimate that 29–88 LBH occur within the
7782 Plan Area. Two active wading bird colonies within the Plan Area support LBH nesting of less 10
7783 nesting pairs per colony. Whether other active nesting sites for LBH occur in the Plan Area is
7784 unknown. LBH conservation needs within the Plan Area include the protection and management
7785 of existing suitable habitat, especially colonial nesting sites, and the hydrologic restoration of
7786 degraded wetlands.

7787

Effects

7789

7790 Depending on the distribution of the development cap among the Development and Mining, Base
7791 Zoning, and Eligible Lands designations of the HCP, we estimate the development would
7792 eliminate 2,442–4,884 acres of wetlands that would support foraging for about 2–8 LBH. The
7793 two known LBH nesting colonies within the Plan Area are within designated Preservation areas;
7794 therefore, we do not expect development activities to directly kill or injure LBH eggs or
7795 flightless young. Based on the distance of these colonies from potential development activity, we
7796 believe it is unlikely that the loss of foraging habitat within the development envelope would
7797 impair LBH reproductive success at these colonies.

7798

7799 The designated Preservation areas may support 25–75 LBH. We do not expect the management
7800 of Preservation areas to reduce the numbers, reproduction, or distribution of the LBH in the
7801 Preservation areas, because these activities will, at minimum, maintain current conditions.
7802 Special attention to this species in the long-term management of the Preservation areas under
7803 conservation easements could increase LBH densities and the Plan Area population.

7804

7805 Native wetlands in the Very Low Density (VLD) use areas may support less than two LBH.
7806 Clearing up to 10% of the native wetlands in the VLD use areas would reduce LBH habitat by 73
7807 acres. Because the VLD area wetlands do not support known nesting colonies, we do not expect
7808 this extent of habitat modification to kill or injure LBH.

7809

Opinion

7811

7812 The loss of about 2,442–4,884 acres of wetlands that may support LBH foraging would add an
7813 increment of habitat loss to the species' range in Florida, where numbers have been declining
7814 due primarily to habitat loss since the 1990's. Foraging habitat reductions near nesting colonies
7815 may impair reproductive success, but the only two known active LBH colonies in the Plan Area
7816 are not within or near designated Development areas that are most likely to receive development.
7817 However, prey availability is recognized as a primary factor limiting LBH populations. Using the
7818 statewide FBH density as a measure of the impact of wetlands loss on LBH populations, the
7819 development could reduce LBH numbers by 2–8 individuals. Relative to statewide numbers of
7820 5,000–15,000, this represents a 0.01–0.16% reduction. Range-wide abundance throughout the

7821 Americas and Caribbean is unknown, but likely several orders of magnitude greater than the
7822 Florida population.

7823
7824 Precluding new development and mining activity in the dedicated Preservation areas would
7825 protect 49,695 acres of LBH habitat, which contains 85% of the Plan Area wetlands. As these
7826 areas are brought under conservation easements, habitat enhancements that may increase LBH
7827 numbers are likely, but the amount or extent is not predictable at this time. Given the relatively
7828 small proportional impact of the Development activities to Florida LBH populations, and a much
7829 smaller proportional impact range-wide, we believe the net impact of the Action on the LBH is
7830 within the species' ability to sustain.

7831
7832 After reviewing the current status of the species, the environmental baseline for the Action Area,
7833 the effects of the Action and the cumulative effects, it is the Service's conference opinion that
7834 the Action is not likely to jeopardize the continued existence of the LBH.

7835 7836 **12 Tricolored Heron**

7837 This section provides the Service's conference opinion of the Action for the tricolored heron.

7838 7839 **12.1 Status of Tricolored Heron**

7840 This section summarizes best available data about the biology and current condition of the
7841 tricolored heron (*Egretta tricolor*) (TCH) throughout its range that are relevant to formulating an
7842 opinion about the Action. At this time, the TCH is not protected under the ESA. The Service has
7843 not reviewed the species' status relative to the ESA definitions of "endangered" and
7844 "threatened." The State of Florida protects the TCH as a threatened species under Florida's
7845 Endangered and Threatened Species Rule. For purposes of this Conference Opinion, we rely
7846 upon the Biological Status Review prepared by the Florida Fish and Wildlife Conservation
7847 Commission (FWC 2011) and other available data to describe the species' status.

7848 7849 **12.1.1 Species Description**

7850 The TCH has a dark slate-blue colored head and upper body, a purple chest, and white
7851 underparts. This wading bird has a long and slender neck and bill, and reaches a length between
7852 24–26 inches with a wingspan of approximately 36 inches (FWC 2011).

7853 7854 **12.1.2 Life History**

7855 Frederick (2013) synthesized available data about the biology of the TCH, which is the source of
7856 information we provide here. The TCH is a colonial-nesting wading bird that breeds and forages
7857 mostly in coastal wetlands, but also in freshwater wetlands. Northern breeding populations are
7858 migratory, and others are year-round residents.

7859
7860 Nesting generally occurs on islands or areas of higher ground that support small trees or shrubs
7861 surrounded by open water or inundated wetland vegetation. Nesting is typically in mixed-species

7867 colonies, and sometimes in small (2–100 pairs) monospecific colonies. TCH feed mostly on
7868 small fishes (e.g., topminnows and killifishes). The size of foraging areas fluctuate throughout
7869 the year, shrinking during the breeding season to an average radial distance of about 8 miles
7870 from a nest location.

7871

7872 **12.1.3 Numbers, Reproduction, and Distribution**

7873

7874 The breeding range of the TCH parallels the coasts of the U.S. Atlantic states, Gulf of Mexico,
7875 southern California and Baja California, Central America, both Atlantic and Pacific coasts of
7876 northern South America, and the Caribbean (Frederick 2013). Frederick (2013) speculates that
7877 the TCH was likely the most numerous North American heron before the arrival of the cattle
7878 egret (*Bubulcus ibis*) in the 1950s. The TCH was considered one of the most common herons in
7879 Florida before the 1970s, where the species still occurs throughout most of the state in both
7880 freshwater and estuarine habitats (FWC 2011).

7881

7882 A range-wide population estimate is not available. Comprehensive surveys of the U.S. breeding
7883 range in 1976 suggested a minimum breeding population of about 193,600 adults, distributed as
7884 follows: Louisiana (72%), Texas (12%), Florida (6.3%), and Atlantic coastal states north of
7885 Florida (9.7%) (Frederick 2013). Most data collected since that time suggest that the species is
7886 declining, perhaps rapidly. FWC (2011) estimated the statewide population at about 10,000
7887 individuals. Citing various reports, FWC (2011) indicated that numbers of TCH nesting in south
7888 Florida Water Conservation Areas and Everglades National Park (not statewide) declined from
7889 about 10,000–15,000 pairs in the 1930's, to 1,723 pairs in 1999, and to 1,144 pairs in 2009.

7890

7891 **12.1.4 Conservation Needs and Threats**

7892

7893 Citing various sources, FWC (2013) lists loss of wetland habitat, habitat degradation due to
7894 changes in hydrology and water quality, disturbance at breeding sites, and elevated populations
7895 of native and non-native nest predators as the primary threats to the TCH. Frederick (2013)
7896 suggested that reduced productivity caused by reduced flow of fresh water to the estuaries
7897 associated with the Everglades is the most important conservation problem for the TCH. This is
7898 consistent with the view that prey availability is the most important factor limiting the
7899 populations of several wading birds in Florida, including the TCH (FWC 2013). Sea level rise
7900 may reduce the availability of nesting islands and coastal foraging habitat (Frederick 2013).

7901

7902 The primary conservation needs of the TCH mirror those of other species of wading birds:
7903 maintain and restore wetlands for nesting and foraging, and protect nesting sites from
7904 disturbance.

7905

7906 **12.2 Environmental Baseline for Tricolored Heron**

7907

7908 This section describes the current condition of the TCH in the Action Area without the
7909 consequences to the listed species caused by the proposed Action.

7911 **12.2.1 Action Area Numbers, Reproduction, and Distribution**

7912
7913 The Applicants did not conduct species-specific surveys for the TCH within the Plan Area, but
7914 note in section 5.5.1.4 of the HCP that the species is routinely observed in the Plan Area. The
7915 FWC Water Bird Locator, a statewide database of known colonial nesting sites since the 1970s
7916 for wading birds and other species, does not contain records of TCH nesting colonies within the
7917 Plan Area or within 30 miles of Plan Area (FWRI 2019). Without any records of nesting activity
7918 in the Plan Area, and given the species' more typical use of coastal wetland nesting sites, we
7919 believe that the Plan Area supports TCH foraging and roosting, but is not reasonably certain to
7920 support nesting.

7921
7922 The Plan Area contains 58,543 acres of native freshwater wetlands that are potential TCH habitat
7923 (Table 2-2). In 1996, freshwater wetlands covered about 10.2 million acres of Florida, and the
7924 rate of wetlands loss in the previous decade was about 5,000 acres annually (Dahl 2005).
7925 Extrapolating this rate of loss to 2019 yields about 10 million acres statewide. The statewide
7926 TCH population of about 10,000 individuals (FWC 2011) in about 10 million acres of wetlands
7927 in Florida is a density of one bird per 1,000 acres of habitat. We apply this density to the wetland
7928 acreage of the Plan Area to estimate that about 59 TCH occur within the Plan Area.

7929
7930 **12.2.2 Action Area Conservation Needs and Threats**

7931 Large areas of native wetlands habitat within the Plan Area have been altered via land clearing
7932 and drainage for agricultural uses. This loss of habitat has likely reduced prey availability and
7933 increased competition with other wading birds. Threats to the TCH within the Plan Area include
7934 further habitat loss and degradation. Conservation needs within the Plan Area include the
7935 protection and management of existing suitable habitat, and the hydrologic restoration of
7936 degraded wetlands.

7937 **12.3 Effects of the Action on Tricolored Heron**

7938 This section describes all reasonably certain consequences to the TCH that we predict the
7939 proposed Action would cause, including the consequences of other activities not included in the
7940 proposed Action that would not occur but for the proposed Action. Such effects may occur later
7941 in time and may occur outside the immediate area involved in the Action.

7942 **12.3.1 Development and Mining, Base Zoning, and Eligible Lands**

7943 To estimate the spatial extent of development across cover classes the TCH may occupy, we use
7944 the "Proportional" method described in section 2.1.4, which distributes 39,973 acres of
7945 development among all areas (Development and Mining, Base Zoning, and Eligible Lands) that
7946 could receive high-density development under the HCP. By this method, we estimate that the
7947 proposed Action could convert up to 4,885 acres of wetland habitats to residential, commercial,
7948 or mining uses (Table 2-3, sum of column "G" for native wetlands). The designated
7949 Development and Mining areas contain 2,442 acres of native wetlands (Table 2-2), which is the
7950 maximum loss of wetlands that could occur if development is confined entirely to these areas

7957 (i.e., no substitution of Base Zoning or Eligible lands in the development cap). Using a density of
7958 one bird per 1,000 acres of habitat (see section 12.2.1), 2,442–4,884 acres of wetlands would
7959 support about 3–5 TCH.

7960
7961 Development and mining in wetlands would involve various activities (drainage, filling,
7962 excavation, paving, building construction, *etc.*) that would permanently eliminate the affected
7963 areas as TCH habitat. No known TCH nesting colonies occur within the Plan Area; therefore, we
7964 do not expect development activities to directly kill or injure TCH eggs or flightless young.
7965 However, development of wetlands used as foraging areas would cause 3–5 TCH to forage
7966 elsewhere.

7967
7968 We would expect habitat alteration that causes displacement from foraging areas to harm
7969 (actually kill or injure) TCH individuals indirectly through reduced reproductive success if it
7970 substantially reduces prey availability within the typical foraging distance from colonial nesting
7971 sites (average of about 8 miles; see section 12.1.2). The nearest documented TCH nesting colony
7972 is over 30 miles from the Plan Area (FWRI 2019). The Applicants report that TCH are routinely
7973 observed in the Plan Area, which suggests that undetected nesting activity occurs somewhere
7974 within or near the Plan Area. Lacking evidence that indicates where TCH nesting may occur, we
7975 are not reasonably certain that loss of wetlands foraging habitat resulting from the development
7976 would impair TCH reproductive success. However, we recognize that prey availability is
7977 considered an important factor limiting TCH and other wading bird populations (FWC 2013).

7978
7979 The Applicants propose to mitigate for permanent losses of habitat for Covered wading bird
7980 species through “preservation, and potential restoration, enhancement and/or creation of an equal
7981 acreage of in-kind little blue heron and tricolored heron habitat” (HCP chapter 7.5.1.4). In its
7982 “Species Conservation Measures and Permitting Guidelines,” FWC (2019) considers wetland
7983 mitigation through the State’s Environmental Resource Permit (ERP) process sufficient to satisfy
7984 its permitting requirements for potential take of TCH caused by significant modification of
7985 foraging habitat. We expect that the developments of the HCP would engage the State’s ERP
7986 process.

7987 12.3.2 Preservation Activities

7988
7989 The designated Preservation areas of the HCP contain 49,695 acres of native wetlands (Table 2-
7990 2) that we consider TCH foraging and roosting habitat. Using a density of one bird per 1,000
7991 acres of habitat (see section 12.2.1), these wetlands would support about 50 TCH. We have no
7992 records of TCH nesting in the Preservation areas, but undetected nesting may occur in wetlands
7993 of the Plan Area.

7994
7995 The Applicants propose a continuation of existing land uses (agriculture, silviculture, *etc.*) in the
7996 Preservation areas, which we listed in section 2.3. All of these uses may occur to some extent in
7997 native wetlands of the Preservation areas except crop cultivation. Land management activities in
7998 the Preservation areas for which the Applicants seek take authorization and that may occur in
7999 wetlands include:

8000
8001 • prescribed burning;
8002 • mechanical control of groundcover (*e.g.*, roller chopping, brush-hogging, mowing);

8003 • ditch and canal maintenance;
8004 • mechanical and/or chemical control of exotic vegetation; and
8005 • similar activities that maintain or improve land quality.

8006
8007 In wetlands, prescribed burning is usually applied to control woody encroachment in non-
8008 forested wetlands (*e.g.*, wet prairies and bogs), which do not ordinarily support TCH nesting.
8009 Therefore, we do not expect prescribed fire to harm TCH. The other activities listed above may
8010 temporarily disrupt TCH foraging activity, but are unlikely to harm birds unless conducted near
8011 nesting sites. We believe that trees surrounded by standing water, the typical setting of a colonial
8012 wading bird rookery, are unlikely locations for these land management actions.

8013
8014 We do not expect the management of Preservation areas to reduce the numbers, reproduction, or
8015 distribution of the TCH in the Preservation areas, because these activities would, at minimum,
8016 maintain current conditions. Special attention to this species in the long-term management of the
8017 Preservation areas under conservation easements could increase TCH densities and the Plan Area
8018 population. However, lacking detailed information about the TCH in the Plan Area, and about
8019 how habitat management under conservation easements may benefit this species, we are unable
8020 to estimate the extent of potential benefits.

8021
8022 **12.3.3 Very Low Density Development**

8023
8024 The Very Low Density (VLD) use areas of the HCP contain 733 acres of native wetlands that we
8025 consider as TCH habitat (Table 2-2). Using a density of one bird per 1,000 acres of habitat (see
8026 section 12.2.1), these wetlands would support one TCH. No sites known to support TCH nesting
8027 activity within the Plan Area are located within the VLD areas.

8028
8029 Land uses in the VLD areas are similar to the Preservation areas, but may also include isolated
8030 residences, lodges, and hunting/fishing camps, at a density of no more than one dwelling unit per
8031 50 acres. The Applicants would continue current ranching/livestock operations and other
8032 management activities as described for the Preservation Areas (*e.g.*, exotic species control,
8033 prescribed burning). As in the Preservation areas, we do not expect adverse effects resulting from
8034 the continuation of the existing land management regimes.

8035
8036 The HCP does not specify a footprint for the isolated residences, lodges, and hunting/fishing
8037 camps, but indicates that their construction could clear up to 10% of the existing native
8038 vegetation (see section 2.5). New dwelling development could occur within any of the cover
8039 types present besides open water and existing development. Clearing up to 10% of the native
8040 cover types that we consider as TCH habitat would reduce such habitat by 73 acres (Table 2-7).
8041 It is possible that dwelling development in the VLD areas could entirely avoid wetlands, but we
8042 conservatively estimate a 73-acre habitat loss. Because the VLD area wetlands do not support
8043 known nesting colonies, we do not expect this extent of habitat modification to kill or injure
8044 TCH.

8045
8046 The general measures for enhancing TCH habitat in the Preservation areas apply to the VLD
8047 areas as well (see previous section 11.3.2). However, the potential to increase TCH numbers or
8048 reproduction is limited due to the small extent of wetlands in the VLD areas.

8049

8050 12.4 Cumulative Effects on Tricolored Heron

8051

8052 For purposes of consultation under ESA §7, cumulative effects are those caused by future state,
8053 tribal, local, or private actions that are reasonably certain to occur in the Action Area. Future
8054 Federal actions that are unrelated to the proposed action are not considered, because they require
8055 separate consultation under §7 of the ESA.

8056

8057 We identified in section 3 of this BO/CO a projected increase in traffic on public roads as the
8058 sole source of effects that are consistent with the definition of cumulative effects for this Action.
8059 We have no information that suggests traffic on public roads is a predictable cause of TCH
8060 injury, mortality, or significant behavioral modification.

8061

8062 12.5 Conclusion for Tricolored Heron

8063

8064 In this section, we summarize and interpret the findings of the previous sections for the TCH
8065 (status, baseline, effects, and cumulative effects) relative to the species-specific purpose of a BO
8066 under §7(a)(2) of the ESA, which is to determine whether the proposed action is likely to
8067 jeopardize the continued existence of a species.

8068

8069 Status

8070

8071 The TCH is widely distributed in the Americas and Caribbean. A range-wide estimate of
8072 abundance is not available, but most data suggest that the species is declining, perhaps rapidly.
8073 The Florida population is about 10,000 individuals. The TCH occurs throughout Florida in
8074 wetland habitats of all nearly all types, but more commonly in coastal areas. Primary threats to
8075 the species include loss of wetland habitat, habitat degradation due to changes in hydrology and
8076 water quality, disturbance at breeding sites, and elevated populations of native and non-native
8077 nest predators. Prey availability is an important factor limiting the populations of several wading
8078 birds, including the TCH. Sea level rise may reduce the availability of nesting islands and coastal
8079 foraging habitat (Frederick 2013). The primary conservation needs of the TCH mirror those of
8080 other species of wading birds: maintain and restore wetlands for nesting and foraging, and
8081 protect nesting sites from disturbance.

8082

8083 Baseline

8084

8085 The Plan Area contains 58,543 acres of native freshwater wetlands that are potential TCH
8086 habitat. The statewide TCH population of about 10,000 individuals in about 10 million acres of
8087 wetlands in Florida is a density of one bird per 1,000 acres of habitat. We apply this density to
8088 the wetland acreage of the Plan Area to estimate that about 59 TCH occur within the Plan Area.
8089 TCH nesting within the Plan Area is not documented. Given the species' more typical use of
8090 coastal wetland nesting sites, we believe that the Plan Area supports TCH foraging, but is not
8091 reasonably certain to support nesting. Threats to the TCH within the Plan Area include habitat
8092 loss and degradation. Conservation needs within the Plan Area include the protection and
8093 management of existing suitable habitat, and the hydrologic restoration of degraded wetlands.

8094

8095 **Effects**

8096
8097 Depending on the distribution of the development cap among the Development and Mining, Base
8098 Zoning, and Eligible Lands designations of the HCP, we estimate the development would
8099 eliminate 2,442–4,884 acres of wetlands that would support foraging for about 3–5 TCH.
8100 Lacking evidence that indicates TCH nesting occurs within or near the Plant Area, we are not
8101 reasonably certain that loss of wetlands foraging habitat resulting from the development would
8102 impair TCH reproductive success.

8103
8104 The designated Preservation areas may support about 50 TCH. We do not expect the
8105 management of Preservation areas to reduce the numbers, reproduction, or distribution of the
8106 TCH in the Preservation areas, because these activities will, at minimum, maintain current
8107 conditions. Special attention to this species in the long-term management of the Preservation
8108 areas under conservation easements could increase TCH densities and the Plan Area population.
8109

8110 Native wetlands in the Very Low Density (VLD) use areas may support one TCH. Clearing up to
8111 10% of the native wetlands in the VLD use areas would reduce TCH habitat by 73 acres.
8112 Because the VLD area wetlands do not support known nesting colonies, we do not expect this
8113 extent of habitat modification to kill or injure TCH.

8114
8115 **Cumulative Effects**

8116
8117 We have no information that suggests traffic on public roads, which is the sole source of
8118 cumulative effects we've identified for this Action, is a predictable cause of TCH injury,
8119 mortality, or significant behavioral modification.

8120
8121 **Opinion**

8122
8123 The loss of about 2,442–4,884 acres of wetlands that may support TCH foraging would add an
8124 increment of habitat loss to the species' range in Florida, where numbers have been declining,
8125 most likely due to wetlands loss and degradation. Foraging habitat reductions near nesting
8126 colonies may impair reproductive success, but no known TCH nesting colonies occur within or
8127 near the Plan Area. However, prey availability is recognized as a primary factor limiting TCH
8128 populations. Using the statewide TCH density as a measure of the impact of wetlands loss on
8129 TCH populations, the development could reduce TCH numbers by 3–5 individuals. Relative to
8130 statewide numbers of about 10,000, this represents a 0.03–0.05% reduction. Range-wide
8131 abundance throughout the Americas and Caribbean is unknown, but likely several orders of
8132 magnitude greater than the Florida population.

8133
8134 Precluding new development and mining activity in the dedicated Preservation areas would
8135 protect 49,695 acres of TCH habitat, which contains 85% of the Plan Area wetlands. As these
8136 areas are brought under conservation easements, habitat enhancements that may increase TCH
8137 numbers are likely, but the amount or extent is not predictable at this time. Given the relatively
8138 small proportional impact of the Development activities to Florida TCH populations, and a much
8139 smaller proportional impact range-wide, we believe the net impact of the Action on the TCH is
8140 within the species' ability to sustain.

8141
8142 After reviewing the current status of the species, the environmental baseline for the Action Area,
8143 the effects of the Action and the cumulative effects, it is the Service's conference opinion that
8144 the Action is not likely to jeopardize the continued existence of the TCH.

8145 8146 13 Wood Stork

8147 This section provides the Service's biological opinion of the Action for the wood stork.

8148 8149 13.1 Status of Wood Stork

8150
8151 This section summarizes best available data about the biology and current condition of the wood
8152 stork (*Mycteria americana*) throughout its range that are relevant to formulating an opinion
8153 about the Action. The Service published its decision to list the U.S. breeding population of the
8154 wood stork as endangered on February 28, 1984 (49 FR 7332–7335). The Service reclassified the
8155 species as threatened and established the U.S. breeding population as a distinct population
8156 segment on June 30, 2014 (79 FR 37077–37103). The Service has not designated critical habitat
8157 for the wood stork.

8158 8159 13.1.1 Species Description

8160
8161 Wood storks are large, long-legged, colonial-nesting wading birds, about 50 inches tall, with a
8162 wingspan of 60–65 inches. Adult plumage is white except for black primary and secondary wing
8163 feathers and a short black tail. The dark gray head and neck are unfeathered. The bill is black,
8164 thick at the base, and slightly decurved. Immature birds are gray and have a yellowish bill.

8165 8166 13.1.2 Life History

8167
8168 The wood storks diet consists mostly of fish (Depkin et al. 1992) that are 1–10 inches long (Kahl
8169 1964; Ogden et al. 1976; Coulter 1987), supplemented occasionally with crustaceans,
8170 amphibians, reptiles, mammals, birds, and arthropods (Depkin et al. 1992). Wood storks select
8171 foraging sites that provide a high prey density in shallow water, which results in a narrower
8172 range of foraging opportunities than for many of the other wading bird species (Gawlik 2002).

8173
8174 Storks begin breeding at 3–4 years old. Wood storks are relatively long-lived (up to about 12
8175 years) and seasonally monogamous, probably forming a new pair bond each breeding season.
8176 Female wood storks lay a staggered clutch of 2–5 (average 3) per breeding season, but may lay a
8177 second clutch if nest failure occurs early in the breeding season (Coulter et al. 1999). Incubation
8178 lasts about 30 days and begins with the first egg laid. Eggs hatch at different times and nestlings
8179 vary in size (Coulter et al. 1999). Young fledge in about 8 weeks, but adults feed them at the nest
8180 for an additional 3–4 weeks.

8181
8182 Adults feed the young by regurgitating whole fish into the bottom of the nest about 3–10 times
8183 per day. Feedings are more frequent when the birds are young (Coulter et al. 1999) and less
8184 frequent when wood storks must fly great distances to locate food (Bryan et al. 1995). The entire

nesting period for a single pair, from courtship and nest-building through offspring independence, lasts about 100 to 120 days (Coulter et al. 1999). Asynchronous nest initiation within a colony may extend breeding activity for the colony as a whole substantially beyond the 120 days required for a single pair. Adults and independent young may continue to forage around the colony site for a relatively short period following the completion of breeding.

Wood storks are dependent on consistent foraging opportunities in wetlands near nesting colonies for reproductive success. Kahl (1964) estimated that each pair of storks consumes about 443 pounds of fish, crustaceans, and other prey during the nesting season. In south Florida, the Service defines an 18.6-mile radius around a wood stork nesting colony as its core foraging area (CFA).

The seasonal timing of nest initiation is March–May in areas outside of south Florida. Historically, nest initiation in south Florida occurred from November–January, and sometimes as early as October, generally coinciding with the onset of the dry season. The disproportionate loss of short hydro-period wetlands caused by drainage and development activity is most likely responsible for shifting stork nest initiation in the Everglades and Big Cypress areas to February–March in most years since the 1970s. This delay risks an overlap of the nesting season with the onset of the wet season in May–June, when water levels rise and disperse the forage fish that support nesting success.

Following the nesting season, both adult and fledgling wood storks generally disperse away from the nesting colony. Fledglings have relatively high mortality rates within the first 6 months, most likely due to their lack of experience in foraging (Hylton et al. 2006). Post-fledgling survival also appears variable among years, probably reflecting the environmental variability that affects prey abundance and availability (Hylton et al. 2006). In south Florida, both adult and juvenile storks consistently disperse northward from nest sites (Kahl 1964). Storks breeding in central Florida also appear to disperse northward, but generally do not move as far (Coulter et al. 1999). Many juvenile storks from south Florida move into Georgia, Alabama, Mississippi, and South Carolina (Coulter et al. 1999; Borkhataria et al. 2004; Borkhataria et al. 2006). Some flocks of juvenile storks move well beyond the breeding range of storks (Kahl 1964).

Adult and juvenile storks return southward in the late fall and early winter months. In a study employing satellite telemetry, Borkhataria et al. (2006) reported that nearly all storks tagged in the southeast U.S. outside of Florida moved into Florida near the beginning of the dry season, including all sub-adult storks that fledged from both Florida and Georgia breeding colonies. Adult storks that bred in Georgia remained in Florida until March, and then moved back to northern breeding colonies. About 75% of all locations of tagged wood storks occurred within Florida.

Preliminary analyses of the range-wide occurrence of wood storks in December, recorded during annual Christmas bird surveys, suggest that the majority of the southeast U.S. wood stork population is in central and south Florida at this time. Relative abundance of storks in this region was 10–100 times higher than in north Florida and Georgia (Service 2007). This concentration of the range-wide population coincides with the early portion of the stork breeding season in Florida, during which prey abundance and availability are critical to breeding success. The same

8233 wetlands that support foraging for both breeding and non-breeding wood storks must also
8234 support a variety of other wading bird species (Gawlik 2002).

8235 8236 **Foraging Habitat**

8237
8238 Wood storks forage in a wide variety of wetland types. Wetland habitat types used include
8239 freshwater marshes, ponds, hardwood and cypress swamps, narrow tidal creeks, shallow tidal pools,
8240 and artificial wetlands such as stock ponds, seasonally flooded roadside or agricultural ditches, and
8241 managed impoundments (Coulter and Bryan 1993; Coulter et al. 1999). Optimal foraging habitats are
8242 shallow-water (depth 2–16 inches), sparsely vegetated wetlands (Ogden et al. 1978; Browder 1984;
8243 Coulter 1987; Coulter and Bryan 1993).

8244
8245 In south Florida, water levels in wetlands rise and peak during the wet season (June to
8246 November), and gradually recede during the dry season (December to May), which roughly
8247 corresponds with the stork nesting season. A particular location may provide suitable stork
8248 foraging depths only during part of the year. Wood storks generally use wetlands with a short
8249 hydro-period (duration of inundation) early in the nesting season, a mid-range hydro-period during
8250 the middle of the nesting season, and a long hydro-period during the latter part of the nesting
8251 season (Kahl 1964; Gawlik 2002). Browder (1984) reported that storks forage in wet prairie
8252 ponds early in the dry season, and as they dried, shifted to slough ponds later in the season.

8253
8254 In addition to water depth, suitable stork foraging habitats provide a sufficient density and
8255 biomass of forage fish or other prey species. Wetlands with a longer hydro-period generally
8256 support more fish and larger fish than those with a shorter hydro-period, but are too deep for
8257 stork foraging until later in the dry season (Loftus and Ecklund 1994; Jordan et al. 1997 and
8258 1998; Turner et al. 1999). Nutrient enrichment (primarily phosphorus) has increased the density
8259 and biomass of fish in the naturally oligotrophic Everglades wetlands (Rehage and Trexler
8260 2006). The foraging habitats associated with most wood stork colonies in south Florida
8261 encompass a wide range of hydro-period classes, nutrient conditions, and spatial configuration.

8262
8263 Dense submerged and emergent vegetation reduces foraging suitability by impeding stork
8264 movement through the habitat and prey detection (Coulter and Bryan 1993). Wood storks tend to
8265 select foraging areas that have an open canopy, but occasionally use sites with 50–100% canopy
8266 closure (Coulter and Bryan 1993; O'Hare and Dalrymple 1997; Coulter et al. 1999). Densely
8267 forested wetlands are seldom used for foraging (Coulter and Bryan 1993). The presence of minor
8268 to moderate amounts of submerged and emergent vegetation maintains fish populations and does
8269 not appear to preclude stork foraging.

8270 8271 **Nesting Habitat**

8272
8273 Wood storks build nests on live and dead shrubs or trees, as short as 3-foot mangroves and as tall
8274 as 100-foot cypress, surrounded by relatively broad expanses of open water (Palmer 1962; Rodgers
8275 et al. 1987; Ogden 1991; Coulter et al. 1999). In mixed-species nesting colonies, wood storks
8276 generally occupy the larger-diameter trees (Rodgers et al. 1996). Storks may use for many years
8277 undisturbed nesting sites that have sufficient feeding habitat in the surrounding area, but
8278 individuals do not necessarily return the same site every year (Kushlan and Frohring 1986). Storks
8279 abandon nesting sites that dry up during the nesting season (Rodgers et al. 1996). Ogden (1991)

suggests that a substantial increase in stork nesting within managed or impounded wetlands in central and north Florida is a response to regional hydrologic changes that have dried natural wetland nesting sites during the spring months. Wood storks that abandon a colony early in the nesting season due to unsuitable water levels may re-nest in other nearby areas (Borkhataria et al. 2004; Crozier and Cook 2004).

Between breeding seasons or while foraging, wood storks roost in trees over dry ground, on levees, or large patches of open ground. Wood storks may also roost within wetlands while foraging far from nest sites and outside of the breeding season (Gawlik 2002). While the majority of stork nesting occurs within traditional rookeries, a handful of new stork nesting colonies are discovered each year (Meyer and Frederick 2004; Brooks and Dean 2008). New locations may represent a temporary shift of one or more historic colonies in response to changes in local conditions, or an expansion of breeding activity into new areas where habitat conditions have improved.

13.1.3 Numbers, Reproduction, and Distribution

The wood stork occurs from northern Argentina, eastern Peru and western Ecuador, north to Central America, Mexico, Cuba, Hispaniola, and the southeastern U.S. (American Ornithologists Union 1983). The Service classifies as threatened only the distinct population segment that breeds in the southeastern U.S., which is the geographic scope of this and the following section.

Wood storks formerly nested in all U.S. coastal states from Texas to South Carolina (Wayne 1910; Bent 1926; Oberholser 1938; Dusi and Dusi 1968; Oberholser and Kincaid 1974). The current breeding range includes Florida, Georgia, and South Carolina, and since 2005, North Carolina. The breeding range is expanding within these states (Service 2007). Florida and south Georgia are occupied year-round, and host storks from the remainder of the breeding range during the winter.

Our 2014 final rule that reclassified the wood stork as a threatened distinct population segment (79 FR 37077–37103) summarized available population estimates through 2013. The U.S. wood stork breeding population in the 1930s was probably between 15,000–20,000 pairs. It declined to about 10,000 pairs by 1960, and further declined to low of 2,700–5,700 pairs between 1977 and 1980 (Ogden et al. 1987). From 1984 (when the Service classified the species as endangered) to 2013, the Service and cooperators conducted 20 synoptic surveys of wood stork nesting colonies in the U.S. breeding range, of which 14 counted over 6,000 pairs, and 3 counted over 10,000 pairs (2006, 2009, and 2013). The highest count of 12,720 pairs in 2009, along with a conservative estimate of 4,000 pre-breeding age birds, suggested that U.S. wood stork population at that time was about 30,000 individuals. The average number of nesting pairs in 2013–2015 was about 10,800 (USFWS 2015,

https://www.fws.gov/northflorida/WoodStorks/WOST_Data/Wood%20Stork%20Southeast%20United%20States%20Nesting%20Data.html).

Annual numbers of colonies and nesting pairs are variable, but the clear trend is a gradually increasing U.S. wood stork population in a gradually expanding breeding range. The number of pairs nesting annually has roughly doubled in the past 3 decades. The number of active colonies

8326 has roughly tripled, from an average of 29 colonies before 1995 (1975–1995; range 17–54) to an
8327 average of 77 since then (1996–2013; range 44–100). Therefore, a range-wide population
8328 increase is occurring through a larger number of smaller colonies. Before 1995, average colony
8329 size was about 200 nesting pairs, and since then, has averaged about 100 pairs.
8330

8331 The number of chicks fledged per nesting attempt is the annual productivity measure the Service
8332 adopted for recovery monitoring purposes in the most recent revision of the wood stork recovery
8333 plan (USFWS 1997). Data collected intermittently from 1975–2013 (not in 1980 and 1986–
8334 1992) at 70 unique nesting colonies throughout the species range (average of 8.5 colonies
8335 surveyed per year; range 0–33 colonies) indicate that this measure is highly variable among sites
8336 and between years (USFWS 2013). Dividing the total number of fledglings by the total number
8337 of nests for all sites surveyed during a single year is an estimate of range-wide productivity. This
8338 annual calculation for sites surveyed 1975–2013 yields an average of 1.45 fledglings per nest
8339 (range 0.65–2.49), and a median of 1.50. A clear increasing or decreasing trend is not apparent.
8340

8341 These productivity data were collected irregularly, usually at a small percentage of the total
8342 number of colonies active each year (average 17%; range 0–45%). In half the years for which
8343 data are available, productivity exceeded the recovery goal of 1.5 chicks per nest attempt, and in
8344 half the years, it did not. Although variable, the observed productivity has supported population
8345 growth and range expansion. In 2014, our final rule reclassifying the wood stork as threatened
8346 (79 FR 37077–37103) stated that population trends at that time suggested the overall population
8347 could approach the delisting benchmark of 10,000 nesting pairs during the next 15–20 years.
8348

8349 **13.1.4 Conservation Needs and Threats**

8350

8351 The primary conservation needs of the wood stork mirror those of other species of wading birds:
8352 maintain and restore wetlands for nesting and foraging, and protect nesting sites from
8353 disturbance and predation. The principal threat to the species is habitat loss and alteration.
8354 Invasive predators and chemical contamination are potential threats. We discuss all three of these
8355 threats in the following sections.
8356

8357 **Habitat loss and alteration**

8358

8359 Hefner et al. (1994) estimated 55% of the 2.3 million acres of the wetlands lost in the
8360 southeastern United States between the mid-1970s and mid-1980s were located in the Gulf-
8361 Atlantic Coastal Plain, which was the historic breeding range of the wood stork. Flemming et al.
8362 (1994) attributed substantial declines in the U.S. wood stork population in the decades before the
8363 1990s to reduced prey availability caused by wetlands loss and hydrologic alteration in south
8364 Florida, which then supported a majority of the U.S. wood stork breeding population.
8365

8366 Coinciding with habitat loss throughout the breeding range, the numbers of wood storks nesting
8367 within artificial impoundments and on islands created by dredging activities increased (Ogden
8368 1991). Nesting in artificial wetlands in central and north Florida increased from about 10% of all
8369 nesting pairs in 1959–1960 to 60–82% between 1976–1986 (Ogden 1991). Ogden (1996)
8370 suggested that the increasing use of artificial wetlands indicates that wood storks are not finding
8371 suitable nesting conditions within natural wetlands or are finding better conditions within

8372 artificial wetlands. Whether reliance on artificial wetlands for nesting can sustain wood stork
8373 productivity in the long term is still unclear. Trees eventually die, and most species that tolerate
8374 extended periods of root inundation and support nesting require periods of substrate exposure to
8375 establish new seedlings.

8376
8377 Prey abundance and availability near nesting sites in both natural and artificial wetlands is a
8378 primary factor contributing to stork productivity. Ogden and Nesbitt (1979) attributed a decline
8379 in stork numbers to a reduced food base during a time when the number of nest sites was
8380 relatively stable. At any time, only a small fraction of all wetlands in a particular area have the
8381 water depth, prey density, and relatively open vegetative structure that support stork foraging.
8382 Browder (1978) estimated a 35% reduction in the total acreage of wetland types that support
8383 wood stork foraging south of Lake Okeechobee, Florida, for the period 1900–1973. Wetlands
8384 loss in south Florida, facilitated by local and regional networks of ditches and canals, has
8385 disproportionately affected wetlands with a short hydro-period. Typically, short hydro-period
8386 wetlands are inundated at depths that may support stork foraging only towards the end of the wet
8387 season and during the beginning of the dry season (October–January), which formerly coincided
8388 with stork nest initiation. Since the 1970s, stork nest initiation in south Florida more typically
8389 occurs in February–March, most likely in response to insufficient prey resources in shallow
8390 waters earlier in the dry season.

8391
8392 Kushlan and Frohring (1986) attributed a decrease in wood storks nesting on Cape Sable to the
8393 construction of drainage canals during the 1920s. Canals and associated water management
8394 infrastructure throughout south Florida have altered the seasonal depth and distribution of water
8395 in wetlands. Continuously high water levels at stork nesting sites precludes nest tree
8396 regeneration, as most species require periods of substrate exposure for seedling survival. The
8397 breeding requirements of many fishes that serve as wood stork prey are linked to seasonal and
8398 inter-annual hydrologic patterns, which water management may disrupt, causing changes in the
8399 density and spatial distribution of prey.

8400
8401 **Non-native invasive species**
8402

8403 The Burmese python represents a potential threat to the wood stork in south Florida. The species
8404 is well established and expanding its range in the greater Everglades ecosystem. Despite
8405 removing more than 1,400 Burmese pythons from Everglades National Park (ENP) since 2000,
8406 the estimated population is in the thousands. Burmese pythons consume a wide variety of
8407 mammal and bird species, as well as other reptiles, amphibians, and fish (Dove et al. 2011; Snow
8408 et al. 2007). In addition to a juvenile wood stork, bird species found in the digestive tracts of
8409 Burmese pythons include pied-billed grebe (*Podilymbus podiceps*), limpkin (*Aramus guarauna*),
8410 white ibis (*Eudocimus albus*), American coot (*Fulica americana*), house wren (*Troglodytes*
8411 *aedon*), and domestic goose (*Anser* spp.) (Dove et al. 2011). Juveniles of these giant constrictors
8412 are known to climb trees and bushes and prey upon birds. However, the amount or extent of
8413 python predation on wood storks is unknown at this time.

8415 **Chemical contamination**

8416

8417 The risk of chemical contamination to wood stork survival and recovery is unclear. Fleming et
8418 al. (1984) reported pesticide levels high enough to cause eggshell thinning, but no effect to wood
8419 stork productivity is linked to chemical contamination. Burger et al. (1993) examined levels of
8420 heavy metals in wood storks from Florida and Costa Rica. Generally, adult birds exhibited higher
8421 levels than young birds, which is consistent with bioaccumulation from prey and various
8422 foraging locations over time. However, young birds from Florida exhibited higher levels of
8423 mercury than young or adult birds from Costa Rica. Young birds from Florida also exhibited
8424 higher levels of cadmium and lead than young birds from Costa Rica. Burger et al. (1993)
8425 recommended monitoring lead levels in Florida, but made no conclusions about the potential
8426 health effects of contaminants to wood storks.

8427

8428 **13.2 Environmental Baseline for Wood Stork**

8429

8430 This section describes the current condition of the wood stork in the Action Area without the
8431 consequences to the listed species caused by the proposed Action.

8432

8433 **13.2.1 Action Area Numbers, Reproduction, and Distribution**

8434

8435 Figure 13-1 shows the locations of three wood stork colonies active in 2018 that are within (two
8436 colonies) or near (one colony) the Plan Area (USFWS 2019). The latter colony is within the
8437 National Audubon Society's Corkscrew Swamp Sanctuary, which is about 2 miles west of the
8438 Plan Area. In 2018, surveys reported to the USFWS counted a total of 438 pairs of wood storks
8439 at these colonies, as follows:

- 8440 • 27 at the eastern-most colony near the Collier/Hendry line (the Collier-Hendry colony);
8441 • 141 at the colony located near the southeastern corner of the Plan Area (the Barron
8442 Collier colony); and
8443 • 270 pairs at the Corkscrew Swamp colony.

8444 At this time, we have no productivity data for these colonies.

8445

8446 The HCP (section 5.2.1.2.3) cites an earlier (2017) USFWS update and map of active stork
8447 colonies that shows a fourth colony located within the Plan Area that has not been active in
8448 recent years. This former colony and the two other Plan Area colonies are within the
8449 Okaloacoochee Slough regional flowway. The Baron Collier colony is located on a
8450 shrub/brushland island within an impoundment, and the Collier-Hendry colony is located within
8451 an isolated freshwater swamp (Figure 13-2). We do not know the extent to which the Plan Area
8452 may support wood storks in the winter months that breed elsewhere.

8453

8454 The Corkscrew colony, monitored annually since 1958, has recorded more wood stork fledging
8455 than any other in the U.S., but total productivity has declined from a 1958–1967 average of 5,450
8456 chicks/year to a 2009–2016 average of 287 chicks/year (National Audubon Society,
8457 <https://corkscrew.audubon.org/conservation/wood-storks>, accessed 8-15-2019). During the latter
8458 period, nesting occurred only in 2009 and 2014. The colony was active again in 2018. The most
8459 probable cause of the decline is a substantial loss of shallow-water wetland foraging habitats in
8460 the surrounding areas, which include the City of Naples and most of the Plan Area.

8461
8462 Collectively, the 18.6-mile-radius core foraging area (CFA) of the three colonies active in 2018
8463 fully encompass the Plan Area (Figure 13-1). We lack specific data about the foraging patterns of
8464 birds that nest in the three colonies. For our analyses in this BO, we expect that the amount of
8465 wood stork foraging in the Plan Area during the breeding season is directly proportional to the
8466 fraction of foraging habitat within the Plan Area that is within each colony's CFA. That is, if
8467 10% of the native wetlands within a CFA are within the Plan Area, we expect the Plan Area to
8468 support 10% of that colony's foraging activity. Wood storks disperse from nesting sites
8469 following the breeding season, and in south Florida colonies, this dispersal is generally to the
8470 north. Although an unknown fraction may remain in the Plan Area year-round, the primary
8471 conservation value of the Plan Area to wood storks is its contribution to productivity.
8472

8473 Table 13-1 tabulates the acreage of all native wetlands types inside and outside of the Plan Area
8474 for each of the three wood stork CFAs. Although non-forested wetlands more commonly support
8475 wood stork foraging, we also include forested wetlands in Table 13-1. Forested wetlands support
8476 some foraging activity, but may also provide future nesting sites as well as non-breeding season
8477 roosting sites for storks that remain for longer periods in the Plan Area. For the Corkscrew CFA,
8478 wood stork foraging habitats include estuarine types that do not occur in the Plan Area. The total
8479 wetlands acreage within the CFAs ranges from 218,530 acres (Corkscrew) to 392,133 acres
8480 (Barron Collier). The 18.6-mile radius around the Corkscrew CFA encompasses some open
8481 waters of the Gulf, which we do not include as wood stork habitat, as well as developed areas
8482 within the City of Naples, which partly accounts for its lower total wetlands acreage. The
8483 Corkscrew colony is located outside the Plan Area, but contains the highest percentage of
8484 wetlands within the Plan Area (19.6%). The Baron Collier colony contains the lowest percentage
8485 within the Plan Area (14.9%).
8486

8487 We lack hydro-period and other data that would allow us to estimate the relative importance of
8488 wetlands within each CFA. The prey base within the CFA of a larger colony must support the
8489 foraging needs of more storks than the CFA of a smaller colony, and the three CFAs that overlap
8490 the Plan Area substantially overlap each other. Therefore, we estimate the percentage of wood
8491 stork foraging activity for each colony that wetlands within the Plan Area are likely to support by
8492 multiplying the CFA-specific percentage of wetlands in the Plan Area by the number of storks in
8493 each colony. Table 13-1 provides this calculation under "Wood stork numbers equivalent to the
8494 'Percentage of CFA TOTAL WETLANDS.'" By this method, we estimate that Plan Area
8495 wetlands support the total foraging needs equivalent to about 79 of the 438 wood storks (18.0%)
8496 counted at the three colonies in 2018. Although all 438 storks may at some time forage in the
8497 Plan Area, 79 storks is our estimation of the fraction that Plan Area wetlands support among the
8498 total wetlands acreage of all three CFAs.
8499

8500 **13.2.2 Action Area Conservation Needs and Threats**

8501
8502 Large areas of native wetlands habitat within the Plan Area have been altered via land clearing
8503 and drainage for agricultural and other land uses. This loss of habitat has likely reduced prey
8504 availability and increased competition with other wading birds. Threats to the wood stork within
8505 the Plan Area include further habitat loss and degradation. Conservation needs within the Plan

8506 Area include the protection and management of existing suitable habitat, and the hydrologic
8507 restoration of degraded wetlands.

8508

8509 **13.2.3 Tables and Figures**

8510

8511 **Table 13-1.** Native wetlands cover (acres) within three wood stork core foraging areas (CFAs,
8512 18.6-mile radius from nest colony site) that overlap the Plan Area, and estimated number
8513 of wood storks for which wetlands inside and outside the Plan Area would support
8514 foraging and roosting, based upon 2018 nesting colony stork counts (Percentage of CFA
8515 TOTAL WETLANDS \times # storks per colony).

8516

8517

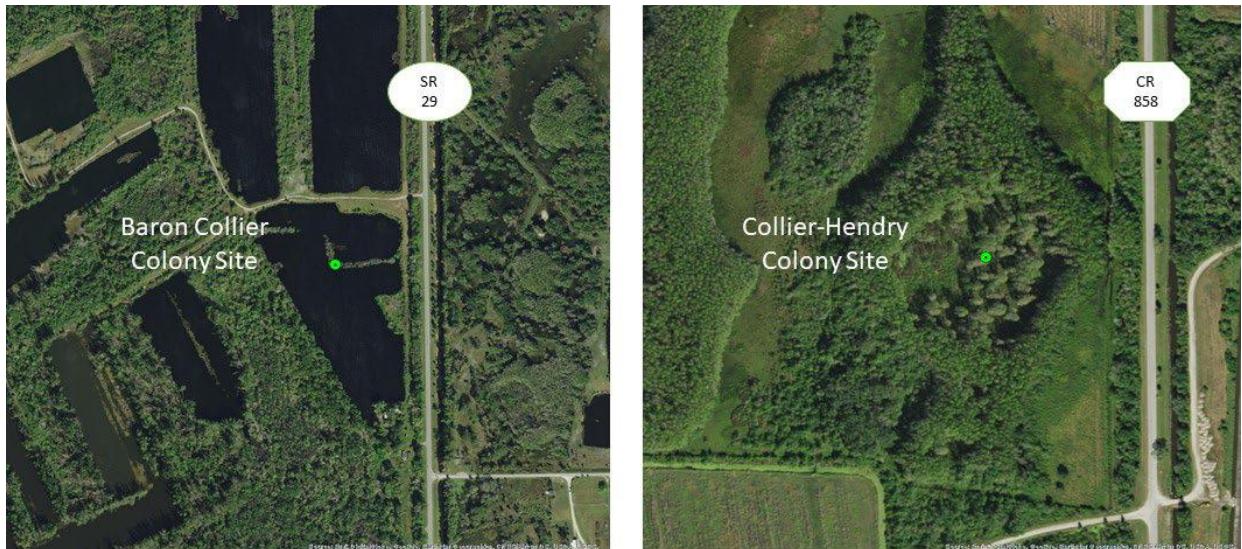
8518

WOOD STORK COLONY	CFA WETLANDS INSIDE PLAN AREA	CFA WETLANDS OUTSIDE PLAN AREA	CFA TOTAL WETLANDS
Barron Collier	58,404	333,728	392,133
<hr/>			
Collier - Hendry	57,291	251,648	308,939
Corkscrew	42,760	175,770	218,530
<hr/>			
Percentage of CFA TOTAL WETLANDS			
Barron Collier	14.9%	85.1%	
Collier - Hendry	18.5%	81.5%	
Corkscrew	19.6%	80.4%	
<hr/>			
Wood stork numbers equivalent to the "percentage of CFA TOTAL WETLANDS"			
Barron Collier (282 storks)	42	240	282
Collier - Hendry (54 storks)	10	44	54
Corkscrew (540 storks)	106	434	540
Total	158	718	876

8519

8520

8521


8522

8523 **Figure 13-1.** Location of three active wood stork colonies buffered with Core Foraging Areas
8524 within and adjacent to the East Collier HCP Action Area.

8525

8526

8527

8528

8529

8530 **Figure 13-2.** Aerial view of the immediate area around two wood stork colonies within the Plan
8531 Area that were active in 2018.

8532

8533 **13.3 Effects of the Action on Wood Stork**

8534

8535 This section describes all reasonably certain consequences to the wood stork that we predict the
8536 proposed Action would cause, including the consequences of other activities not included in the
8537 proposed Action that would not occur but for the proposed Action. Such effects may occur later
8538 in time and may occur outside the immediate area involved in the Action.

8539

8540 **13.3.1 Development and Mining, Base Zoning, and Eligible Lands**

8541

8542 Development and mining in wetlands would involve various activities (drainage, filling,
8543 excavation, paving, building construction, *etc.*) that would permanently eliminate the affected
8544 areas as wood stork habitat. The two wood stork nesting colonies active in 2018 that occur
8545 within the Plan Area (the “Barron Collier” and “Collier-Hendry” colonies; see section 13.2.1) are
8546 not within the Development and Mining, Base Zoning, and Eligible Lands designations (the
8547 potential development “envelope” of the HCP). Therefore, we do not expect development
8548 activities to directly kill or injure wood stork eggs or flightless young. However, a previously
8549 active colony that was not active in 2018 was located within a parcel of the Eligible Lands (see
8550 HCP section 5.2.1.2.3). We have no data from which to infer the cause for its recent
8551 abandonment. For this analysis, we consider the colonies active in 2018 as representative of
8552 current and expected wood stork nesting.

8553

8554 The core foraging areas (CFAs) of three colonies active in 2018 (the two within the Plan Area
8555 plus the Corkscrew Swamp colony) overlap areas designated as Development and Mining, Base
8556 Zoning, and Eligible Lands (Figure 13-1). Development of wetlands used as foraging areas
8557 would cause wood storks that use these areas to forage elsewhere.

8558

8559 Table 13-2 refines the Plan-Area-wide wetlands acreage tabulation of Table 13-1 (section 13.2.3)
8560 with a breakdown by HCP land use designation of wetlands acreage for each of the three core
8561 foraging area (CFAs) that overlap the Plan Area. For example, 2,361 acres of native wetlands
8562 within the Barron Collier colony CFA (0.6% of the CFA total wetlands acreage, 392,133 acres)
8563 are within the designated Development areas of the HCP. Further, we estimate that this
8564 percentage of the CFA wetlands, divided equally among the 282 storks nesting in this colony
8565 during 2018, would support the foraging needs equivalent to 2 of these storks (section 13.2.1
8566 provides our rationale for this methodology). Similarly, wetlands within the Development, Base
8567 Zoning, and Eligible lands designations collectively would support the foraging needs equivalent
8568 to 6 of the Barron Collier colony storks. Table 13-2 replicates this methodology for each of the
8569 three CFAs and each of the Plan Area land use designations.

8570

8571 To compute the total wood stork numbers equivalent to the CFA wetland acreage within each
8572 designated land use, we sum the stork numbers associated with each CFA that overlaps the land
8573 use (the bottom row of Table 13-2). This summation recognizes that the number of storks likely
8574 to use an area is a function of the numbers of storks in all colonies with CFAs that overlap the
8575 area. By this methodology, we estimate that wetlands in the full development envelope of the
8576 HCP support the foraging needs of about 22 wood storks from the three colonies, most (16) from
8577 the Corkscrew colony. The designated Development areas support the foraging needs of about 8
8578 wood storks.